Consensus of multi-agent systems has recently been studied in the context of Federated Learning (FL), an emerging branch of distributed machine learning. The present paper proposes a two-level hierarchical algorithm for FL in the context of edge computing, developing a fully decentralized solution that relies on results obtained for discrete-time consensus of dynamical systems. The proposed architecture and algorithm are validated on a test case and compared to current solutions, which require a centralized server.

Hierarchical Federated Learning for Edge Intelligence through Average Consensus / Menegatti, Danilo; Manfredi, Sabato; Pietrabissa, Antonio; Poli, Cecilia; Giuseppi, Alessandro. - 56:2(2023), pp. 862-868. (Intervento presentato al convegno 22nd IFAC World Congress tenutosi a Yokohama; Japan) [10.1016/j.ifacol.2023.10.1673].

Hierarchical Federated Learning for Edge Intelligence through Average Consensus

Menegatti, Danilo;Manfredi, Sabato;Pietrabissa, Antonio;Poli, Cecilia;Giuseppi, Alessandro
2023

Abstract

Consensus of multi-agent systems has recently been studied in the context of Federated Learning (FL), an emerging branch of distributed machine learning. The present paper proposes a two-level hierarchical algorithm for FL in the context of edge computing, developing a fully decentralized solution that relies on results obtained for discrete-time consensus of dynamical systems. The proposed architecture and algorithm are validated on a test case and compared to current solutions, which require a centralized server.
2023
22nd IFAC World Congress
federated learning; consensus theory; decentralized computing
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Hierarchical Federated Learning for Edge Intelligence through Average Consensus / Menegatti, Danilo; Manfredi, Sabato; Pietrabissa, Antonio; Poli, Cecilia; Giuseppi, Alessandro. - 56:2(2023), pp. 862-868. (Intervento presentato al convegno 22nd IFAC World Congress tenutosi a Yokohama; Japan) [10.1016/j.ifacol.2023.10.1673].
File allegati a questo prodotto
File Dimensione Formato  
Menegatti_Hierarchical_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 707.15 kB
Formato Adobe PDF
707.15 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1692410
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact