Global geodynamics is the result of the long-lasting action of large-scale stress sources with different origin. Plate boundary forces and mantle circulation are usually considered to be dominant in driving plate tectonics. However, these contributions are not sufficient to explain absolute plate dynamics. Plates follow a westward mainstream and the lithosphere with long-term angular velocity of about (0.1-0.3)°/Myr relative to the underlying mantle in the deep hotspot reference frame, which may increase up to 1°/Myr if the relative motion of hotspots is considered, e.g., according to the shallow hotspot reference frame model (Cuffaro and Doglioni, 2007). Plate motion is just one, even though likely the most evident global scale asymmetry in geodynamics. Together with other geophysical and geological observations, it suggests an exogenous influence on plate tectonics. After a short period, the interest in understanding a role of tidal forces in global geodynamics declined when it was noticed that the torque provided by tides is several orders of magnitudes weaker than the value required directly speed up plates. However, the interaction between the stratified mantle convection, the ultra-low viscosity within the Low Velocity Zone (LVZ) and solid Earth tides could explain why plate tectonics appears to be westerly polarized (Zaccagnino and Doglioni, 2022). We realized a mathematical model the observed westward drift of the lithosphere providing both analytical results and computational simulations (Nesi et al., 2023). We demonstrate that the tidal drag allows to explain why absolute plate motions, regardless of the reference frame, show a significant westward component while the variability of angular velocity among plates is controlled by the basal viscosity at the interface between the lithosphere and the mantle in the presence of a basal effective shear viscosity in the order of magnitude of 1016 Pa s within the LVZ atop the asthenosphere. With lower viscosity values, faster velocity would be possible, allowing better compatible with regional geodynamic observations. References Cuffaro, M., & Doglioni, C. (2007). Global kinematics in deep versus shallow hotspot reference frames. Zaccagnino, D., & Doglioni, C. (2022). Earth’s gradients as the engine of plate tectonics and earthquakes. La Rivista del Nuovo Cimento, 45(12), 801-881. Nesi, V., Bruno, O., Zaccagnino, D., Mascia, C., & Doglioni, C. (2023). Tidal drag and westward drift of the lithosphere. Geoscience Frontiers, 14(6), 101623.

Mathematical modeling of the westward drift of the lithosphere / Nesi, Vincenzo; Bruno, Oscar; Zaccagnino, Davide; Mascia, Corrado; Doglioni, Carlo. - (2023). (Intervento presentato al convegno Annual Meeting of the Geological Society of America tenutosi a Pittsburgh).

Mathematical modeling of the westward drift of the lithosphere

Vincenzo Nesi
Primo
;
Davide Zaccagnino;Corrado Mascia
Penultimo
;
Carlo Doglioni
Ultimo
2023

Abstract

Global geodynamics is the result of the long-lasting action of large-scale stress sources with different origin. Plate boundary forces and mantle circulation are usually considered to be dominant in driving plate tectonics. However, these contributions are not sufficient to explain absolute plate dynamics. Plates follow a westward mainstream and the lithosphere with long-term angular velocity of about (0.1-0.3)°/Myr relative to the underlying mantle in the deep hotspot reference frame, which may increase up to 1°/Myr if the relative motion of hotspots is considered, e.g., according to the shallow hotspot reference frame model (Cuffaro and Doglioni, 2007). Plate motion is just one, even though likely the most evident global scale asymmetry in geodynamics. Together with other geophysical and geological observations, it suggests an exogenous influence on plate tectonics. After a short period, the interest in understanding a role of tidal forces in global geodynamics declined when it was noticed that the torque provided by tides is several orders of magnitudes weaker than the value required directly speed up plates. However, the interaction between the stratified mantle convection, the ultra-low viscosity within the Low Velocity Zone (LVZ) and solid Earth tides could explain why plate tectonics appears to be westerly polarized (Zaccagnino and Doglioni, 2022). We realized a mathematical model the observed westward drift of the lithosphere providing both analytical results and computational simulations (Nesi et al., 2023). We demonstrate that the tidal drag allows to explain why absolute plate motions, regardless of the reference frame, show a significant westward component while the variability of angular velocity among plates is controlled by the basal viscosity at the interface between the lithosphere and the mantle in the presence of a basal effective shear viscosity in the order of magnitude of 1016 Pa s within the LVZ atop the asthenosphere. With lower viscosity values, faster velocity would be possible, allowing better compatible with regional geodynamic observations. References Cuffaro, M., & Doglioni, C. (2007). Global kinematics in deep versus shallow hotspot reference frames. Zaccagnino, D., & Doglioni, C. (2022). Earth’s gradients as the engine of plate tectonics and earthquakes. La Rivista del Nuovo Cimento, 45(12), 801-881. Nesi, V., Bruno, O., Zaccagnino, D., Mascia, C., & Doglioni, C. (2023). Tidal drag and westward drift of the lithosphere. Geoscience Frontiers, 14(6), 101623.
2023
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1689457
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact