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Abstract. We derive strain-gradient plasticity from a nonlocal phase-field model of dislocations
in a plane. After scaling, from the nonlocal elastic interaction we derive a continuous energy with
linear growth depending on a measure which characterizes the macroscopic dislocation density
as well as a nonlocal effective energy representing the far-field interaction between dislocations.
Relaxation and formation of microstructures at intermediate scales are automatically incorporated
in the limiting procedure based on �-convergence.
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1. Introduction

Crystal plasticity and dislocations are a fundamental theme in the mechanics of solids.
Whereas the calculus of variations has been very helpful in the study of nonlinear elas-
ticity and phase transitions, the study of plasticity and dislocations has proven much
more demanding. Dislocations are topological singularities of the strain field, which share
many features with other important classes of topological defects, such as Ginzburg–
Landau vortices, defects in liquid crystals, harmonic maps, models of superconductivity.
Their importance for the understanding of the yield behavior of crystals motivated a large
interest, and indeed in the last decade tools have been developed to study individual dis-
locations, both in reduced two-dimensional formulations in which one deals with point
singularities [5, 24, 52], and, with some geometrical restrictions, in the three-dimensional
setting in which singularities are lines [21].
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In this paper we go beyond the scale of single dislocation lines and derive macroscopic
strain-gradient plasticity, starting from a generalization of the classical Peierls–Nabarro
model for dislocations. Here the plastic slips are confined to a single slip plane and the
three-dimensional elastic problem can then be solved (implicitly) and results in a nonlocal
energy induced by the phase field of this model, which represents slip on a plane. In addi-
tion, the crystalline nature of the material implies that slips that are not lattice preserving
generate a large short-range, local energy. This results in a local, nonconvex term that
penalizes the L2 distance of the phase field from a discrete set. The nonconvex term is
minimized by piecewise constant, integer-valued phase fields, while the convex nonlocal
term does not allow for discontinuities along lines and regularizes the interfaces. A more
detailed interpretation of the model will be given in Section 2. Specifically, we consider
an energy of this type:

1

"

Z
�

dist2.u.x/;ZN / dx C Œu�2
O�;1=2

(1.1)

where u 2 L2.�IRN /, with� � R2 open and bounded. The parameter " > 0 represents,
ideally, the lattice spacing and reveals the semi-discrete nature of this type of disloca-
tion model, while Œu� O�;1=2 is an anisotropic seminorm equivalent to the H 1=2 seminorm,
defined by

Œf �2
H1=2.�/

WD

Z
���

jf .x/ � f .y/j2

jx � yj3
dx dy: (1.2)

The anisotropy of the interaction kernel O� reflects the anisotropy of the underlying lattice
and, possibly, the boundary conditions imposed at the level of the local three-dimensional
problem. Note that, even with the simplest case of isotropic elasticity, invariance under
(linearized) rotations requires a nontrivial and anisotropic interaction between the com-
ponents of u.

This model was proposed and studied numerically in [42,43,50], in a regime in which
a few individual dislocations are present. In the same regime, a scalar simplification of
the model was studied analytically in [32, 33]. In the limit of small lattice spacing ",
the energy concentrates along the dislocations and the problem reduces to a line-tension
model; the relevant independent variable is a measure concentrated on a line and the
energetic cost of single dislocations is logarithmic in ". One important tool was the study
of variational convergence for phase transitions with nonlocal interactions (see also [3,
4, 29, 55]). The extension to the physically relevant vectorial situation in [15, 18] (see
also [17] for a generalization to multiple slip planes) leads to the discovery of unexpected
microstructures at intermediate scales. This effect together with the singularity of the
kernel in the nonlocal energy makes the asymptotic analysis very demanding. A key tool
is a multiscale self-similar decomposition of the singular kernel performed in [18].

Here we consider a scale for which the total length of the singularities diverges and
we derive a macroscopic strain-gradient theory, where the macroscopic effect of the sin-
gularities is captured by a density, which is a measure in H�1=2. In this critical energetic
regime the limiting model combines effects at different scales, it includes both long-range
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interactions of singularities and a short-range term which arises from the self-interaction
of singularities. The study of a single limiting process is crucial to obtain the limiting
behavior of both the local term and the nonlocal one; if the various homogenization and
relaxation steps are taken separately then the nonlocal (interaction) term disappears [20].
This critical phase field model does not show equipartition of energy, at variance with
many other results in the theory of phase transitions. A related effect is that there is no
characteristic length scale at which the energy concentrates.

The main difficulty in the proof is to obtain a joint treatment of the many different
scales present in the problem. The discrete nature of the dislocations leads to local-
ization and to slip fields in BV.�I ZN /, at the same time the nonlocal part requires
slip fields in H 1=2.�IRN /. These two spaces are, except for constants, disjoint (see
Lemma 3.1 below), hence both requirements can only be realized approximately. This
is performed introducing a number of well-separated scales, regularizations and cutoffs,
as discussed in the introduction to Section 7 for the upper bound and Section 8 for the
lower bound. Indeed, both the original functional and the limiting functional are finite
on H 1=2.�IRN /, whereas the relaxation steps occur at intermediate scales, and is best
described using functions in BV.�IZN /.

The critical scaling considered here corresponds to a total length of dislocations that
increases logarithmically. Correspondingly, the energy scales as jlog "j2. This scaling
has already been considered in the literature for cylindrical configurations (i.e., in two-
dimensional models where defects are point singularities). The first result in this context
is the one for Ginzburg–Landau vortices by Sandier and Serfaty [53]. As for point (edge)
dislocations in two dimensions this regime was first studied in [31] in a dilute geomet-
rically linear setting. The latter was then generalized to dilute geometrically nonlinear
models [47,48], the same result without the diluteness restriction was obtained in [34,35].
Along this line of thought, with a different energy scaling, a similar model in two dimen-
sions was used in [45] in order to derive the Read–Shockley formula for the energy of
small-angle grain boundaries.

Our result with the kinematic restriction of lines confined to one single plane is an
important step toward the understanding of the full three-dimensional problem, which
is substantially more subtle: firstly, because the geometry plays an important role in the
interaction between line singularities, and secondly, because it is a higher-order tensorial
problem, in which the energy only controls some components of the relevant strain field.
For these reasons, we expect that any extension to three dimensions will, at least initially,
require strong diluteness assumptions, as used for example for the line-tension scaling
in [21]. In contrast, the present work does not have any restriction on the admissible
configurations to defects (other than the confinement to a single slip plane).

In the context of Ginzburg–Landau for filament singularities and isotropic models of
superconductivity in dimension 3 the critical regime has been studied in [2,10,11,53,54].
Whereas some ideas are closely related, the vectorial and anisotropic nature of the dislo-
cation problem renders a direct transfer difficult and requires new techniques, in particular
for treating the microstructures at intermediate scales. As is clear from the summary
above, our argument makes a strong use of the existence of a lifting of the dislocation
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density to a function of bounded variation which represents the slip on the plane that
contains �. Therefore extension to the unconstrained three-dimensional case will prob-
ably require a different functional framework, which could possibly be formulated via
cartesian currents [16, 40, 56].

Our results have interesting implications for modeling in continuum mechanics. On
the one hand, it provides a justification for strain-gradient plasticity models, which have
been widely used in the literature [12, 22, 27, 28, 30, 44, 49], and gives a characterization
of the strain-gradient energy density. In particular, we show that it has linear growth in the
strain gradient, whereas in many phenomenological models expressions with quadratic
growth are used. On the other hand, our result implies that dislocation microstructures
form at intermediate scales, in the form of dislocation networks, the study of which has
long been an important problem in mechanics [1, 13, 27, 36–39, 46, 51]. We refer to [9,
19] for a more precise discussion of the mechanical implications of our result and its
connection to strain-gradient theories of plasticity.

2. Model and main results

We now formulate the model we study. The total energy associated to a phase field u 2
L2.�IRN /, with � � R2 open and bounded, is

E"Œu;�� WD
1

"

Z
�

W.u.x// dx

C

Z
���

�.x � y/.u.x/ � u.y// � .u.x/ � u.y// dx dy: (2.1)

The nonlinear potential W W RN ! Œ0;1/ satisfies

1

c
dist2.�;ZN / � W.�/ � cdist2.�;ZN / (2.2)

for some c > 0. The elasticity kernel � 2 L1loc.R
2IRN�Nsym / is defined by

�.z/ WD
1

jzj3
O�

�
z

jzj

�
; (2.3)

where RN�Nsym denotes the set of symmetric N � N matrices and O� 2 L1.S1IRN�Nsym /

obeys, for some c > 0,

O�.z/ D O�.�z/ and
1

c
j�j2 � O�.z/� � � � cj�j2 for all � 2 RN ; z 2 S1: (2.4)

The specific form of O� depends on the elastic constants and the Burgers vectors of the
crystal, for example for an elastically isotropic cubic crystal one obtains � D�cubic, where

�cubic.z/ WD
�

16�.1 � �/jzj3

0@� C 1 � 3� z2
2

jzj2
3� z1z2
jzj2

3� z1z2
jzj2

� C 1 � 3�
z2
1

jzj2

1A : (2.5)
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Here � and � denote the material’s Poisson’s ratio and shear modulus, respectively
(see [15]). It is easy to see that for � > 0 and � 2 .�1; 1=2/ the kernel �cubic fulfills
the assumption (2.4).

In order to present our main result we first introduce several effective energy densities
which are generated by the rescaling procedure. Detailed explanations of the physical sig-
nificance of the different steps are given in Section 4. In a first step the nonlocal kernel �
generates an unrelaxed line-tension energy  W ZN � S1 ! Œ0;1/ by

 .b; n/ WD 2

Z
¹x�nD1º

�.x/b � b dH1.x/: (2.6)

Relaxation at the line-tension scale leads to the BV-elliptic envelope  rel W ZN � S1 !
Œ0;1/ of  W ZN � S1 ! Œ0;1/, defined by

 rel.b; n/ WD inf
²
1

2

Z
Ju\B1

 .Œu�; �/ dH1
W u 2 BV loc.R

2
IZN /;

supp.u � u0b;n/ �� B1

³
; (2.7)

where u0
b;n
.x/ WD b�¹x�n>0º and � is the normal to the jump set Ju of u. We recall that

the concept of BV-elliptic envelope was introduced and studied in [6, 7] (see also [8,
Sect. 5.3]).

Finally, in the second relaxation step one obtains a continuous energy density g W
RN�2 ! Œ0;1/ defined as the convex envelope of

g0.A/ WD

8̂̂<̂
:̂
0 if A D 0;

 rel.b; n/ if A D b ˝ n for b 2 ZN ; n 2 S1;

1 otherwise.

(2.8)

In particular, the function g turns out to be positively 1-homogeneous [20].
Our main result is the following.

Theorem 2.1. Let�� R2 be a bounded connected Lipschitz domain, and let E"Œ�;�� be
defined as in (2.1), with W and � which satisfy (2.2)–(2.4).

We say that a family of functions u" 2 L2.�IRN /, " > 0, converges to u if

u"

ln.1="/
! u in L2.�IRN / as "! 0: (2.9)

With respect to this convergence we have

�- lim
"!0

1

.ln.1="//2
E"Œ�; �� D F0Œ�; ��;

where F0 is defined by

F0Œu;�� WD FselfŒu;��C

Z
���

�.x � y/.u.x/� u.y// � .u.x/� u.y// dx dy (2.10)
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and

FselfŒu;�� WD

Z
�

g.ru/ dx C

Z
�

g

�
dDsu

d jDsuj

�
d jDsuj (2.11)

if u 2 BV.�IRN / \ H 1=2.�IRN /, and F0Œu; �� D 1 otherwise. Here g W RN�2 !
Œ0;1/ is the convex envelope of the function g0 defined from the kernel � in (2.6)–(2.8).

Further, the functionals .ln.1="//�2E"Œ�; �� are, with respect to the stated conver-
gence, equicoercive, in the sense that if u" 2 L2.�IRN / are such that E"Œu"; �� �
C.ln.1="//2 for all " then there is a subsequence "k ! 0 such that, for some dk 2 ZN

and some u 2 L2.�IRN /, one has

lim
k!1

u"k � dk

ln.1="k/
D u in L2.�IRN /: (2.12)

We remark that  rel coincides with the line-tension energy density obtained in the
subcritical regime [18]; see Theorem 4.1 below.

The proof of the above theorem is a combination of various results proved in the rest
of the paper. The compactness assertion follows from Proposition 5.1, the upper bound
from Proposition 7.2, and the lower bound from Proposition 8.1.

To close this introduction we briefly recall the connection between E" and the clas-
sical Peierls–Nabarro model which contains the elastic energy over a three-dimensional
domain. The Peierls–Nabarro model, as generalized in [42, 43, 50] to three dimensions,
expresses the free energy in terms of the slip v W �! R3 on a two-dimensional cross-
section � � R2 as

EfreeŒv� WD EelasticŒv�CEinterfacialŒv�:

Here the first term represents the long-range elastic distortion due to the slip, and the
second term penalizes slips that are not integer multiples of the Burgers vectors of the
crystal lattice. One denotes by b1; : : : ; bN 2R3 the relevant Burgers vectors and considers
slips of the form

v D u1b1 C � � � C uN bN

where u W R2 � �! RN . Typically, N D 2 and the vectors bi are a basis of R2 � ¹0º,
but this is not relevant for the mathematical analysis. The term Einterfacial penalizes values
of u far from ZN , so that v is close to the lattice generated by ¹b1; : : : ; bN º. A simple
model is

EinterfacialŒv� D
1

"

Z
�

dist2.u;ZN / dx;

where u is related to v as stated above. We observe that the specific functional form does
not contribute to the limit. At variance with many classical results on �-convergence for
phase-field models of phase transitions, there is no equipartition of energy, and the only
role of the interfacial energy is to force u to jump on a scale ". The limiting energy arises
then completely from the elastic term, as is apparent from the characterization of g and  
in terms of the kernel � in (2.6)–(2.8).
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The elastic interaction is given by

EelasticŒv� D inf
²Z

��R

1

2
CrU � rU dx

³
;

where the displacementU W��R!R3 is required to have a discontinuity of vD
P
uibi

across � � ¹0º. Minimizing out U leads to a nonlocal functional of u of the kind of (2.1)
up to boundary effects which do not influence the leading-order behavior; see [32,33] for
a discussion. The factor " inEinterfacial is proportional to the lattice spacing and arises from
the different scaling of the bulk and the interfacial term. We refer to [19, 32] for a more
detailed discussion of this relation.

Remark 2.2. We discuss in this paper the case that� is a bounded Lipschitz set. Similar
results can be obtained, with the same proofs, for � being a torus. In the latter case it is
easy to see that the elastic energy Eelastic coincides with the nonlocal energy in E", up to
lower-order terms which are continuous in the topology considered here. This leads to the
model described in [19].

3. Functional setting

In this section we briefly recall the main properties and the standard notation for the
function spaces used in the paper.

The elements of BV.�IRN / are the functions with bounded variation in � � R2,
which are the functions in L1.�IRN / whose distributional derivative Du is a bounded
measure on �. We denote by Dsu the part of this measure which is singular with respect
to the Lebesgue measure. In turn, SBV.�IRN / denotes the space of special functions of
bounded variation, which are the functions in BV.�IRN / whose distributional gradient
can be characterized as Du D ruL2 C Œu� ˝ �H1 Ju. Here Ju is a 1-rectifiable set
called the jump set of u, and it is defined as the set of points for which u does not have an
approximate limit. The normal to this set is denoted by �, and Œu�D uC � u� denotes the
jump of the function u across the set Ju. For any H1-a.e. x 2 Ju one has

lim
r!0

H1.Ju \ Br .x//

2r
D 1

and
lim
r!0

1

r2

Z
Br .x/\¹˙.y�x/��>0º

ju � u˙.x/j dy D 0:

We refer to [8] for details.
The fractional Sobolev spaceH 1=2.�/ is equipped with the homogeneousH 1=2 semi-

norm, which as stated in (1.2) is given by

Œf �2
H1=2.�/

WD

Z
���

jf .x/ � f .y/j2

jx � yj3
dx dy (3.1)
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for a measurable function f W �! R, and for an open set� � R2. We observe that if�
is bounded then for any f there is af 2 R such that

kf � af kL2.�/ � c�Œf �H1=2.�/:

This can be proven directly from the definition of Œf �H1=2.�/, letting af be the average
of f over �. If � is bounded and Lipschitz, then any sequence fj which converges
weakly in L2 and is bounded in the H 1=2 seminorm converges strongly in L2 (see for
example [25, Section 7]). One can see that this norm is equivalent to the one obtained by
the trace method.

We next recall that BV.�IZN / is (up to constants) disjoint fromH 1=2.�IRN /, which
only contains functions that “do not jump”. This fact can be made precise using the fol-
lowing lemma.

Lemma 3.1. Let � � R2 be open and u 2 BV.�/ \H 1=2.�/. Then H1.Ju/ D 0.

In particular, if u 2 BV.�I ZN / then Du D Œu� ˝ �H1 Ju, hence in this case
H1.Ju/ D 0 implies Du D 0.

Proof of Lemma 3.1. We claim that for any ı > 0 we have

H1.¹x 2 Ju W ju
C
� u�j.x/ > ıº/ D 0: (3.2)

Since ı is arbitrary, this will imply the assertion.
We write J .ı/u WD ¹x 2 Ju W ju

C � u�j.x/ > ıº. Fix � > 0, and choose � > 0 such thatZ
���

ju.x/ � u.y/j2

jx � yj3
�B�.x/.y/ dx dy � �: (3.3)

This is possible, since u2H 1=2.�/ and by dominated convergence this integral converges
to zero as �! 0. For H1-a.e. x 2 J .ı/u one has

lim
r!0

1

r2

Z
Br .x/

ju.y/ � ux.y/j dy D 0;

where

ux.y/ WD

´
uC.x/ if .y � x/ � � > 0;

u�.x/ if .y � x/ � � � 0;

with u˙.x/ the traces and � the normal to the jump set in x. Therefore for H1-a.e.
x 2 J

.ı/
u ,

lim
r!0

1

�r2

Z
Br .x/

ju.y/ � .u/r j dy D lim
r!0

1

�r2

Z
Br .x/

jux.y/ � .ux/r j dy

D
1

2
juC � u�j.x/ >

ı

2
;
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where .f /r denotes the average of f over the ball Br .x/. Moreover, from the 1-rectifia-
bility of Ju, and hence of J .ı/u , we have

lim
r!0

1

2r
H1.J .ı/u \ Br .x// D 1:

By Vitali–Besicovitch’s covering lemma (see for instance [8, Theorem 2.19]) we can
choose countably many disjoint balls Bj WD B.xj ; rj / such that for all j one has rj 2
.0; �=2/, xj 2 J

.ı/
u ,

1

�r2j

Z
Bj

ju.y/ � uj j dy �
ı

4
; (3.4)

where uj is the average of u over Bj , with rj � H1.J
.ı/
u \ Bj / � 3rj , and satisfying

H1.J
.ı/
u n

S
j Bj / D 0.

For each Bj we estimate, as in the proof of Poincaré’s inequality for H 1=2, using
Jensen’s inequality,Z

Bj

ju.y/ � uj j
2 dy �

1

�r2j

Z
Bj�Bj

ju.y/ � u.x/j2 dx dy

�
8rj

�

Z
Bj�Bj

ju.y/ � u.x/j2

jx � yj3
dx dy:

In particular, recalling (3.4),

ı2

16
�r2j �

Z
Bj

ju.y/ � uj j
2 dy �

8rj

�

Z
Bj�Bj

ju.x/ � u.y/j2

jx � yj3
dx dy:

We divide by rj , sum over j , and obtain

H1.J .ı/u / �
X
j

H1.J .ı/u \ Bj / �
X
j

3rj

� Cı

Z
S
j Bj�Bj

ju.x/ � u.y/j2

jx � yj3
dx dy � Cı�;

where Cı depends only on ı and in the last step we have used 2rj < � and (3.3). Since �
was arbitrary, the proof of (3.2) and therefore of the lemma is concluded.

4. Limits at separated scales

In this section we briefly review two previous results on different scalings which have
been mentioned in the introduction and that will be used in the proofs.

If a sequence u" has energy proportional to ln.1="/, in the sense that E"Œu"; �� �
C ln.1="/, then asymptotically u" describes dislocations with finite total length, and the
limiting energy is given by an integral over the line. This is called the line-tension approx-
imation and was studied in [18, 32].
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Theorem 4.1 ([18, Theorem 1.1]). Let � � R2 be a bounded connected Lipschitz
domain, and let E"Œ�; �� be defined as in (2.1), with W and � which satisfy (2.2)–(2.4).

The functionals .ln.1="//�1E"Œ�;�� areL1-equicoercive, in the sense that ifE"Œu";��
� C ln.1="/ then there are d" 2 ZN and u 2 BV.�IZN / such that u" � d" has a subse-
quence that converges to u in L1.�IRN /.

Further, we have

�- lim
"!0

1

ln.1="/
E"Œ�; �� D E

LT;relŒ�; ��

with respect to strong L1 convergence, where the relaxed line-tension fuctional ELT;rel is
defined by

ELT;relŒu;�� WD

8<:
Z
Ju\�

 rel.Œu�; �/ dH1 if u 2 SBV.�IZN /;

1 otherwise,
(4.1)

with  rel obtained from � as in (2.6) and (2.7).

The main difficulty in the proof of Theorem 4.1 is that this problem has no natural
rescaling, since infinitely many scales asymptotically contribute to the energy. The proof
is based on a dyadic decomposition of the interaction kernel, which is also used in Sec-
tion 8 below, and on an iterative mollification technique which permits one to show that
microstructure can only appear at few scales, and therefore on the average scale there is
no microstructure. This permits passing from the nonlocal functional E" to a line-tension
functional with the unrelaxed energy  ; the relaxation from  to  rel then takes place at
the line-tension level and does not couple to the nonlocality of E". We refer to [18] for
details and we remark that a similar formula for the subcritical regime also holds without
the geometric restriction to a single plane, if the dislocations are dilute [21].

For later reference we observe that (2.4) and the definition in (2.6) imply that cjbj �
 .b; n/ for all b 2 ZN , n 2 S1, and by (2.7) we obtain, with Jensen’s inequality,

cjbj �  rel.b; n/ �  .b; n/ for all b 2 ZN , n 2 S1: (4.2)

The transition from scaled line-tension functionals to a functional with a continuous
distribution of dislocations was studied in [20]. Here two effects are present. Firstly, by
rescaling the discrete nature of the dislocations is lost, and macroscopically one only sees
the effective dislocation density, passing from  rel to g0. This corresponds to recover-
ing continuous slips from superposition of many atomic-scale plastic slips, and naturally
relates to strain-gradient plasticity models. Secondly, and already at the macroscopic
scale, one relaxes g0 (which is finite only on certain rank-one matrices) to the macro-
scopic energy g. As usual in problems with linear growth, the gradient constraint does
not affect the effective energy density, which turns out to be convex (see [41] for a gen-
eral statement).
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Theorem 4.2. Let��R2 be a bounded connected Lipschitz domain, and let WZN �S1

! Œ0;1/ obey 1
c
jbj �  .b; n/ for all b 2 ZN and n 2 S1. The functionals

ELT
� Œu;�� WD

8<:
Z
Ju\�

� .Œu�=�; �/ dH1 if u 2 SBV.�I �ZN /;

1 otherwise,
(4.3)

are equicoercive with respect to the strongL1 topology, in the sense that if �k > 0, �k! 0

and ELT
�k
Œuk ;�� � C then there are dk 2 RN and u 2 BV.�IRN / such that uk � dk has

a subsequence that converges to u in L1.�IRN /.
Further, with respect to this topology,

�- lim
�!0

ELT
� Œ�; �� D E

LT
0 Œ�; ��;

where

ELT
0 Œu;�� WD

8<:
Z
�

g

�
dDu

d jDuj

�
d jDuj if u 2 BV.�IRN /;

1 otherwise.
(4.4)

The function g is positively 1-homogeneous, obeys 1
c
jAj � g.A/ � cjAj, and coincides

with the convex envelope of g0, which is defined from  via  rel as in (2.7) and (2.8).

We observe that in [20, (1.4)] there is a typo: the integral should be (as in (4.4) above)
over �, not Ju.

Proof of Theorem 4.2. This statement reduces to [20, Theorem 1.1] if  is BV-elliptic
(i.e.,  D  rel), after a change in notation.

In the general case we observe that for any (fixed) � > 0 by [16] the functional

ELT;rel
� Œu;�� WD

8<:
Z
Ju\�

� rel.Œu�=�; �/ dH1 if u 2 SBV.�I �ZN /;

1 otherwise,
(4.5)

is the relaxation of ELT
� , and that  rel is BV-elliptic and has linear growth, in the sense

that
1

c
jbj �  rel.b; n/ � cjbj for all b 2 ZN ; n 2 S1:

Therefore the �-limit of the sequence ELT
� is the same as the �-limit of ELT;rel

� ; we refer
to [23, Proposition 6.11] for details.

Finally, as mentioned above, [20, Theorem 1.1] implies that the sequence ELT;rel
�

�-converges to ELT
0 . Coercivity is also inherited, since  rel �  . This concludes the

proof.

In proving our main result we shall have to take into account both these results, but
also include the effects of the long-range elastic energy, which scales as the squaredH 1=2

norm of u. We remark thatH 1=2 is singular with respect to the natural spaces of piecewise
constant functions entering the above results, hence one cannot recover Theorem 2.1 from
a direct combination of Theorems 4.1 and 4.2.
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5. Compactness

The functions u"=ln.1="/ belong to the space H 1=2.�IRN /, the limit however will also
belong to BV.�IRN /. The key step in the proof of the compactness result is to produce
a new sequence of functions, called v" in the proof below, which belong to BV.�IZN /
and are close to u".

Proposition 5.1 (Compactness). Let � � R2 be a bounded connected Lipschitz domain,
and let E"Œ�; �� be defined as in (2.1), with W and � which satisfy (2.2)–(2.4). Let u"
be a family with E"Œu"; �� � M.ln.1="//2 for some M > 0. Then there are a function
u 2 BV.�IRN /\H 1=2.�IRN /, vectors d" 2 ZN and a subsequence "k ! 0 such that

1

ln.1="k/
.u"k � d"k /! u in L2.�IRN /. (5.1)

In order to prove the compactness result we recall some notation and a result
from [18]. We define the truncated kernels by

�Œ0;k� WD

kX
iD0

�i

where (see Figure 1)

�k.x/ WD

8̂̂<̂
:̂
O�.x=jxj/.23.kC1/ � 23k/ if 0 < jxj � 2�k�1;
O�.x=jxj/.jxj�3 � 23k/ if 2�k�1 < jxj � 2�k ;

0 if jxj > 2�k

0 1
4

1
2

1

Γ

Γ0

Γ1

Γ2

|z|

Γ

|z|

Γ

0 1
4

1

Γ

Γ[0,2]

Fig. 1. Sketch of � , �0, �1 and �2 (left) and of � , �Œ0;2� (right). For clarity we have plotted 1=jzj
instead of 1=jzj3.
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and the corresponding truncated energies by

E�k Œu;�� WD

Z
���

�k.x � y/.u.x/ � u.y// � .u.x/ � u.y// dx dy: (5.2)

The result from [18] that we use concerns approximation of regular fields by BV phase
fields. We observe that the symbol E" is used in [18] for the energy already divided by
ln.1="/, i.e., for the quantity E2011" WD E"=ln.1="/.

Proposition 5.2 ([18, Proposition 4.1]). Let � � R2 be a bounded Lipschitz domain,
and let E"Œ�; �� be defined as in (2.1), with W and � which satisfy (2.2)–(2.4). Assume
that ! �� � and ı 2 .0; 1=2/. Then there exists a constant C > 0 such that for every
sufficiently small " > 0 .on a scale set by ı and dist.!; @�// and every u 2 L2.�IRN /
there are k 2 N and v 2 BV.!IZN / such that

kX
hD0

E�h Œv; !� � E"Œu;��

�
1C

C

ı.ln.1="//1=2

�
; (5.3)

jDvj.!/ �
C

ı

E"Œu;��

ln.1="/
; (5.4)

"1�ı=2 � 2�k � "1�ı :

Furthermore,

ku � vkL1.!/ � C2
�k=2

�
E"Œu;��

ln.1="/

�1=2
:

The constants depend only on W and � .

Proof of Proposition 5.1. We start by proving that the sequence .u" � d"/=ln.1="/, for
a suitable choice of d" 2 ZN , converges in L2 along a subsequence to a limit which is
contained in H 1=2. By coercivity of � ,

E"Œu"; �� � cŒu"�
2
H1=2.�/

:

Therefore the sequence u"=ln.1="/ is bounded in the homogeneous H 1=2 seminorm.
By the Poincaré inequality we can find vectors Od" 2 RN such that .u" � Od"/=ln.1="/
is bounded inH 1=2 and has a subsequence which converges weakly inH 1=2 and strongly
in L2 to a limit u. We choose d" 2 ZN such that jd" � Od"j � N 1=2 and observe that
.d" � Od"/=ln.1="/! 0.

It remains to show that the limit u is in BV.�IRN /. Let ! �� �. By Proposition
5.2 with ı D 1=4, for sufficiently small " there are k" 2 N and v" 2 BV.!IZN / such that
"7=8 � 2�k" � "3=4,

kv" � u"kL1.!/ � CM
1=22�k"=2.ln.1="//1=2 � CM 1=2"3=8.ln.1="//1=2

and

jDv"j.!/ � c
E"Œu"; ��

ln.1="/
� cM ln.1="/:



S. Conti, A. Garroni, S. Müller 2500

In particular, after extracting the same subsequence as above, .v" � d"/=ln.1="/ converges
to u in L1.!IRN / and .v" � d"/=ln.1="/ is bounded in BV.!IRN /. Therefore, after
possibly extracting a further subsequence, we obtain

v" � d"

ln.1="/
*u weakly in BV.!IRN /

and
jDuj.!/ � cM

with c not depending on !. Since the bound does not depend on ! we conclude that
u 2 BV.�IRN /.

6. Density and approximation

We give here a refinement of Theorem 4.2 that will be needed in the proof of the upper
bound. The main difference is that we can approximate with functions which are at the
same time polyhedral and uniformly bounded in L1. This is clearly only possible if the
limit is contained in L1. The refined upper bound requires an extra assumption on the
energy density which is fulfilled by the function  defined in (2.6) (see Lemma 6.4).

We recall that v 2 BV loc.�I RN /, with � � R2 open, is polyhedral if Dv DPH
hD0Œvh�˝ nhH1 Sh, where H 2 N, Sh D Œah; bh� is a segment in R2, and nh 2 S1

is normal to Sh.

Proposition 6.1. Let � � R2 be a bounded Lipschitz domain, and let  W ZN � S1 !
Œ0;1/ obey

1

c
jbj �  .b; n/ � .1C cjn � n0j/ .b; n0/ for all b 2 ZN ; n; n0 2 S1:

For any u 2 L1.�IRN / \ BV.�IRN /, any ı > 0, and any sequence �j ! 0 there is a
sequence of polyhedral functions vj 2 SBV.�I �jZN / such that vj ! u in L1 and

lim sup
j!1

ELT
�j
Œvj ; �� � E

LT
0 Œu;��C ı

with supj kvj kL1.�/ C jDvj j.�/ <1 and ELT
� , ELT

0 as in (4.3) and (4.4).

The proof of Proposition 6.1 is based on the following density result, which was
proven in [21, Lemma. 6.4], building on [16, Corollary 2.2]. The key ingredient in this
construction is the scalar result in [26, Theorem 4.2.20]. The related situation for partition
problems was studied in [14, Theorem 2.1].

Lemma 6.2 ([21, Lemma 6.4]). Assume that  W ZN � S1 ! R satisfies

 .b; n/ � .1C cjn � n0j/ .b; n0/ for all b 2 ZN ; n; n0 2 S1:

Assume that u 2 BV.R2IZN / and let� � R2 be a bounded Lipschitz set with jDuj.@�/
D 0. Then for any � 2 .0; 1/ there are r > 0, a polyhedral v 2 BV.R2IZN / and a bijective
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map f 2 C 1.R2IR2/ such that

jD.u ı f / �Dvj.R2/ � �; (6.1)

jDf.x/ � Idj C jf .x/ � xj � � for all x 2 R2; (6.2)

and Z
Jv\�r

 .Œv�; �/ dH1
� .1C c�/

Z
Ju\�

 .Œu�; �/ dH1
C c�; (6.3)

where �r WD ¹x 2 R2 W dist.x;�/ < rº. Further, the restriction of v to � is polyhedral.

We start by deriving a variant of this lemma.

Lemma 6.3. Assume that  W ZN � S1 ! R satisfies

 .b; n/ � .1C cjn � n0j/ .b; n0/ for all b 2 ZN ; n; n0 2 S1:

Assume that u 2 BV.�I�ZN / for some � > 0 with�� R2 bounded and Lipschitz. Then
for any � 2 .0; 1/ there is a polyhedral v 2 BV.�I �ZN / such that

jDvj.�/ � 5jDuj.�/; (6.4)

ku � vkL1.�/ � c� C c�jDuj.�/; (6.5)

and Z
Jv\�

� .Œv�=�; �/ dH1
� .1C c�/

Z
Ju\�

� .Œu�=�; �/ dH1
C c��: (6.6)

Proof. Replacing u by u=� and v by v=� we see that it suffices to consider the case � D 1.
We can also assume jDuj.�/ > 0 (otherwise u is constant and v D u will do). We extend
u to a function u 2 BV.R2IZN / such that jDuj.@�/ D 0, for instance, by reflection
(see [8]). Possibly reducing � we can assume � � jDuj.�/ and jDuj.��/ � 2jDuj.�/,
where �� is defined as in Lemma 6.2.

We apply Lemma 6.2 to obtain a polyhedral v 2 BV.R2IZN / and a diffeomorphism f

satisfying (6.1)–(6.3). We define

d WD
1

j�j

Z
�

.v � u ı f / dx 2 RN

and choose Qd 2 ZN such that jd � Qd j � N 1=2. We replace v by v � Qd , so thatˇ̌̌̌
1

j�j

Z
�

.v � u ı f / dx

ˇ̌̌̌
� N 1=2; (6.7)

while (6.1) and (6.3) are not affected. We then estimate using (6.1) and (6.2):

jDvj.�/ � �C jD.u ı f /j.�/ � �C

Z
Juıf \�

jŒu�j ı f dH1

� �C

Z
Ju\f .�/

jŒu�j jDf �1�?j dH1

� �C jDuj.��/ sup ¹jDf �1ej.x/ W x 2 R2; e 2 S1º

� �C jDuj.��/.1C �/ � 5jDuj.�/:
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This proves (6.4). Since (6.6) follows immediately from (6.3), it remains to prove (6.5).
By Poincaré, (6.1) and (6.7),

ku ı f � vkL1.�/ � N
1=2
j�j C cjD.u ı f / �Dvj.�/ � N 1=2

j�j C c� � c:

Now if we prove that there is c� > 0 such that

ku � u ı f kL1.�/ � 2c��jDuj.��/; (6.8)

then with a triangular inequality we obtain kv � ukL1.�/ � c C 2c��jDuj.��/ and con-
clude the proof.

It remains to prove (6.8). We start by proving that for any z 2 C 1.R2IRN / we have

kz � z ı f kL1.�/ � 2c��jDzj.��/; (6.9)

for some c� chosen below. Indeed,Z
�

jz.x/ � z.f .x//j dx D

Z
�

ˇ̌̌̌Z 1

0

Dz
�
x C t .f .x/ � x/

�
.f .x/ � x/ dt

ˇ̌̌̌
dx

� kf .x/ � xkL1.�/

Z 1

0

Z
�

jDzj
�
x C t .f .x/ � x/

�
dx dt:

For any t 2 Œ0; 1�, we define Ft W R2 ! R2 by Ft .x/ WD x C t .f .x/ � x/ and estimate
by a change of variables and (6.2):Z

�

jDzj.Ft .x// dx D

Z
Ft .�/

jDzj j detDF �1t j dx � kDzkL1.��/.1C c��/:

Therefore (6.9) holds for any z 2 C 1 and, by density, (6.8) is proven.

In what follows we prove that the unrelaxed line-tension energy density  defined in
(2.6) satisfies the assumptions of Lemma 6.3.

Lemma 6.4. Let � obey (2.3) and (2.4), and let  be defined by (2.6). Then

 .b; n/ D

Z
S1
jy � nj O�.y/b � b dH1.y/ (6.10)

and
 .b; n/ � .1C cjn � n0j/ .b; n0/ for all b 2 ZN ; n; n0 2 S1:

Proof. To prove the first equality, for a fixed n 2 S1, we write both sides in polar coor-
dinates, measuring the angles � with respect to the vector n. Precisely, we let n? WD
.�n2; n1/ and write y D n cos � C n? sin � , for � 2 Œ0; 2�/. ThenZ

S1
jy � nj O�.y/b � b dH1.y/ D

Z 2�

0

jcos � j O�.n cos � C n? sin �/b � b d�:
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At the same time, if x � n D 1 we write x D nC tn? with t D tan � , and using (2.3) and
the first condition in (2.4),

2

Z
¹x�nD1º

�.x/b � b dH1.x/ D 2

Z 1
�1

�.nC n?t /b � b dt

D 2

Z �=2

��=2

�.nC n? tan �/b � b
1

cos2 �
d�

D 2

Z �=2

��=2

�

�
n cos � C n? sin �

cos �

�
b � b

1

cos2 �
d�

D 2

Z �=2

��=2

O�.n cos � C n? sin �/b � b cos � d�

D

Z 2�

0

O�.n cos � C n? sin �/b � bjcos � j d�:

This concludes the proof of (6.10).
To prove the estimate we then write, with jy � nj � jy � n0j � jy � .n � n0/j and (2.4),

 .b; n/ �  .b; n0/ D

Z
S1
.jy � nj � jy � n0j/ O�.y/b � b dH1.y/

� jn � n0j

Z
S1

O�.y/b � b dH1.y/ � cjn � n0j jbj2

and, again from (2.4), jbj2 � c .b; n0/. This concludes the proof.

Proof of Proposition 6.1. By Theorem 4.2 there are functions uj 2 SBV.�I �jZN / such
that uj converges to u strongly in L1.�IRN / and

lim sup
j!1

Z
Juj \�

�j .Œuj �=�j ; �j / dH1
� ELT

0 Œu;��:

From 1
c
jbj �  .b; n/ we infer that uj is bounded in BV.�IRN /. We apply Lemma 6.3

to uj with �j WD 1=j and obtain a polyhedral map zj 2 SBV.�I �jZN / such that

jDzj j.�/ � 5jDuj j.�/ � C�; lim sup
j!1

kzj � uj kL1.�/ D 0;

for some C� > 0 and

lim sup
j!1

Z
Jzj \�

�j .Œzj �=�j ; �j / dH1
� ELT

0 Œu;��:

Since zj is polyhedral, there are finitely many segments Œah; bh� such that

Dzj D
X
h

.zC
h
� z�h /˝ nhH1 Œah; bh�; (6.11)

where for simplicity we do not indicate the index j on the traces, the normal, and the
points.
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Let fj WD jzj j. Then fj 2 BV.�I Œ0;1// with jDfj j.�/ � jDzj j.�/ � C�. Possibly
increasing C� we can assume 2C� > kukL1.�/. By the coarea formula,

jDfj j.�/ D

Z 1
0

H1.@�¹fj > tº/ dt D
X
k2Z

Z 2kC1

2k
H1.@�¹fj > tº/ dt � C�

(we use the short notation @�¹fj > tº for�\ @�¹x 2� W fj .x/ > tº, where @� denotes the
essential boundary). For fixed ı > 0, for any j we choose kj 2 N\.C�; C� C C�=ıC 1/
such that Z 2

kjC1

2
kj

H1.@�¹fj > tº/ dt � ı

and then pick Mj 2 .2kj ; 2kjC1/ such that

2kjH1.@�¹fj > Mj º/ � ı: (6.12)

We now define Ozj W �! �jZN by

Ozj .x/ WD

´
zj .x/ if fj .x/ �Mj ;

0 otherwise.

From zj ! u pointwise almost everywhere and Mj > 2C� > kukL1.�/ we deduce that
Ozj ! u pointwise almost everywhere. It is easy to check that Ozj 2 BV.�I�jZN / (indeed,
J Ozj � Jzj ), and that

kOzj kL1.�/ �Mj � Cı

(where Cı WD 22CC�CC�=ı ). Further, by (6.12)

jD Ozj j.�/ � jDzj j.�/CMjH1.@�¹fj > Mj º/

� jDzj j.�/C 2ı � C
�
C 2ı: (6.13)

Therefore Ozj converges to u weakly in BV.�IRN /.
It remains to estimate the energy. The natural bound

ELT
�j
Œ Ozj ; �� � E

LT
�j
Œzj ; ��C

Z
@�¹fj>Mj º

�j .Œ Ozj �=�j ; �/ dH1

does not give the stated result since we do not assume linear control on  from above
(indeed, in the specific application of interest here  is quadratic in the first argument,
as is apparent from (2.6)). Therefore we need another construction, to separate big jumps
into many small jumps, which corresponds to the fact that the relaxed energy  rel has
linear growth in the first argument. We shall use the fact that the assumption  .b; n/ �
.1C cjn � n0j/ .b; n0/ for all b 2 ZN and n; n0 2 S1 clearly implies that there exists a
constant Oc > 0 such that

 .b; n/ � Ocjbj for all b 2 Œ�1; 1�N \ ZN and all n 2 S1: (6.14)
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mhah

bh
mh + ρhnh

Fig. 2. Sketch of the construction in Proposition 6.1. Left panel: construction of the triangles around
the segments on which Ozj jumps. Right panel: separation of one “large” jump into many smaller
jumps.

Recalling (6.11) we see that

D Ozj D
X
h

. OzC
h
� Oz�h /˝ nhH1 Œah; bh�; (6.15)

where the segments are the same as in (6.11), and OzC
h
D zC

h
if jzC

h
j �Mj and 0 otherwise,

and correspondingly for Oz�
h

. The segments for which both traces are unchanged, or both
new traces are zero, need not be treated. The critical set is

H WD ¹h W 0 D OzC
h
¤ zC

h
and Oz�h ¤ 0º [ ¹h W 0 D Oz

�
h ¤ z

�
h and OzC

h
¤ 0º:

As in the computation in (6.13), we obtainX
h2H

jD Ozj j.Œah; bh�/ �MjH1.@�¹fj > Mj º/ � 2ı:

For these segments we need to separate the jump into many smaller jumps. For any h 2H
we letmh WD .ahC bh/=2 be the midpoint of Œah; bh�, and choose �h 2 .0; jbh � ahj/ such
that the triangles T h WD conv.ah; bh;mh C �hnh/ are, apart from the vertices, all disjoint
and their total area is less than 2�j (see Figure 2). This is possible since there are finitely
many segments.

Choose now one h 2 H , and assume for definiteness that Oz�
h
D 0. Since j OzC

h
j � Mj

there are Lh �Mj =�j and ˛l 2 �j .ZN \ Œ�1; 1�N /, with l D 1; : : : ; Lh, such that OzC
h
DPLh

lD1
˛l . For l D 0; : : : ; Lh we define the triangles

T hl WD conv
�
ah; bh; mh C

l C 1

Lh C 1
�hnh

�
and vj W �! �jZN by setting vj D

Pl
l 0D1 ˛l 0 on each T h

l
n T h

l�1
, and vj D Ozj outside

the union of the triangles. Then Œvj � 2 �j .ZN \ Œ�1; 1�N / on each of the closed triangles
T h, vj D Ozj on the outer boundary of T h, and jDvj j.T h/ � cjah � bhjj OzCh � Oz

�
h
j �

cjD Ozj j.Œah; bh�/. Therefore, recalling (6.14),
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ELT
�j
Œvj ; �� � E

LT
�j
Œzj ; ��C

X
h2H

Z
[l@T

h
l

�j .Œvj �=�j ; �/ dH1

� ELT
�j
Œzj ; ��C

X
h2H

Z
[l@T

h
l

OcjŒvj �j dH1

D ELT
�j
Œzj ; ��C c

X
h2H

jDvj j.T
h/

� ELT
�j
Œzj ; ��C c

X
h2H

jD Ozj j.Œah; bh�/ � E
LT
�j
Œzj ; ��C cı:

The same computation also shows that vj is bounded in BV . Since j¹vj ¤ Ozj ºj � 2�j we
obtain vj ! u pointwise almost everywhere.

7. Upper bound

The upper bound is obtained by an explicit but involved construction that combines sev-
eral rescaling steps. Due to the incompatibility of the two constraints of being BV with
values in a scaled copy of ZN and being in H 1=2 we cannot use density and separate the
two scales. Instead we need to use a joint construction, which depends on both scales.

We start from the sequence constructed in Section 6, which takes values in
SBV.�I �ZN / for a scale � and converges slowly to 0 with respect to ". The key step
is the construction in the following lemma.

Lemma 7.1. Let � �� �0 be two bounded Lipschitz domains. Let � > 0, v 2
SBV.�0I �ZN /\L1.�0I �ZN / polyhedral, ˛ 2 .0; 1=2/ and � > 0 with 3�˛ <

dist.�; @�0/. Then for any " > 0 there are w" 2 L2.�IRN / and � 2 B1 such that w"

ln.1="/


L1.�/

� kvkL1.�/; w"

ln.1="/
� v


L1.�/

� �˛jDvj.�0/;

and

lim sup
"!0

E"Œw"; ��

.ln.1="//2
�

Z
Jv\�0

� .Œv�=�; n/ dH1
C f .�/.jDvj.�0//4=3kvk

2=3

L1.�0/

C

Z
�

Z
�nB�.x/

�.x � y/.v�1.x/ � v
�
1.y// � .v

�
1.x/ � v

�
1.y// dy dx;

where v�1 W �! RN is defined by

v�1.x/ WD

Z 1

0

v.x C �˛�t/ dt; (7.1)

and f .�/! 0 as �! 0. The function f depends on � and ˛, but not on v.
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The proof will be given at the end of this section. The main point is to replicate each
interface � ln.1="/ times, and then mollify on a scale ". This modifies the function only
on a small set, of area proportional to �" ln.1="/, which ensures that the nonlinear term
"�1kdist.u";ZN /k22 vanishes in the limit, for an appropriate scaling of � . Since the sep-
aration between the interfaces is much larger than the scale of the mollification, their
interaction is small. For each interface, the energy is estimated by an explicit computation
in Lemma 7.3. Care must be taken in undoing the several relaxation steps, both at the
line-tension and at the continuous scale, and in several truncation steps in order to esti-
mate the various error terms. For this construction in the upper bound we fix a mollifier
'1 2 C

1
c .B1/ and set '� WD ��2'1.�x/.

Proposition 7.2. Let� � R2 be a bounded connected Lipschitz domain, and let E"Œ�;��
be defined as in (2.1), with W and � which satisfy (2.2)–(2.4). Let u 2 BV.�IRN / \
H 1=2.�IRN /. For any " > 0 there is u" 2 L2.�IRN / with u"=ln.1="/! u in L2 and

lim sup
"!0

E"Œu"; ��

.ln.1="//2
� F0Œu;��: (7.2)

We recall that F0 was defined in (2.10).

Proof. We start by reducing to the case that u is smooth and defined on a domain �0

larger than �.
To see this, observe that since� is Lipschitz there are an open set ! with @�� ! and

a bilipschitz map ˆ W ! ! ! such that ˆ.x/ D x for x 2 @� and ˆ.� \ !/ D ! n�.
We define Ou W � [ ! ! RN by reflection:

Ou WD

´
u in �;

u ıˆ in ! n�:

Then Ou 2 BV.� [ !IRN / \H 1=2.� [ !IRN / with jD Ouj.@�/ D 0. We fix ı > 0 and
let �ı WD ¹x W dist.x;�/ < ıº, so that

lim sup
ı!0

jD Ouj.�ı/ D jD Ouj.�/ D jDuj.�/

and
lim sup
ı!0

Œ Ou�H1=2.�ı/ D Œ Ou�H1=2.�/ D Œu�H1=2.�/:

In particular,
lim sup
ı!0

F0Œ Ou;�ı � D F0Œ Ou;�� D F0Œu;��:

Now for sufficiently small ı define uı WD 'ı � Ou2C1.�ı IRN /, with 'ı the mollification
kernel. Since F0 is convex, we have

lim sup
ı!0

F0Œuı ; �ı � � lim sup
ı!0

F0Œ Ou;�2ı � D F0Œu;��

and uı ! u in L2.�IRN /.
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Therefore in the rest of the proof we assume that u 2 C1.�0IRN / is given, with
� �� �0 and �0 Lipschitz. We shall show that for any � > 0 and any " > 0 there is
w" 2 L

2.�IRN / such that w"=ln.1="/! u in L2.�IRN / and

lim sup
"!0

1

.ln.1="//2
E"Œw"; �� � F0Œu;�

0�C �: (7.3)

Since � is arbitrary, taking a diagonal subsequence will conclude the proof of (7.2).
It remains to prove (7.3). Let �j 2 .0; 1/ be such that �j # 0 as j ! 0. By Propo-

sition 6.1 (which can be applied thanks to Lemma 6.4) there are polyhedral functions
vj 2 SBV.�0I �jZN / such that vj converges to u strongly in L1.�0IRN /,

lim sup
j!1

Z
Jvj \�

0

�j .Œvj �=�j ; nj / dH1
� FselfŒu;�

0�C �;

and C� WD sup kvj kL1.�/ C jDvj j.�0/ <1. We recall that since u is smooth, in partic-
ular u 2 L1.�0IRN / and FselfŒu;�

0� D ELT
0 Œu;�

0� (see Theorems 2.1 and 4.2).
Since vj is polyhedral, by Lemma 7.1 for ˛ WD 1=3, and " and � small enough, there

are functions wj;�" 2 L2.�IRN / and vectors �j 2 B1 such that w
j;�
"

ln.1="/


L1.�/

� kvj kL1.�/ � C�; (7.4) w"

ln.1="/
� v


L1.�/

� �˛jDvj.�0/;

and

lim sup
"!0

1

.ln.1="//2
E"Œw

j;�
" ; ��

�

Z
Jvj \�

0

�j .Œvj �=�j ; nj / dH1
C f .�/.jDvj j.�

0//4=3kvj k
2=3

L1.�0/

C

Z
�

Z
�nB�.x/

�.x � y/.v
�j
j;1.x/ � v

�j
j;1.y// � .v

�j
j;1.x/ � v

�j
j;1.y// dy dx;

where v�jj;1 D .vj /
�j
1 is an average of vj in direction �j at a scale set by � as defined

in (7.1). Further, from (7.4),

lim sup
"!0

 w
j;�
"

ln.1="/
� u


L1.�/

� kvj � ukL1.�/ C lim sup
"!0

 w
j;�
"

ln.1="/
� vj


L1.�/

� kvj � ukL1.�/ C �
˛
jDvj j.�

0/

� kvj � ukL1.�/ C C��
˛:

We now take j !1, and extract a subsequence such that �jk ! �1 and

lim
k!1

lim sup
"!0

1

.ln.1="//2
E"Œw

jk ;�
" ; �� D lim sup

j!1

lim sup
"!0

1

.ln.1="//2
E"Œw

j;�
" ; ��:
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By dominated convergence, .vj /
�j
1 ! u

�1
1 pointwise and hence in L2.�IRN / and

lim sup
j!1

lim sup
"!0

1

.ln.1="//2
E"Œw

j;�
" ; �� � FselfŒu;�

0�C �C C 2� f .�/

C

Z
�

Z
�nB�.x/

�.x � y/.u�11 .x/ � u�11 .y// � .u�11 .x/ � u�11 .y// dy dx:

As �! 0 we see that, since u 2 C1.�0IRN /, we have u�11 ! u in L2.�IRN / and in
H 1=2.�IRN / and therefore

lim sup
�!0

lim sup
j!1

lim sup
"!0

1

.ln.1="//2
E"Œw

j;�
" ; ��

� FselfŒu;�
0�C �C

Z
�0��0

�.x � y/.u.x/ � u.y// � .u.x/ � u.y// dy dx

D F0Œu;�
0�C �

with

lim sup
�!0

lim sup
j!1

lim sup
"!0

 w
j;�
"

ln.1="/
� u


L2.�/

D 0:

Taking a diagonal sequence concludes the proof of (7.3).

It remains to show the detailed construction of the functionswj;�" given in Lemma 7.1.
First we recall that the unrelaxed line-tension energy for polyhedral interfaces can be
obtained with a direct computation starting from the nonlocal energy.

Lemma 7.3. Let� ���0 be two bounded open sets, v 2 SBV.�0IZN / polyhedral, and
assume that � obeys (2.3) and (2.4). Let '" 2C1c .B"/ be a mollifier and " < dist.�;@�0/.
Then w" WD '" � v obeys

lim sup
"!0

1

ln.1="/

Z
���

�.x � y/.w".x/ � w".y// � .w".x/ � w".y// dx dy

�

Z
Jv\�0

 .Œv�; n/ dH1;

where  is as in (2.6).

Proof. See [33, Section 6].

Proof of Lemma 7.1. We choose �00 such that � �� �00 �� �0, �˛ < dist.�; @�00/,
and �˛ < dist.�00; @�0/, and for � 2 B1 � R2 and L > 0 we define the functions v�L W
�00 ! �

L
ZN by

v
�
L.x/ WD

bLcX
jD1

1

L
v

�
x C �˛

j

L
�

�
:

Note that v�L 2 SBV.�00I �
L

ZN / has jump set which is obtained by bLc copies of the jump
set of v, translated in the direction of �, and that kv�LkL1.�00/ � kvkL1.�0/.
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We set L" WD � ln.1="/. For " � dist.�; @�00/ we define

w" WD ln.1="/v�"L" � '" and Ow" WD v
�"
L"
� '"

(if " > dist.�; @�00/ we can set w" D 0), and the vectors �" 2 B1 will be chosen below.
We remark that v 2 �ZN almost everywhere implies v�"L" 2

1
L"
�ZN D 1

ln.1="/Z
N a.e.,

therefore w".x/ 2 ZN for any x at distance at least " from J
v
�"
L"

. Since Jv is a finite union

of segments, and dist.w";ZN / � N 1=2 everywhere, we have

lim sup
"!0

1

".ln.1="//2

Z
�

dist2.w";ZN / dx

� lim
"!0

bL"cN j¹x 2 � W dist.x; Jv \�0/ < "ºj
".ln.1="//2

D 0:

We write the long-range elastic energy as a bilinear form, B�LR W L
2.�IRN /2 ! R,

where

B
�
LR.u; u

0/ WD

Z
�

Z
�nB�.x/

�.x � y/.u.x/ � u.y// � .u0.x/ � u0.y// dy dx;

and choose a sequence "i ! 0, "i > 0, such that

lim
i!1

B
�
LR. Ow"i ; Ow"i / D lim sup

"!0

B
�
LR. Ow"; Ow"/: (7.5)

After extracting a further subsequence, we can additionally assume that �"i ! � for some
� 2 B1. This defines the vector � in the statement (in terms of the vectors �" chosen
below). We now show that

Ow"i ! v�1 strongly in L2.�IRN /. (7.6)

To see this, we first observe that since k Ow"i kL1.�/ � kvkL1.�0/ and kv�1kL1.�/ �
kvkL1.�0/ it suffices to prove convergence in L1.�IRN /. We write

Ow"i � v
�
1 D '"i � .v

�"i
L"i
� v

�"i
1 /C '"i � .v

�"i
1 � v

�
1/C .'"i � v

�
1 � v

�
1/

and estimate the three terms separately. Convergence of the last one is immediate. Per-
forming an explicit computation one can show that

kv
�"i
1 � v

�
1kL1.�00/ � �

˛
jDvj.�0/j�"i � �j;

which implies k'"i � .v
�"i
1 � v

�
1/kL1.�/ � kv

�"i
1 � v

�
1kL1.�00/ ! 0. Analogously, from

kv
�"i
L"i
� v

�"i
1 kL1.�00/ �

�˛

L"i
jDvj.�0/C j�00j

L" � bL"c

L"
kvkL1.�00/

and limi!1 L"i D 1 we obtain k'"i � .v
�"i
L"i
� v

�"i
1 /kL1.�/ ! 0. This concludes the

proof of (7.6).
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By continuity of B�LR, (7.5) and (7.6) imply

lim sup
"!0

B
�
LR. Ow"; Ow"/ D lim

i!1
B
�
LR. Ow"i ; Ow"i / D B

�
LR.v

�
1; v

�
1/:

The short-range elastic energy can be correspondingly written, for a Borel set E � R2, as
the bilinear form B

�
SR.�; �; E/ W L

2.EIRN /2 ! R, where

B
�
SR.u; u

0; E/ WD

Z
E

Z
E\B�.x/

�.x � y/.u.x/ � u.y// � .u0.x/ � u0.y// dy dx:

This term will lead us to the choice of �". We are interested in showing that for any " there
is a choice of � 2 B1 which permits control of the quantity

B
�
SR. Ow"; Ow"; �/ D

1

L2"

bL"cX
j;j 0D1

B
�
SR.T

�
j v � '"; T

�
j 0v � '"; �/

where T �j is the translation operator, .T �j f /.x/ WD f .x C j��˛=L"/. The separation
introduced by the translations is on a length scale much larger than ", but still infinitesi-
mal (the choice of �" below shall implicitly ensure that it is not too small), therefore it is
appropriate to treat the diagonal (j D j 0) terms separately. Using translation invariance
we can see that the diagonal contribution is

B
diag
SR .�/ WD

1

L2"

bL"cX
jD1

B
�
SR.T

�
j v �'"; T

�
j v �'"; �/

�
bL"c

L2"
B
�
SR.v �'"; v �'"; �

00/ D
bL"c�

L" ln.1="/
B
�
SR.�

�1v �'"; �
�1v �'"; �

00/

and in particular that the latter expression does not depend on the choice of �. Since
��1v 2 SBV.�0IZN / is polyhedral and � � 0 pointwise, recalling Lemma 7.3, we obtain

lim sup
"!0

B
diag
SR .�/ �

Z
Jv\�0

� .Œv�=�; n/ dH1 for any � 2 B1.

The off-diagonal contributions reduce to

Bcross
SR .�/ WD

1

L2"

X
j¤j 0

B
�
SR.T

�
j v � '"; T

�
j 0v � '"; �/

�
1

L2"

X
j¤j 0

B
�
SR.v � '"; T

�
j�j 0v � '"; �

00/:

We average over all possible choices of the shifts �. Precisely, we compute, using linearity
of B�SR in the second argument,

A" WD

Z
B1

Bcross
SR .�/'1.�/ d� �

Z
B1

1

L2"

X
j¤j 0

B
�
SR.v � '"; '1.�/T

�
j�j 0v � '"; �

00/ d�

D B
�
SR.v � '"; V � '"; �

00/;
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with

V.x/ WD

Z
B1

1

L2"

X
j¤j 0

'1.�/v.x C
j � j 0

L"
�˛�/ d�:

By a change of variables we obtain V D ˆ � v, where

ˆ.x/ WD
1

L2"

X
j¤j 0

L2"
.j � j 0/2

'�˛

�
L"

j � j 0
x

�
;

and then
A" � B

�
SR.v � '"; ˆ � v � '"; �

00/:

We fix p 2 .2;1/ and denote by q WD p=.p � 1/ the dual exponent. Then

A" �

Z
B�

c

jzj3

Z
�00
j.'" � v/.x/ � .'" � v/.x C z/j

� j.'" �ˆ � v/.x/ � .'" �ˆ � v/.x C z/j dx dz

�

Z
B�

c

jzj2�1=p

kv.�/ � v.� C z/kLp.�00" /

jzj1=p

k.ˆ � v/.�/ � .ˆ � v/.� C z/kLq.�00" /

jzj
dz;

with �00" WD ¹x W dist.x;�00/ < "º. We estimate, for small z,

kv.�/ � v.� C z/k
p

Lp.�00" /

jzj
� 2p�1kvk

p�1

L1.�0/

Z
�00"

jv.x/ � v.x C z/j

jzj
dx

� 2p�1kvk
p�1

L1.�0/
jDvj.�0/

and
k.ˆ � v/.�/ � .ˆ � v/.� C z/kLq.�00" /

jzj
� kˆkLq.R2/jDvj.�

0/;

so that, with
R
B�

1

jzj2�1=p
dz � c�1=p , we conclude

A" � c�
1=p
kvk

1=q

L1.�0/
.jDvj.�0//1C1=pkˆkLq.R2/:

Finally, recalling that p > 2,

kˆkLq.R2/ � 2L"

bL"cX
jD1

1

j 2

'�˛�L"j x
�

Lq.R2/

� cL"

bL"cX
jD1

1

j 2

�
j

L"

�2=q
��2˛

q�1
q

� cL1�2=q"

bL"cX
jD1

1

j 2=p
��2˛=p � cL1�2=q" L1�2=p" ��2˛=p D c��2˛=p:

Therefore A" � c�.1�2˛/=pkvk
1=q

L1.�0/
.jDvj.�0//1C1=p . We finally choose p D 3, and �"

so that it is as good as on average, in the sense that Bcross
SR .�"/ � A", and conclude the

proof.
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8. Lower bound

In this section we prove the lower bound. The idea is that the limit is given by two terms,
arising from short-range and long-range contributions to the nonlocal interaction, respec-
tively. Indeed, one key idea in the proof of Proposition 8.1 is to localize the limiting energy
and view it as a measure on����R4. One then shows that this measure can be written
as the sum of two mutually singular terms, one supported on the diagonal and one sup-
ported outside the diagonal (see Figure 3). The lower bound arises from estimating these
two terms separately. In the estimate of the diagonal term, which is local in the limit, we
build upon techniques obtained for a different scaling in [18]; see Proposition 8.2 below.
One important step is to iteratively mollify the functions along the sequence and to show
that on most scales the mollification does not reduce the BV norm significantly, which
implies that the functions are approximately one-dimensional at that scale. The proof is
done by showing that one can choose a scale that contains, up to higher-order terms, as
much energy as the average scale, and that at the same time it has a small loss of BV norm;
see (8.17) and (8.18) below.

Proposition 8.1. Under the assumptions of Theorem 2.1, for any u 2 BV.�IRN / and
any sequences "i ! 0 and ui 2 L2.�IRN / with ui=ln.1="i /! u in L2.�IRN / one
has

F0Œu;�� � lim inf
i!1

E"i Œui ; ��

.ln.1="i //2
; (8.1)

where F0 was defined in (2.10).

The proof is based on the following local lower bound, which relates the short-range
part of the energy to Fself.

Proposition 8.2. Under the assumptions of Theorem 2.1, for any u 2 BV.�IRN / and
any sequences "i ! 0 and ui 2 L2.�IRN / with ui=ln.1="i /! u in L2.�IRN /, and
any open set ! � �, one has

FselfŒu; !� � lim inf
i!1

E"i Œui ; !�

.ln.1="i //2
;

where Fself was defined in (2.11).

We postpone the proof of Proposition 8.2, and first show that it implies Proposi-
tion 8.1.

Proof of Proposition 8.1. We can assume that the lim inf in (8.1) is finite and, after pass-
ing to a subsequence, that it is a limit. By Proposition 5.1 we can assume that u 2
BV.�IRN / \H 1=2.�IRN /.

We start by localizing the energy. We denote by � WD ¹.x; x/ W x 2 R2º � R4 the
diagonal set in R4 and by P W R4! R2, P.x1; x2; y1; y2/ WD .x1; x2/, the projection on
the first two components. For any Borel set E � � �� we define
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�i .E/ WD
1

cW "i .ln.1="i //2

Z
P.E\�/

dist2.ui .x/;ZN / dL2.x/

C

Z
E

�.x � y/
ui .x/ � ui .y/

ln.1="i /
�
ui .x/ � ui .y/

ln.1="i /
dL4.x; y/;

where cW is the constant entering (2.2), so that �i .� ��/ �.ln.1="i //�2E"i Œui ;��. We
observe that �i is a Radon measure, and after extracting a further subsequence we can
assume that �i converges weakly in the space of measures to some measure �, which
implies �.A � A/ � limi!1 �i .A � A/ for any open set A � �. To conclude it suffices
to prove that

F0Œu;�� � �.� ��/: (8.2)

In order to treat the long-range part of the interaction we define a measure �LR on
� �� by

�LR.E/ WD

Z
E

�.x � y/.u.x/ � u.y// � .u.x/ � u.y// dL4.x; y/

for any Borel set E � � � �. Since u 2 H 1=2.�IRN /, we have �LR.���/ < 1.
Since �.x � y/� � � � 0 for any � 2 RN and .x; y/ 2 � � �, and (possibly extract-
ing a further subsequence) .ui .x/� ui .y//=ln.1="i / converges pointwise to u.x/� u.y/
for L4-almost every .x; y/, by Fatou’s lemma we obtain

�LR.E/ � lim inf
i!1

�i .E/

for any Borel set E � � � � and in particular �LR.B
.4/
r .x// � �.B

.4/
R .x// if r < R

and B.4/R .x/ � � ��, where B.4/r .x/ is the four-dimensional ball of radius r centered at
x 2 R4. Since �LR is absolutely continuous with respect to L4, we conclude

�LR.E/ � �.E/ for any Borel set E � � ��: (8.3)

We now deal with the short-range part of the energy, which concentrates on the diag-
onal set. We define the measure

� WD g

�
dDu

d jDuj

�
jDuj

so that FselfŒu; E� D �.E/ for any Borel set E � � (we recall that Fself has been defined
in (2.11)). Since u 2 BV.�IRN /, we have �.�/ <1. Let � > 0. For each x 2 � there
are arbitrarily small r > 0 such that B2r .x/ � �, 2r < �, �.@.Br .x/ �Br .x/// D 0 and
�.@Br .x// D 0. By Vitali’s covering theorem we can find countably many such balls,
denoted by .Bj /j2N , so that they are pairwise disjoint, have centers in�, and there exists
a Borel set N� � � �� such that

.� ��/ \� � N� [
[
j

.Bj � Bj / with �.N�/ D �.PN�/ D 0
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R2

R2

∆

Ω

Ω

Ω× Ω

Fig. 3. Sketch of the set .� � �/ \ �. The set � is covered (up to a null set) by finitely many
balls Bj , and .� ��/ \� is correspondingly covered (up to a null set) by the products Bj � Bj .

(see Figure 3), we recall that P W R4 ! R2 denotes projection onto the first two com-
ponents. By Proposition 8.2 applied with ! D Bj , and using �.@.Bj � Bj // D 0, we
have

�.Bj / � �.Bj � Bj /: (8.4)

Then, with �� WD ¹.x; y/ 2 R2 �R2 W jx � yj < 2�º,

�.�/ D
X
j2N

�.Bj / �
X
j2N

�.Bj � Bj / � �..� ��/ \��/:

Since this holds for any � > 0, and �.� ��/ <1, we conclude

�.�/ � �..� ��/ \�/:

Recalling (8.3) and �LR � L4, we obtain �LR..� ��/ \�/ D 0 and

F0Œu;�� D �.�/C �LR.� ��/ D �.�/C �LR..� ��/ n�/

� �..� ��/ \�/C �..� ��/ n�/ D �.� ��/:

This concludes the proof of (8.2) and therefore of the proposition.

It remains to prove the local lower bound stated in Proposition 8.2. The proof uses
a result from [18] that the nonlocal energy of almost-one-dimensional BV phase fields
controls the line-tension energy of a similar field, which we recall in Proposition 8.3. We
start by fixing a mollifier '0 2 C1c .B1I Œ0;1// with

R
B1
'0 dx D 1 and ' � 1 on B1=2,

and scaling it to 'h.x/ WD 22h'0.2
hx/. We remark that the index h in 'h denotes the

exponent, at variance with the usage in the previous part of this paper, and recall the
definition of the truncated energy in (5.2).
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Proposition 8.3 ([18, Proposition 7.1]). Let ! �� � be two bounded open sets, u 2
W 1;1.�IRN /, M > 1, h; t 2 N with t � 3, � 2 .0; 1/. Assume dist.!; @�/ � 2�hC1.
Then there is w D wh;�;t;M 2 BV.!IZN / such that

.ln 2/
Z
Jw\!

 rel.Œw�; �/ dH1

� .1C � C c2�t /E�hCt Œu;��C
CM

�
2hCtkdist.u;ZN /kL1.�/

C
CM

�
2tA5=6

�
jDuj.�/ � jD.u � 'h/j.!/

�1=6
C

c

M 1=2
2t=2A (8.5)

and

ku � wkL1.!/ �
c

M 1=2
2�hCt=2AC CMkdist.u;ZN /kL1.�/

C CM2
�hA2=3

�
jDuj.�/ � jD.u � 'h/j.!/

�1=3
: (8.6)

Here A WD max ¹jDuj.�/;E�
hCt

Œu;��º. The constant c may depend onN and � , and the
constant CM also on M .

We remark that the statement of Proposition 7.1 in [18] contains the unnecessary
assumption that both sets are Lipschitz. The proof is based on covering ! with squares
contained in � and performing a separate estimate on each square, in particular it never
uses this assumption.

We finally prove the lower bound in Proposition 8.2. The following argument is a
modification of [18, Proposition 8.1]. It is here used only in the case where ! is a ball.

Proof of Proposition 8.2. It suffices to prove the estimate in the case ! D � (otherwise
we restrict all functions to !, and then relabel ! as �). We can also assume that the
right-hand side is finite, and extract a subsequence such that the lim inf is a limit. We fix
O! �� � and prove that

FselfŒu; O!� � lim inf
i!1

E"i Œui ; ��

.ln.1="i //2
: (8.7)

Taking the supremum over all such O! will conclude the proof.
To prove (8.7) we choose a Lipschitz set �0 such that O! �� �0 �� � and fix ı > 0.

By Proposition 5.2, for i sufficiently large there are ki 2 N with

"
1�ı=2
i � 2�ki � "1�ıi ; (8.8)

which implies .1 � ı/ ln.1="i / � ki ln 2, and a function vki ;ı 2 BV.�0IZN / such that

lim
i!1
kvki ;ı � uikL1.�0/ � lim

i!1
C2�ki=2.ln.1="i //1=2 D 0 (8.9)

and, with (5.3),

lim inf
i!1

1

k2i

kiX
hD0

E�h Œvki ;ı ; �
0� � .ln 2/2

1

.1 � ı/2
lim inf
i!1

E"i Œui ; ��

.ln.1="i //2
<1: (8.10)
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With (5.4) we see that there is Aı > 0 such that

1

k2i

kiX
hD0

E�h Œvki ;ı ; �
0�C

1

ki
jDvki ;ı j.�

0/ � Aı for all i 2 N: (8.11)

For simplicity in the following we write k for ki , and lim infk!1 for lim infi!1.
One important idea in the proof is to define an iterated mollification of the function

vk;ı using a family of length scales ranging from 1 to 2�k . We use scales separated by a
factor 2m, in order to apply Proposition 8.3 between each pair of consecutive scales. The
key idea is that each mollification step eliminates the structure present in the function on
a certain length scale, as measured by the BV norm. Since we have a BV bound on the
original function, and a large number of mollification steps, most of them will result in a
very small reduction of the BV norm, which means that on many scales the function will
have an essentially one-dimensional structure. To make this precise, we fix m � 3 and
define for h 2 N the sets �h WD ¹x 2 R2 W B22�h.x/ � �

0º, so that

dist.�h; @�hCm/ � dist.�h; @�0/ � dist.�hCm; @�0/ � 21�h: (8.12)

We then define for h 2N the function zh 2 L1.�hIRN / (implicitly depending also on k,
ı, and m) by

zh WD

´
vk;ı if h � k;

zhCm � 'h otherwise,

where 'h is the mollifier that enters Proposition 8.3.
One key estimate, which is obtained by summing the m telescoping series and using

(8.11), is

kX
hD0

ŒjDzhCmj.�hCm/ � jDzhj.�h/� D

kCmX
hDkC1

jDzhj.�h/ �

m�1X
hD0

jDzhj.�h/

� mjDvk;ı j.�
0/ � kmAı : (8.13)

By the properties of the mollification we also obtain, for h < k,

kzh � zhCmkL1.�h/ D kzhCm � 'h � zhCmkL1.�h/

� 2�hjDzhCmj.�hCm/ � 2
�h
jDvk;ı j.�

0/ � k2�hAı ;

and therefore

kzh � vk;ıkL1.�h/ �

1X
jD0

kzhCjm � zhC.jC1/mkL1.�h/ � 2k2
�hAı : (8.14)

Since vk;ı 2 ZN a.e., this implies

kdist.zh;ZN /kL1.�h/ � 2k2
�hAı : (8.15)
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We next show that convexity and translation invariance of the nonlocal energy imply that
mollification decreases the energy. Indeed, the map v 7! E�s Œv; �h� is a quadratic and
nonnegative map from L2.�hIR

N / to R, and therefore convex. Let uz.x/ WD u.x � z/,
so that .u � 'h/.x/ D

R
Rn 'h.z/uz.x/ dz. By Jensen’s inequality,

E�s Œu � 'h; �h� �

Z
R2
'h.z/E

�
s Œuz ; �h�dz:

By translation invariance, and monotonicity of E�s in the second argument, using (8.12)
we have E�s Œuz ; �h� D E

�
s Œu;�h � z� � E

�
s Œu;�hCm�. Therefore

E�s Œu � 'h; �h� � E
�
s Œu;�hCm� for any s 2 N and u 2 L2.�hCmIRN /;

and therefore, iterating this inequality,

E�s Œzh; �h� � E
�
s Œvk;ı ; �

0�

for any s and h. In particular,

E�hCt ŒzhCm; �hCm� � E
�
hCt Œvk;ı ; �

0�: (8.16)

At this point we choose � 2 .0; 1=4/ and t 2 N with m � t � 3. Since we shall take
the limit k !1 first, we can assume that k � m=�. We now choose a good value for
h 2 .�k; k � �k/ \N. Specifically, let

J WD

²
h 2 .�k; k � �k/ \N W E�hCt Œvk;ı ; �

0� > .1C 5�/
1

k

kX
jD0

E�j Œvk;ı ; �
0�

³
;

H WD

²
h 2 .�k; k � �k/ \N W jDzhCmj.�hCm/ � jDzhj.�h/ >

m

�
Aı

³
:

One easily verifies that

#J
1C 5�

k
� 1

and, recalling (8.13),

#H
1

�
� k:

We assume � � 1=20, which implies 1=.1C 5�/ � 1� 4�, and obtain, since �k �m � 3,

#J C #H �
k

1C 5�
C k� � .1 � 2�/k � 3:

Since #..�k; k � �k/ \ N/ � .1 � 2�/k � 2, this implies that we can choose h 2
.�k;k � �k/\N n .J [H/. This value will be fixed for the rest of the argument (depend-
ing on the other parameters) and satisfies, recalling (8.16),

E�hCt ŒzhCm; �hCm� � E
�
hCt Œvk;ı ; �

0� � .1C 5�/
1

k

kX
jD0

E�j Œvk;ı ; �
0�; (8.17)

jDzhCmj.�hCm/ � jDzhj.�h/ �
m

�
Aı : (8.18)
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We apply Proposition 8.3 to zhCm, for someM > 1 chosen below, on the sets�h ��
�hCm, and denote the result by w D wk;ı;m;t;M . We obtain

.ln 2/
Z
Jw\�h

 rel.Œw�; �/ dH1

� .1C � C c2�t /E�hCt ŒzhCm; �hCm�C
CM

�
2hCtkdist.zhCm;ZN /kL1.�hCm/

C
CM

�
2tA5=6� .jDzhCmj.�hCm/ � jDzhj.�h//

1=6
C

c

M 1=2
2t=2A� (8.19)

and

kzhCm � wkL1.�h/ �
c

M 1=2
2�hCt=2A� C CMkdist.zhCm;ZN /kL1.�hCm/

C CM2
�hA2=3� .jDzhCmj.�hCm/ � jDzhj.�h//

1=3; (8.20)

where A� WD max ¹jDzhCmj.�hCm/; E�hCt ŒzhCm; �hCm�º. Using (8.17), the condition
jDzhCmj.�hCm/ � jDvk;ı j.�

0/ and then (8.11), we obtain

A� � jDvk;ı j.�
0/C

2

k

kX
jD0

E�j Œvk;ı ; �
0� � 2kAı : (8.21)

Then (8.20) becomes, using (8.15) and (8.18),

kzhCm � wkL1.�h/ �
c

M 1=2
2�hCt=2kAı C CMk2

�h�mAı

C CM2
�hk2=3Aım

1=3��1=3: (8.22)

We recall that O! ��h for sufficiently large k, since we chose h� k�. From (8.19), (8.17),
(8.15), and (8.18),

ln 2
k

Z
Jw\ O!

 rel.Œw�; �/ dH1

� .1C � C c2�t /.1C 5�/
1

k2

kX
jD0

E�j Œvk;ı ; �
0�C

CM

�
2hCt2�h�mAı

C
CM

k�
2tA5=6� .m��1Aı/

1=6
C

c

kM 1=2
2t=2A� (8.23)

We notice that this expression does not depend any more explicitly on the choice of h,
since 2hCt2�h�m D 2t�m.

We set uk WD 1
k ln2w, where w D wk;ı;m;t;M is the function constructed in Proposi-

tion 8.3, so that the relaxed line-tension functional ELT;rel
� defined in (4.5) reads

E
LT;rel
1=.k ln2/Œu

k ; O!� D
1

k ln 2

Z
Jw\ O!

 rel.Œw�; �/ dH1:
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Then (8.23), together with (8.11) and (8.21) yields, for sufficiently large k,

E
LT;rel
1=.k ln2/Œu

k ; O!� �
1

k2.ln 2/2

kX
jD0

E�j Œvk;ı ; �
0�C .c� C c2�t /Aı C

CM

�
2t�mAı

C
CM

�
2tA

5=6

ı

�
m

k�
Aı

�1=6
C

c

M 1=2
2t=2Aı : (8.24)

Correspondingly, from (8.22) a similar procedure leads to 1

k ln 2
zhCm � u

k


L1. O!/

�
c

M 1=2
2�hCt=2Aı C CM2

�h�mAı

C CM2
�hk�1=3Aım

1=3��1=3: (8.25)

By (8.24) and (8.11) we obtain lim supk!1E
LT;rel
1=.k ln2/Œu

k ; O!� <1. Recalling the inequal-

ity ELT;rel
� � ELT

� and the compactness statement in Theorem 4.2, there are dk 2 RN such
that, after extracting a subsequence, uk � dk converges as k ! 1 to some uı;m;t;M

in L1. O!IRN /. Taking the limit k!1, and recalling Theorem 4.2 and (8.10), we obtain

ELT
0 Œu

ı;m;t;M ; O!� �
1

.1 � ı/2
lim inf
i!1

E"i Œui ; ��

.ln.1="i //2
C .c� C c2�t /Aı

C
CM

�
2t�mAı C

c

M 1=2
2t=2Aı : (8.26)

At the same time by (8.25) we have

lim sup
k!1

 1

k ln 2
zhCm � u

k


L1. O!/

�
c

M 1=2
2�hCt=2Aı C CM2

�h�mAı :

By (8.14) we have  1

k ln 2
zhCm �

1

k ln 2
vk;ı


L1. O!/

� C2�h�mAı ;

and therefore

lim sup
k!1

uk � 1

k ln 2
vk;ı


L1. O!/

�
c

M 1=2
2�hCt=2Aı C CM2

�h�mAı :

With (8.9), and going back to the notation where the index i is explicit, we obtain

lim sup
i!1

uki � 1

ki ln 2
ui


L1. O!/

�
c

M 1=2
2�hCt=2Aı C CM2

�h�mAı ;

so that (8.8) gives

lim sup
i!1

uki � 1

ln.1="i /
ui


L1. O!/

�
c

M 1=2
2�hCt=2Aı

C CM2
�h�mAı C cı lim sup

i!1

 1

ln.1="i /
ui


L1. O!/

;
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and since ui=ln.1="i /! u and uki ! uı;m;t;M in L2. O!/,

kuı;m;t;M � ukL1. O!/ �
c

M 1=2
2�hCt=2Aı C CM2

�h�mAı C cıkukL1. O!/:

The argument is then concluded by recalling (8.26) and taking a suitable diagonal sub-
sequence. Indeed, as ı, m, �, M and t were arbitrary, and since uı;m;t;M ! u, by lower
semicontinuity of Fself, taking firstm!1, then �! 0, thenM !1, then t !1, and
finally ı ! 0, we conclude that

FselfŒu0; O!� D E
LT
0 Œu; O!� � lim inf

i!1

E"i Œui ; ��

.ln.1="i //2
:

This finishes the proof of (8.7) and therefore of the proposition.
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