This paper proposes a new approach to fuzzy clustering of time series based on the dissimilarity among conditional higher moments. A system of weights accounts for the relevance of each conditional moment in defining the clusters. Robustness against outliers is also considered by extending the above clustering method using a suitable exponential transformation of the distance measure defined on the conditional higher moments. To show the usefulness of the proposed approach, we provide a study with simulated data and an empirical application to the time series of stocks included in the FTSEMIB 30 Index.

Fuzzy clustering of time series based on weighted conditional higher moments / Cerqueti, Roy; D’Urso, Pierpaolo; DE GIOVANNI, Livia; Mattera, Raffaele; Vitale, Vincenzina. - In: COMPUTATIONAL STATISTICS. - ISSN 0943-4062. - (2023), pp. 1-24. [10.1007/s00180-023-01425-6]

Fuzzy clustering of time series based on weighted conditional higher moments

Roy Cerqueti;Pierpaolo D’Urso;Livia De Giovanni;Raffaele Mattera
;
Vincenzina Vitale
2023

Abstract

This paper proposes a new approach to fuzzy clustering of time series based on the dissimilarity among conditional higher moments. A system of weights accounts for the relevance of each conditional moment in defining the clusters. Robustness against outliers is also considered by extending the above clustering method using a suitable exponential transformation of the distance measure defined on the conditional higher moments. To show the usefulness of the proposed approach, we provide a study with simulated data and an empirical application to the time series of stocks included in the FTSEMIB 30 Index.
2023
Dynamic conditional score · Unsupervised learning,; robust clustering; Fuzzy clustering; Conditional moments; Exponential dissimilarity; Financial time series
01 Pubblicazione su rivista::01a Articolo in rivista
Fuzzy clustering of time series based on weighted conditional higher moments / Cerqueti, Roy; D’Urso, Pierpaolo; DE GIOVANNI, Livia; Mattera, Raffaele; Vitale, Vincenzina. - In: COMPUTATIONAL STATISTICS. - ISSN 0943-4062. - (2023), pp. 1-24. [10.1007/s00180-023-01425-6]
File allegati a questo prodotto
File Dimensione Formato  
s00180-023-01425-6.pdf

solo gestori archivio

Note: COST2023
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.65 MB
Formato Adobe PDF
1.65 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1691672
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact