Landslides are critical natural hazards whose frequency and severity are increasing due to climate change and human activities. The consequences of landslides are severe and can lead to the destruction of homes, infrastructures and the contamination of water supplies, with severe impact also on the local ecosystems and the disruption of natural habitats. This article examines the application of an ad-hoc neural network-based intelligent system to evaluate the landslide susceptibility of the terrain on the basis of satellite data. The proposed system is validated on data from Lombardia and Abruzzo, two Italian regions that have been particularly subject to the landslide phenomenon. Results indicate that the CNN model is able to correctly identify landslide occurrences with high accuracy, demonstrating that CNNs are capable of providing accurate susceptibility mapping at a local scale and surpassing the performance of existing solutions available in the literature.

Landslide Susceptibility Prediction from Satellite Data through an Intelligent System based on Deep Learning / Giuseppi, A; Lo Porto, Lp; Wrona, A; Menegatti, D. - (2023), pp. 513-520. (Intervento presentato al convegno 31st Mediterranean Conference on Control and Automation, MED 2023 tenutosi a Limassol;Ciprus) [10.1109/MED59994.2023.10185824].

Landslide Susceptibility Prediction from Satellite Data through an Intelligent System based on Deep Learning

Giuseppi, A;Wrona, A;Menegatti, D
2023

Abstract

Landslides are critical natural hazards whose frequency and severity are increasing due to climate change and human activities. The consequences of landslides are severe and can lead to the destruction of homes, infrastructures and the contamination of water supplies, with severe impact also on the local ecosystems and the disruption of natural habitats. This article examines the application of an ad-hoc neural network-based intelligent system to evaluate the landslide susceptibility of the terrain on the basis of satellite data. The proposed system is validated on data from Lombardia and Abruzzo, two Italian regions that have been particularly subject to the landslide phenomenon. Results indicate that the CNN model is able to correctly identify landslide occurrences with high accuracy, demonstrating that CNNs are capable of providing accurate susceptibility mapping at a local scale and surpassing the performance of existing solutions available in the literature.
2023
31st Mediterranean Conference on Control and Automation, MED 2023
landslides; hazards; machine learning
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Landslide Susceptibility Prediction from Satellite Data through an Intelligent System based on Deep Learning / Giuseppi, A; Lo Porto, Lp; Wrona, A; Menegatti, D. - (2023), pp. 513-520. (Intervento presentato al convegno 31st Mediterranean Conference on Control and Automation, MED 2023 tenutosi a Limassol;Ciprus) [10.1109/MED59994.2023.10185824].
File allegati a questo prodotto
File Dimensione Formato  
Giuseppi_postprint_Landslide_2023.pdf

accesso aperto

Note: DOI10.1109/MED59994.2023.10185824
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 393.21 kB
Formato Adobe PDF
393.21 kB Adobe PDF
Giuseppi_Landslide_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 471.49 kB
Formato Adobe PDF
471.49 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1687896
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact