In this paper we introduce a linear expectile hidden Markov model with the goal of modeling the entire conditional distribution of asset returns and, at the same time, to grasp unobserved serial heterogeneity and rapid volatility jumps typical of financial time series. The temporal evolution of asset returns is captured by introducing time-dependent coefficients evolving according to a latent discrete homogeneous Markov chain. To implement the procedure, we consider the Asymmetric Normal distribution as a working likelihood for the estimation of model parameters and the estimation procedure is carried out using an efficient EM algorithm. The empirical application investigates the relationship between daily Bitcoin returns and major world market indices.

Using expectile regression with latent variables for digital assets / Foroni, Beatrice; Merlo, Luca; Petrella, Lea. - (2023), pp. 1309-1314. (Intervento presentato al convegno SIS 2023 - Statistical Learning, Sustainability and Impact Evaluation tenutosi a Ancona; Italy).

Using expectile regression with latent variables for digital assets

Beatrice Foroni
Primo
Writing – Original Draft Preparation
;
Luca Merlo
Secondo
Writing – Review & Editing
;
Lea Petrella
Ultimo
Project Administration
2023

Abstract

In this paper we introduce a linear expectile hidden Markov model with the goal of modeling the entire conditional distribution of asset returns and, at the same time, to grasp unobserved serial heterogeneity and rapid volatility jumps typical of financial time series. The temporal evolution of asset returns is captured by introducing time-dependent coefficients evolving according to a latent discrete homogeneous Markov chain. To implement the procedure, we consider the Asymmetric Normal distribution as a working likelihood for the estimation of model parameters and the estimation procedure is carried out using an efficient EM algorithm. The empirical application investigates the relationship between daily Bitcoin returns and major world market indices.
2023
SIS 2023 - Statistical Learning, Sustainability and Impact Evaluation
bitcoin; financial time series; hidden markov models; tail risk
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Using expectile regression with latent variables for digital assets / Foroni, Beatrice; Merlo, Luca; Petrella, Lea. - (2023), pp. 1309-1314. (Intervento presentato al convegno SIS 2023 - Statistical Learning, Sustainability and Impact Evaluation tenutosi a Ancona; Italy).
File allegati a questo prodotto
File Dimensione Formato  
Foroni_Using-expectile-regression-SIS_2023.pdf

accesso aperto

Note: Foroni_SIS23
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 857.42 kB
Formato Adobe PDF
857.42 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1687488
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact