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Abstract— Landslides are critical natural hazards whose
frequency and severity are increasing due to climate change
and human activities. The consequences of landslides are severe
and can lead to the destruction of homes, infrastructures and
the contamination of water supplies, with severe impact also on
the local ecosystems and the disruption of natural habitats. This
article examines the application of an ad-hoc neural network-
based intelligent system to evaluate the landslide susceptibility
of the terrain on the basis of satellite data. The proposed
system is validated on data from Lombardia and Abruzzo,
two Italian regions that have been particularly subject to the
landslide phenomenon. Results indicate that the CNN model
is able to correctly identify landslide occurrences with high
accuracy, demonstrating that CNNs are capable of providing
accurate susceptibility mapping at a local scale and surpassing
the performance of existing solutions available in the literature.

I. INTRODUCTION

Landslides are natural disasters which cause significant
economic losses, property damage and human casualties.
According to the reports provided by the Istituto Superiore
per la Protezione e la Ricerca Ambientale (ISPRA) [1], with
more than 620,000 landslides, Italy is one of the European
nations most impacted by the landslide phenomenon, with an
affected area of about 24,000 km2, equivalent to about 7.9
percent of the national territory. Numerous studies focused
on the study of past landslide phenomena and soil structures
to identify Landslide Susceptibility Maps (LSMs), typi-
cally employing one of three main methodologies: expert-
based, physical-based, and statistical methods. In particular,
physical-based techniques simulate the stability of a downhill
given its physical characteristics such as geological rock
and soil conditions and compute the equilibrium between
destabilizing variables and slope strength, whereas expert-
based techniques rely mostly on the qualitative opinion of a
domain expert [2].

In recent years, with the advancement of artificial intelli-
gence and the development of new techniques in the Machine
Learning (ML) domain, statistical models have become the
focus of many researchers, becoming one of the most popular
tools for studying landslide phenomena. Statistical methods
are based on the analysis of past events correlating it with
influencing factors like slope, land cover and vegetation.

1 Department of Computer, Control and Management Engineering “An-
tonio Ruberti” of the University of Rome Sapienza, Via Ariosto 25, 00185,
Rome, Italy.

This study has been partially supported by the project “Intelligent Control
Systems: Analysis, Design and Applications ” of the University of Rome
“La Sapienza”, protocol n. RP1221816BE0C9AB

∗ Corresponding author: menegatti@diag.uniroma1.it

This paper seeks to explore the potential of convolutional
neural networks (CNNs) [3], [4], [5] for landslide suscepti-
bility assessment at a large scale, proposing an ad-hoc design
that aims at improving the performance attained by existing
solutions.

The main contributions of this study are:
• The design of a customized deep convolutional network

to evaluate landslides susceptibility maps reliant only on
satellite data, enabling a seamless analysis that requires
minimal expert supervision;

• The validation of the proposed solution on real data
from two Italian regions.

The remainder of the paper is structured as follows:
Section II reports an overview of the related works; Section
III describes the satellite data sources and products used in
this study; Section IV outlines the dataset considered and
the designed neural network architecture; Section V reports
the results of the test conducted on data from the Italian
regions of Lombardia and Abruzzo, while Section VI draws
the conclusions and highlights future works.

II. RELATED WORKS

Various studies have demonstrated the effectiveness of
machine learning and deep neural networks for the evaluation
of various safety-related risk factors, such as fire risk [6],
[7] and landslide susceptibility [8], [9]. For instance, logistic
regression was used by numerous researchers as the authors
of [8] to show how, by considering influencing factors like
slope, lithology, land cover, aspect, hill-shade, it is possible
to evaluate LSMs in various regions such as China [9]
and Sri Lanka [10]. The authors of [11] combined logistic
regression with a technique called frequency ratio, which
consists of a statistical method used to assess the relative risk
of landslides by using the ratio of the frequency of landslides
in areas with certain characteristics (e.g., slope, land use,
soil type) to the frequency of landslides in areas without
those characteristics. This ratio provides a relative measure
of risk that can be used to better understand and reduce the
risk of landslides in a given area. The work [12] illustrates
different results from the use of a classical logistic regression
approach and deep neural networks (DNNs) concluding that
the latter approach performs better and is capable of more
general results, highlighting the benefit of more powerful ML
models in solving the task.

In this direction, decision trees and random forests, which
are among the most popular ML models, were used in [13],
[14] to assess landslide risk in the Turkish region and in
the Metropolitan City of Istanbul. Nowadays, the literature



focuses mostly on new methods from the deep learning
domain, such as Recurrent (RNNs) and Convolutional Neu-
ral Networks (CNNs) that envisage a custom architecture
tailored for signal and image analysis [5].

The work [15] describes the general deep learning ap-
proach used to face the topic of landslide susceptibility
assessment using DNNs. One of the first studies to inves-
tigate DNNs for estimating a landslide probability map was
[16], in which a DNN was fed with high-resolution images
taken from a LiDAR (light detection and ranging) camera
in order to compute a Digital Elevation Model (DEM) and
some derivative factors. In [17] and [18] DNNs are used,
in combination with a GIS program, to predict a landslide
susceptibility map of respectively the Riomaggiore area and
Langat River Basin in Malesya. [19] makes a comparison
on the performance obtained in computing LSM among a
feed-forward neural network, a RNN and a 1-dimensional
CNN. As an improvement of the previous work, the authors
of [3] illustrate how to use a CNN in the context of
landslides hazard and they present three different kinds of
representation of the data in 1 to 3 dimensions. The present
paper focuses on a particular CNN architecture, known as
U-NET [4], which has become widely used in recent years
for numerous studies in the biomedical field and other areas
related to image analytics, such as satellite products.

III. LANDSLIDE INFLUENCING FACTORS DESCRIPTION
AND DATA ACQUISITION

This section provides a general description of the satellite
products used for this study, as well as the main software
solutions employed for their management.

A. Geographic Information System Mapping

A geographic information system (GIS) is a computer pro-
gram that collects, stores, verifies, and presents information
about spatial data on the earth surface [20]. All the images
passed through these kind of system are georeferenced,
meaning that they carry information regarding their spatial
coordinates to be displayed and analysed in a specified
coordinate system, such as the standard World Geodetic
System 1984 (WGS84). Having fixed a coordinate systems,
it is possible to combine several different information and
satellite products, such as land surface temperature, streets,
vegetation, soil features, by stacking multiple different image
layers one over the other. For this study the open-source
software Quantum GIS (QGIS), depicted in Figure 1 was
used, to extract and manage data from various public sources
detailed in the following.

B. Satellite imaging sources

The LandSat-8 and TERRA satellites are the two main
sources considered for this work. TERRA is a satellite
platform capable of providing various measurements thanks
to its five onboard sensors, namely:

• ASTER (Advanced Spaceborne Thermal Emission and
Reflection Radiometer)

• CERES (Clouds and Earth’s Radiant Energy System)

• MISR (Multi-angle Imaging SpectroRadiometer)
• MODIS (Moderate-resolution Imaging Spectrora-

diometer)
• MOPITT (Measurements of Pollution in the Tropo-

sphere)
For this study, we considered mainly data gathered by the

ASTER and MODIS sensors.
The analysis of this work will be based on the following 10

satellite features, to be passed to the CNN: Digital Elevation
Model (DEM), slope, aspect, profile curvature, tangential
curvature, land cover, lithology, Normalized Difference Veg-
etation Index (NDVI), Topographic Wetness Index (TWI),
soil type. The following subsection will detail each of the
considered satellite products and their sources.

1) DIGITAL ELEVATION MODEL (DEM): A Digital
Elevation Model (DEM) is a three-dimensional representa-
tion of the earth’s surface, that was derived from a variety of
sources, including satellite imagery, airborne LiDAR, Global
Positioning System (GPS), airborne photography, and ground
surveys. In this study, DEM was taken from the product
ASTER Global Digital Elevation Model (GDEM) V003 [21],
which is characterized by a resolution of 30 meters per pixel.
Figure 2 shows the DEM of the Italian region of Abruzzo.

2) SLOPE: Slope factor is a measure of the steepness of
a mountain and in general terrain. It is typically expressed as
a ratio of the height of the mountain divided by its horizontal
extension [22]. Slope can be easily derived from the DEM
by automated tools, and represents one of the most crucial
factor inflencing the severity and extension of a landslide.
Figure 3 shows the slope map computed using the QGIS
“Slope” tool.

3) ASPECT: Aspect is another measure that can be
derived from the DEM and describes the direction a surface
or line is facing, usually measured in degrees from the North.
It is an important factor in many GIS analyses and it can
be used to describe the orientation of a surface, typically a
hillside. Aspect can also be used to determine the potential
for erosion, a critical factor for landslides, as areas with a
steeper slope and a southern or western aspect are more prone
to erosion than areas with a flatter slope and a northern or
eastern aspect [23]. Figure 4 shows the aspect map computed
using QGIS.

4) PROFILE CURVATURE: A mountain’s profile cur-
vature is a measure of its shape and is expressed as a com-
bination of its steepness, convexity, and concavity. Steepness
describes how inclined is the mountain, convexity is the
degree to which the mountain’s profile rises from its base
and concavity is the degree to which it sinks from its peak.
Landslides are more likely to occur on slopes with higher
profile curvature because the steeper gradients and convex
curvatures create a shallow angle of repose, making it easier
for the material to move down-slope. Figure 5 shows the
map computed by QGIS starting from the DEM.

5) TANGENTIAL CURVATURE: Tangential curvature
in GIS analysis is used to measure the amount of curvature
along a line or polygon. It affects the amount of stress a
slope experiences, as, the higher the tangential curvature, the



Fig. 1. QGIS interface. At the top it is present a Menu Bar (1); just below the toolbar (2); on the left and on the right we can find the panels (3) where
we have the file browser on the top left, on the bottom left the layers uploaded on QGIS project and on the right the processing toolbox; at the center we
have the map view (4) and the bottom the status bar (5)

Fig. 2. Digital Elevation Model of Abruzzo

greater the force that is applied to the slope. Additionally,
tangential curvature can cause water to gather in certain
areas, making the slope more vulnerable to landslides and
soil erosion. In Figure 6 we report a map representation of
the Abruzzo tangential curvature.

6) TOPOGRAPHIC WETNESS INDEX (TWI): Topo-
graphic wetness index (TWI) is an index that incorporates
both topographic slope and the drainage area of a given
point on a landscape. It is used to quantify the amount of
water that a given location can hold and is a useful tool
for understanding the hydrological conditions of a particular
area. TWI is used to identify wetter areas in a landscape
that are likely to have higher levels of soil moisture and
therefore be more vulnerable to runoff and erosion. TWI can
provide useful information for landslide risk assessment, as
areas with higher TWI values are more likely to experience
landslides due to the increased saturation of the soil. Figure
7 shows the TWI of the Abruzzo region evaluated by QGIS
from the DEM of the area.

Fig. 3. Slope Abruzzo computed from QGIS

7) NORMALIZED DIFFERENCE VEGETATION IN-
DEX (NDVI): The Normalized Difference Vegetation Index
(NDVI) is a normalized index used to measure the greenness
/amount of vegetation over large areas and it is used to
identify healthy vegetation. The NDVI is calculated using the
difference between two types of reflected radiation, typically
visible and near-infrared radiation. Vegetation absorbs visible
light and reflects near-infrared light, while the reverse is
true for soil and other non-vegetation surfaces. NDVI is
calculated by subtracting the near-infrared (NIR) band from
the visible red (Red) band in an image, and then dividing
the result by the sum of the two bands as per the equation
below:

NDV I =
(REFnir −REFred)

(REFnir +REFred)
(1)

The resulting value ranges between -1 and +1, with higher
values indicating vegetation presence due to the fact the more
vegetative is the plant the higher is the value of its NIR



Fig. 4. Aspect Abruzzo computed by QGIS.

Fig. 5. Profile curvature Abruzzo computed by QGIS

reflectance. Values between -1 and 0 represents dead plants
or inanimate objects, as not cultivated fields or water basins.
NDVI is an important factor to consider in the study of LSM,
as the lack of vegetation can be an indicator of weak or
unstable ground. NDVI is typically measured using satellite
imagery. For our project Landsat-8 was used, as depicted in
Figure 8.

8) LITHOLOGY: Lithology is the basis for understand-
ing the origin of a region’s sedimentary, metamorphic, and
igneous rocks. The lithology of a particular area can be an
important factor in determining the likelihood of a landslide
occurring, as different rock types have different levels of
stability and resistance to erosion, porosity and permeability.
For example, in areas with sedimentary rocks, the presence
of weak layers of shale and clay can increase the risk
of landslide activity. Conversely, areas with more resistant
metamorphic or igneous rocks may be less susceptible to
landslides. The European Soil Data Center (ESDAC) was the
source of the data employed in this study, which used the
European Landslide Susceptibility Map version 2 (ELSUS
v2) [24] to obtain the data reported in Figure 9.

9) SOIL TYPE: Soil type refers to the physical and
chemical characteristics of a given soil. These character-
istics include texture, structure, color, acidity, fertility, and

Fig. 6. Tangential curvature of Abruzzo computed by QGIS

Fig. 7. Topographic Wetness Index of Abruzzo

drainage. Soil types vary based on the amount of mineral,
organic, and humus content, as well as the level of clay, silt,
sand, and other inorganic particles contained within it. In our
study soil type was taken from the “Consiglio per la ricerca
in agricoltura e l’analisi dell’economia agraria” (CREA) [25]
and is reported in Figure 10.

10) LAND COVER: Land cover is a satellite product that
refers to the physical characteristics of the land and its veg-
etation, such as soil type, tree species, and other vegetation.
Land cover data was acquired from the ELSUS v2 auxiliary
dataset [24] as was done for the lithoglogy. The land cover
class names were taken from ESA GlobCover2009 data [26].
Figure 11 shows the map processed with QGIS with the
corresponding legend.

11) LANDSLIDES MASK: The final satellite product
considered in this study is related to historic data on land-
slides occurred in the past decades. For the purpose of this
study, this information is not provided as input to the CNN
and instead is used for its training as a target value for
its LSM predictions. The masks were obtained from the
idroGEO platform [27] [28] which is an Italian platform
on hydro-geological instability. Figure 12 shows the data as
imported in QGIS.



Fig. 8. Normalized Difference Vegetation Index of Abruzzo

Fig. 9. Lithology of Abruzzo.

IV. NEURAL NETWORK DESIGN AND DATASET
SPECIFICATION

A. Dataset creation

After acquiring satellite images and data from the vari-
ous sources and satellite platforms and creating layers of
the respective factors using QGIS, Python was used as
a programming language to perform some pre-processing
operations in order to better prepare the dataset for the
learning process. The collected data had to be re-projected
to a common coordinate reference system (CRS) and resized
to a common dimension, as the resolution of the various
products was not always equivalent. After stacking the 10
different images described in the previous section, the area
was divided into smaller patches of 256x256 pixels with an
overlap of 64 pixels. We mention that the resulting stacks are
equivalent to 256×256 images with 10 different channel. The
landslide masks were also correspondingly divided, so that
each stack of 10 images was associated with a mask of the
same area.

In order to balance the training dataset, it was decided
to filter out the area in which the landslide mask reported
a percentage of landslides lower than 0.04%. The dataset
was hence randomly partitioned in 80% training data and

Fig. 10. Soil Type of Abruzzo.

Fig. 11. Land Cover of Abruzzo.

20% testing data, avoiding any overlapping between the two
sets, and then augmented by performing rotations of 90°,
180° and 270° and both horizontal and vertical flips. For
this study, we conducted the training process of the DNN
over two separate datasets, covering respectively the Italian
regions of Lombardia and Abruzzo.

B. Deep Neural Network architecture

The U-NET is a convolutional neural network architecture,
originally proposed in [4], that was particularly tailored
for image segmentation tasks. At its core, U-NET is a
CNN with a specialized layer architecture, known as the
encoder-decoder, in which the input image is first encoded
by passing through a series of convolutional layers, and then
decoded by a series of up-sampling layers (Figure 13). In the
encoder portion of the network, the nonlinear convolutional
layers perform a form of feature extraction, while in the
decoder part the extracted features are analysed to extract
the target information, which typically is displayed in the
form of an image (in our case a LSM). The “U” shape
of the network derives from the presence of some skip-
connections that forward information from a layer in the
encoder to its corresponding layer in the decoder, allowing
the network to capture both low-level and high-level features



Fig. 12. Landslide mask Abruzzo; Red pixels represent the presence of a
landslide in the corresponding area.

and correlations, making the U-NET an ideal choice for
localisation and segmentation tasks.

In order to obtain more satisfactory results and reduce
overfitting, some regularisation actions were included in
our architecture by adding dropout and batch normalisation
layers. The resulting architecture is reported in Figure 13 and
includes 23 convolutional layers.

As mentioned, the U-NET output consists of an image, and
for our task, we encoded in each of its pixels, through the
sigmoid activation function of the final layer, a value between
0 and 1 representing the confidence of the corresponding area
being subject to landslide risk. The resulting output image
is then a 256×256 heatmap capturing a distribution of the
landslide susceptibility of the considered area.

The loss function, which is a fundamental part of the
design of any ML tool as it defines the training objective,
was chosen to be a Weighted Binary Crossentropy (WBCE)
evaluated by comparing the individual pixels predicted by
the CNN against the landslide mask. We set a weight 15
times greater to the pixels encoding a high landslide risk
(i.e., whose value on the landslide mask was equal to 1) so
that the CNN training does not suffer from the abundance of
0 values in its target labels.

Denoting the 256×256×10 stack of input images as x, the
resulting WBCE loss takes the form:

L(x) =

− 1

N

N∑
i=1

W 1
i · yi log ŷi(x) +W 0

i · (1− yi) log(1− ŷi(x))

(2)

Where W 0
i and W 1

i represent respectively the weights
given to the classes 0 (low level of landslide susceptibility)
and 1 (high value of susceptibility), N is the number of
pixels in the output image, yi is the ground truth label for
pixel i, and ŷi(x) is the susceptibility value predicted by the
model for the same pixel.

As a performance metric to evaluate the performances of
the neural network we used the AUROC curve (Area Under

the Receiver Operating Characteristic Curve). The Area
under Curve (AUC) value is used to measure the performance
of a binary classifier and is evaluated by integrating the curve
that reports the true positive rates against the false positive
rates predicted by the classifier. The higher the AUC value,
the better the performance of the CNN in terms of discerning
correctly the two classes.

V. CASE STUDY

A. Areas of interests

The area of interests considered in the project are two
Italian region, Lombardia and Abruzzo, two regions char-
acterized by signifcant landslide phenomena over the past
decades. In particular, Lombardia is a region in northern
Italy that is prone to landslides due to its mountainous
terrain, steep slopes, and frequent seismic activity [29], while
Abruzzo is known for having a high density of unstable rock
formations and high levels of precipitation, which combined
make it an area susceptible to landslides [30], [31]

B. Results

The model was trained with a Tesla T4 over 200 epochs,
using a batch size of 16 and a learning rate of 0.001. An
early stopping procedure was introduced to avoid overfitting
during the training. Table I summarizes the setting used in
the implemented convolutional neural network.

In Figure 14 it is possible to observe the predicted output
of the neural network and the ground truth compared of two
patches of the Lombardy region.

As it can be seen from the two proposed figures, the
prediction of the image is very accurate, with the neural
network able to identify the points that are subject to the
highest landslides risk precisely. It can also be seen that
the neural network does not only classify as susceptible
to landslides risk the points where the landslide actually
occurred, but also their neighboring areas, thus displaying
on the map critical zones around unstable terrain where a
landslide has occurred in the past.

In Fig. 15 and Fig. 16 are respectively represented the
evolution of the loss function over the epochs and the AUC
performance metric. After 175 epochs it can be seen that
the network starts to overfit, so the early stopping procedure
implemented stops the training at 200 epochs.

The results obtained are also highlighted by the AUROC
metric (see Figure 16) that shows how the neural network
is able to correctly classify the critical areas over the test
dataset, as the AUC reaches a value of about 0.98 after
175 epochs, improving the results obtained by other neural-
network based systems [3] or [19].

TABLE I
U-NET SETTINGS.

BS, LR AND BN REPRESENT RESPECTIVELY THE BATCH SIZE,
LEARNING RATE AND BATCH NORMALIZATION HYPER PARAMETERS

Optimizer Epochs BS LR BN Dropout
Adam 200 16 0.001 0.8 0.8-0.2



Fig. 13. The U-NET architecture employed in this study, divided into the encoder, or “contractive path” (left), and the decoder, or “expansive path”
(right) parts.

Fig. 14. Comparison between predicted image (on the left) and the ground
thruth (on the right) of a Lombardy zone

For the sake of completeness, and to further stress the
generalization capabilities of the proposed model, we also
report the results obtained by testing the neural network on
the Abruzzo region. Figure 17 shows that the results are
in line with the previous case, with the predicted critical
areas slightly less defined with respect to the previous case
probably due to the more complex lithology of the region.

VI. CONCLUSIONS AND FUTURE WORKS

Landslides are a major natural hazard whose severity is
increasing due to climate change, deforestation and poorly
regulated construction activities. This paper, proposed a neu-
ral network-based system to identify landslide-prone areas
using satellite data. Several landslide influencing factors were

considered, such as slope, aspect, lithology and land cover
type. The performance of the developed system was evalu-
ated using the ROC curve, leading satisfactory results that
attain higher performance compared to existing solutions.
A possible future work is related to the inclusion of more
influencing factors to improve the predictions, including also
ground data gathered by an IoT sensor network.
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