We derive strain-gradient plasticity from a nonlocal phase-field model of dislocations in a plane. After scaling, from the nonlocal elastic interaction we derive a continuous energy with linear growth depending on a measure which characterizes the macroscopic dislocation density as well as a nonlocal effective energy representing the far-field interaction between dislocations. Relaxation and formation of microstructures at intermediate scales are automatically incorporated in the limiting procedure based on Gamma-convergence.

Derivation of strain-gradient plasticity from a generalized Peierls–Nabarro model / Conti, Sergio; Garroni, Adriana; Müller, Stefan. - In: JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY. - ISSN 1435-9855. - 25:7(2023), pp. 2487-2524. [10.4171/JEMS/1242]

Derivation of strain-gradient plasticity from a generalized Peierls–Nabarro model

Garroni, Adriana
Membro del Collaboration Group
;
2023

Abstract

We derive strain-gradient plasticity from a nonlocal phase-field model of dislocations in a plane. After scaling, from the nonlocal elastic interaction we derive a continuous energy with linear growth depending on a measure which characterizes the macroscopic dislocation density as well as a nonlocal effective energy representing the far-field interaction between dislocations. Relaxation and formation of microstructures at intermediate scales are automatically incorporated in the limiting procedure based on Gamma-convergence.
2023
Peierls–Nabarro model; strain gradient plasticity; gamma-convergence; phase-field model
01 Pubblicazione su rivista::01a Articolo in rivista
Derivation of strain-gradient plasticity from a generalized Peierls–Nabarro model / Conti, Sergio; Garroni, Adriana; Müller, Stefan. - In: JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY. - ISSN 1435-9855. - 25:7(2023), pp. 2487-2524. [10.4171/JEMS/1242]
File allegati a questo prodotto
File Dimensione Formato  
Conti_Derivation_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 522.68 kB
Formato Adobe PDF
522.68 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1688022
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact