

Book of the Short Papers

Editors: Francesco Maria Chelli, Mariateresa Ciommi, Salvatore Ingrassia, Francesca Mariani, Maria Cristina Recchioni

CHAIRS

Salvatore Ingrassia (Chair of the Program Committee) - Università degli Studi di Catania Maria Cristina Recchioni (Chair of the Local Organizing Committee) - Università Politecnica delle Marche

PROGRAM COMMITTEE

Salvatore Ingrassia (Chair), Elena Ambrosetti, Antonio Balzanella, Matilde Bini, Annalisa Busetta, Fabio Centofanti, Francesco M. Chelli, Simone Di Zio, Sabrina Giordano, Rosaria Ignaccolo, Filomena Maggino, Stefania Mignani, Lucia Paci, Monica Palma, Emilia Rocco.

LOCAL ORGANIZING COMMITTEE

Maria Cristina Recchioni (Chair), Chiara Capogrossi, Mariateresa Ciommi, Barbara Ermini, Chiara Gigliarano, Riccardo Lucchetti, Francesca Mariani, Gloria Polinesi, Giuseppe Ricciardo Lamonica, Barbara Zagaglia.

ORGANIZERS OF INVITED SESSIONS

Pierfrancesco Alaimo Di Loro, Laura Anderlucci, Luigi Augugliaro, Ilaria Benedetti, Rossella Berni, Mario Bolzan, Silvia Cagnone, Michela Cameletti, Federico Camerlenghi, Gabriella Campolo, Christian Capezza, Carlo Cavicchia, Mariateresa Ciommi, Guido Consonni, Giuseppe Ricciardo Lamonica, Regina Liu, Daniela Marella, Francesca Mariani, Matteo Mazziotta, Stefano Mazzuco, Raya Muttarak, Livia Elisa Ortensi, Edoardo Otranto, Ilaria Prosdocimi, Pasquale Sarnacchiaro, Manuela Stranges, Claudia Tarantola, Isabella Sulis, Roberta Varriale, Rosanna Verde.

FURTHER PEPOPLE OF LOCAL ORGANIZING COMMITTEE

Elisa D'Adamo, Christian Ferretti, Giada Gabbianelli, Elvina Merkaj, Luca Pedini, Alessandro Pionati, Marco Tedeschi, Francesco Valentini, Rostand Arland Yebetchou Tchounkeu

Technical support: Matteo Mercuri, Maila Ragni, Daniele Ripanti

Copyright © 2023 PUBLISHED BY PEARSON WWW.PEARSON.COM ISBN 9788891935618AAVV

Contents

Preface XX	
1 Plenary Sessions 1	I
Inequality indices: accurate simulation-based inference 2 Maria-Pia Victoria-Feser	2
Examples from the Interface of Neural Models and Spatio-Temporal Statistics in Environmental Applications Christopher K. Wikle, Likun Zhang, Myungsoo Yoo and Xiaoyu Ma	,
Demographic change and sustainability: novel approaches from digital and computational demography n.a Emilio Zagheni	3.
2 Invited Sessions 14	4
Machine learning in the design, analysis and integration of sample surveys	
Causal Discovery for complex survey data 1 Paola Vicard	5
Data Integration without conditional independence: a Bayesian Networks approac	h 21
Pier Luigi Conti, Paola Vicard and Vincenzina Vitale	
Mass imputation through Machine Learning techniques in presence of multi-source data	е 27
Fabrizio De Fausti, Marco Di Zio, Romina Filippini and Simona Toti	
Machine learning: different uses and perspectives	
Evaluation of pollution containment policies in the US and the role of machine learning algorithms Marco Di Cataldo, Margherita Gerolimetto, Stefano Magrini and Alessandro Spiganti	32

Machine Learning for Official Statistics: An Application on External Trade Mauro Bruno, Maria Serena Causo, Alessio Guandalini, Francesco Ortame and Silvia Rus	
Machine learning, data quality and official statistics: challenges and opportuniti	
Stefano Menghinello	n.a.
Statistical Machine Learning for environmental applications	
Gaussian Processes and Deep Neural Networks for Spatial Prediction Alex Cucco, Luigi Ippoliti, Nicola Pronello, Pasquale Valentini and Carlo Zaccardi	38
How can we explain Random Forests in a spatial framework? Natalia Golini, Luca Patelli and Xavier Barber	42
Recent approaches in coupling deep learning methods with the statistical analy of spatial point patterns Jorge Mateu and Abdollah Jalilian	ysis 48
Statistical Process Monitoring for Complex Data in Industry 4.0	
A Kernel-based Nonparametric Multivariate CUSUM for Location Shifts Konstantinos Bourazas, Konstantinos Fokianos, Christos Panayiotou and Marios Polycar	53 pou
An Approach for Profile Monitoring via Mixture Regression Models Davide Forcina, Antonio Lepore and Biagio Palumbo	58
Anomaly Detection in Circular Data Houyem Demni and Giovanni C. Porzio	63
Advances in Data Science and Statistical Learning [IMS Invited Sess	sion]
Empirical Bayes approximation of Bayesian learning: understanding a commor practice	י n.a.
Generalized Fiducial Inference on Differentiable Manifolds - a geometric perspective Jan Hannig	n.a.
Model-free bootstrap and conformal prediction in regression Dimitris Politis	n.a.
ENBIS Session: System Maintenance, Boosting algorithms for regresent and Research Excellence	ssion,
Boosting Diversity in Regression Ensembles Mathias Bourel, Jairo Cugliari, Yannig Goude and Jean-Michel Poggi	69
How ENBIS has contributed to the UK Universities Research Excellence Frame	ework 71
Shirley Coleman Maintenance of degrading systems by dynamic programming or reinforcement learning Antonio Pievatolo	75

Population Dynamics, Climate Change and Sustainability

Climate change impacts on fertility in low- and middle-income countries: An analysis based on global sub-national data Côme Cheritel, Roman Hoffmann and Raya Muttarak	n.a.
Environmental Exposures and Under-5 Mortality in India: A Survival Analysis o data Vinod Joseph Kannankeril Joseph	f DHS 79
The impact of temperature on expressed sentiment by migration status: Evider from geo-located Twitter data Risto Conte Keivabu and Jisu Kim	nce 84
Statistical Learning for health research and omics data	
An alternative to the Dirichlet-multinomial regression model for microbiome dat analysis	a 95
Roberto Ascari, Sonia Migliorati and Andrea Ongaro	
Modelling ordinal response to treatment in a real-world cohort study Marco Alfò, Maria Francesca Marino and Silvia D'Elia	101
On the application of the symmetric graphical lasso for paired data Saverio Ranciati and Alberto Roverato	105
The Economic behaviour of Sustainability	
Airports performances and sustainable practices. An empirical study on Italian	data 110
Riccardo Gianluigi Serio, Maria Michela Dickson, Diego Giuliani and Giuseppe Espa	
Sustainability: still an undefined concept for Italians Raffaele Angelone and Andrea Marletta	116
Quasi-experimental evidence on COVID-19 lockdown effects on Italian househ food shopping basket composition and its sustainability Beatrice Biondi and Mario Mazzocchi	old 122
Advances in statistical methods for complex problems	
Inferring multiple treatment effects from observational studies using confounde importance learning Omiros Papaspiliopoulos	r n.a.
Path analysis in Ising models: an application to cyber-security risk assessment Monia Lupparelli and Giovanni M. Marchetti	127
Causal Regularization Lucas Kania and Ernst Wit	n.a.
Explainable machine learning models	
Enhancing Markowitz model: inspection of correlations and tail covariances Gloria Polinesi	133

Objective and subjective dimension of economic well-being: an approach base statistical matching Daniela Marella, Vincenzina Vitale and Pierpaolo D'Urso	ed on 139
Sustainable, Accurate, Fair and Explainable Machine Learning Models Paolo Giudici and Emanuela Raffinetti	n.a.
Flexible Learning for Environmental Sustainability	
Comparison of traffic flow data sources for air pollution modelling Theresa Smith and Nick McCullen	145
Data analysis of photogrammetry-based mapping: the sea cucumbers in the G Island as a case-study Gianluca Mastrantonio, Daniele Ventura, Edoardo Casoli, Arnold Rakaj, Giovanna Jona Lasinio and Alessio Pollice	iglio 150
Understanding forest damage in Germany: Finding key drivers to help with future forest conversion of climate sensitive Nicole Augustin, Heike Puhlmann and Simon Trust	ure 156
Inequalities in higher education outcomes: learning from data	
Inequalities in international students mobility Kristijan Breznik, Giancarlo Ragozini and Marialuisa Restaino	163
Uncovering the interplay of territorial, socioeconomic, and demographic factors high school to university transition Vincenzo Giuseppe Genova, Andrea Priulla and Martina Vittorietti	s in 169
Statistical Learning of demographic and health dynamics	
Estimating the impact of a vaccine mandate: the case of measles in Italy Chiara Chiavenna	n.a.
Leveraging deep neural networks to estimate age-specific mortality from life expectancy at birth Andrea Nigri	n.a.
Nowcasting Daily Population Displacement in Ukraine through Social Media Advertising Data Claire Dooley, Ridhi Kashyap, Douglas Leasure and Francesco Rampazzo	n.a.
Challenges towards Fairness and Transparency for Data Proce Algorithms and Decision-Support Models	esses,
Challenges on Ethics, and Privacy in AI Applications to Fintech Catarina Silva, Joana Matos Dias and Bernardete Ribeiro	175
Uncertainty and fairness metrics Anna Gottard	180

Educational Data mining: methods for complex data in students' assessment

Analysis of University Grades: An IRT Model for Responses and Response with Censoring Michela Battauz	Times 186
Predicting high schools' students performances with registry's data: a mach learning approach Lidia Rossi, Marta Cannistrà and Tommaso Agasisti	iine 191
Using response times to identify cheaters in CAT: A simulation study Luca Bungaro, Bernard P. Veldkamp and Mariagiulia Matteucci	195
Spatial and Spatio-Temporal Modeling: Theory and Applications	
A geostatistical investigation of the ammonia-livestock relationship in the Politaly	o Valley, 200
Paolo Maranzano, Kelly McConville, Philipp Otto and Felicetta Carillo	
Bayesian multi-species N-mixture models for large scale spatial data in con ecology Michele Peruzzi	nmunity 206
Minimum contrast for point processes' first-order intensity estimation Nicoletta D'Angelo and Giada Adelfio	212
Statistical Framework for Measuring the Sustainability of Tourism	
Data validity and statistical conformity with Benford's Law: the case of touris Sicily	sm in 217
Roy Cerqueti and Davide Provenzano	
Exploring the level of digitalization of the Italian museums through a multile ordered logit model Claudia Cappello, Sabrina Maggio and Sandra De Iaco	vel 228
Functional Partial Least-Squares via Regression Splines. An application on Sustainable Development Goals data Ida Camminatiello, Rosaria Lombardo, Jean-Francois Durand and Leonardo S. Alain	232
Statistical learning for well-being analysis	
Assessing multidimensional poverty of the Italian provinces during Covid-19 small area estimation approach Mariateresa Ciommi, Chiara Gigliarano, Francesca Mariani and Gloria Polinesi): a 238
The fuzzy set approach as statistical learning for the analysis of multidimen well-being Gianni Betti, Federico Crescenzi, Antonella D'Agostino and Laura Neri	sional 244
What Makes a Satisfying Life? Prediction and Interpretation with Machine-L Algorithms Conchita D'Ambrosio	earning. n.a.

Bayesian contributions to Statistical Learning

A Bayesian framework for early cancer screening Sally Paganin and Jeff Miller	249
Imputing Synthetic Pseudo Data from Aggregate Data: Development and Validation for Precision Medicine Cecilia Balocchi	n.a.
Linear models with assumptions-free residuals: a Bayesian Nonparametric approach Filippo Ascolani and Valentina Ghidini	254
Data Visualization for Smart Insights and Advanced Predictive Analy	/tics
Applications of data visualization for industry Martina Dossi, Stefano Sangaletti, Marilena Di Bari and Federica Bruschini	259
Some Notes on the Use of the Circular Boxplot Giovanni Camillo Porzio and Davide Buttarazzi	n.a.
TERRA: a smart visualization tool for international trade in goods statistics	265
Francesco Amato, Mauro Bruno and Maria Serena Causo	205
Methods for the analysis of distributional data	
Clustering of Distributional Data based on LDQ transformation Gianmarco Borrata and Rosanna Verde	271
Dynamic learning from data streams through the combined use of probability density functions and simplicial functional principal component analysis Francesca Fortuna, Fabrizio Maturo and Tonio Di Battista	276
Multivariate Parametric Analysis of Distributional Data Paula Brito	n.a.
Migrants and Refugees in Europe: social, economic and health-reissues	elated
Labor Market Return to Refugees' Human Capital Investment: A Natural Experiment in Sweden Eleonora Mussino	n.a.
Social networks and loneliness among older migrants in Italy Viviana Amati, Eralba Cela and Elisa Barbiano di Belgiojoso	282
The Italian Decree on Security: An Analysis of the Impact on Asylum Application	
Giorgio Piccitto	287
Modelling and Forecasting High-dimensional time series	
Adaptive combinations of tail-risk forecasts Alessandra Amendola, Vincenzo Candila, Antonio Naimoli and Giuseppe Storti	293
Are Monetary Policy Announcements related to Volatility Jumps? Giampiero Gallo, Demetrio Lacava and Edoardo Otranto	299

Regularized Estimation and Prediction of the El Nino/Southern Oscillation Cycle

n.a.

305

Alessandro Giovannelli and Tommaso Proietti

3 Contributed Sessions

Bayesian nonparametric methods	
Bayesian density estimation for modeling age-at-death distribution Davide Agnoletto, Tommaso Rigon and Bruno Scarpa	306
Bayesian mixing distribution estimation in the Gaussian-smoothed 1- Wasserstein distance Catia Scricciolo	311
Bayesian nonparametric estimation of heterogeneous intrinsic dimension via product partition models Francesco Denti, Antonio Di Noia and Antonietta Mira	316
Bayesian nonparametric multiple change point detection for time series of compositional data Edoardo Marchionni and Riccardo Corradin	322
Galton-Watson process: a non parametric prior for the offspring distribution Massimo Cannas, Michele Guindani and Nicola Piras	328
Hierarchical processes in survival analysis Riccardo Cogo, Federico Camerlenghi and Tommaso Rigon	333
Economics and Statistics	
A regression analysis for count data to investigate the effectiveness of incentiv on the adoption of 4.0 technologies Stefano Bonnini and Michela Borghesi	/es 339
Statistical analysis on SDGs indicators related to environmental sustainability Najada Firza, Anisa Bakiu and Dante Mazzitelli	344
Empowering futures adopting a spatial convergence of opinions: a Real-Time Spatial Delphi approach Yuri Calleo, Simone Di Zio and Francesco Pilla	349
Stocks price forecasts using Stochastic Differential Equations: an empirical assessment Dario Frisardi and Matteo Spuri	355
The Added-Worker Effect within Italian Households Donata Favaro and Anna Giraldo	361
Health statistics 1	
A model for the natural history of breast cancer: application to a Norwegian screening dataset	365

Laura Bondi, Marco Bonetti and Solveig Hofvind

Generalized Bayesian Ensemble Survival Trees: an extension to categorical variables to apply it to real data Elena Ballante	370
Joint modelling of hospitalizations and survival in Heart Failure patients: a disc non parametric frailty approach Chiara Masci, Marta Spreafico and Francesca Ieva	rete 375
Mobility trends in Italy during the first wave of Covid-19 pandemic: analysis on Google data Ilaria Bombelli and Daniele De Rocchi	381
Tracking attitudes towards COVID vaccines: A text mining analysis Leonardo Scarso, Marco Novelli and Francesco Saverio Violante	387
Treatment effect assessment in observational studies with multi-level treatment and outcome Federica Cugnata, Paola Vicard, Paola M.V. Rancoita, Fulvia Mecatti, Clelia Di Serio and Pier Luigi Conti	it 393
Indicators: composition, uses and limitations	
Are European consumers willing to pay the true price for sustainable food?	, 399
Luca Secondi and Mengting Yu	
Can the reliability of composite indexes be impacted by uncertainty of individual indicators? Caterina Giusti, Stefano Marchetti and Vincenzo Mauro	406
Initial Coin Offerings and ESG: allies or enemies? Alessandro Bitetto and Paola Cerchiello	411
On the impact of intraclass correlation in the ANVUR evaluation of academic departments Giorgio Edoardo Montanari and Marco Doretti	417
Small area estimation of monetary poverty indicators with poverty lin adjusted using local price indexes Luigi Biggeri, Stefano Marchetti, Caterina Giusti, Monica Pratesi, Francesco Schirripa Spagnolo and Gaia Bertarelli	es 422
Smart Composite Indicators Measuring Corporate Sustainability: A Sensitivity Analysis Camilla Salvatore, Annamaria Bianchi and Silvia Biffignandi	428
Multivariate data analysis 1	
A note on most powerful tests for right censored survival data Maria Veronica Vinattieri and Marco Bonetti	434
Enhancing Principal Components by a Linear Predictor: an Application Well-Being Italian Data Laura Marcis, Maria Chiara Pagliarella and Renato Salvatore	to 439

Proper Bayesian Bootstrap for Bagging tree model in survival analysis w correlated data Farah Naz and Elena Ballante	vith 445
ROBOUT: a multi-step methodology for conditional outlier detection Matteo Farnè and Angelos Vouldis	450
Robustness of the Efficient Covariate-Adaptive Design for balancing covariates in comparative experiments Rosamarie Frieri, Alessandro Baldi Antognini, Maroussa Zagoraiou, and Marco Novelli	456
Separation scores: a new statistical tool for scoring and ranking partially ordered data Marco Fattore	462
Statistics in Society 1	
Community detection analysis with robin on hashtag network Valeria Policastro, Francesco Santelli and Giancarlo Ragozini	468
Film Tourism Motivation through the lens of Trip Advisor data Nicolò Biasetton, Marta Disegna, Girish Prayag and Elena Barzizza	474
Life satisfaction and social activities in later life in Italy: a focus on the Internet use Claudia Furlan and Silvia Meggiolaro	480
Social capital endowment's role in the intergenerational transmission education Alessandra Trimarchi, Maria Gabriella Campolo and Antonino Di Pino Incognito	n of 485
Streaming Data from Social Networks to Track Political Trends Emiliano del Gobbo and Barbara Cafarelli	490
The scientific production on gender dysphoria: a bibliometric analysis	
Maria Gabriella Grassia, Marina Marino, Massimo Aria, Rocco Mazza, Luca D'Aniello and Agostino Stavolo	495
Assessment and Education	
A hierarchical modelling approach to explain differential functioning of mathematics items by student's gender Clelia Cascella	500
A latent variable approach to Millennials' knowledge of green finance Maria Iannario, Alessandra Tanda and Claudia Tarantola	506
Archetypal analysis and latent Markov models: A step-wise approach Lucio Palazzo, Rosa Fabbricatore and Francesco Palumbo	512
From high school to university: academic intentions and enrolment of foreign students in Italy Francesca Di Patrizio, Eleonora Trappolini and Cristina Giudici	518
Growth models for the progress test in Italian dentistry degree program Giulio Biscardi, Leonardo Grilli, Carla Rampichini, Laura Antonucci and Corrado Crocet	523 .ta

The COVID-19 pandemic and academic E-learning: Italian students and instructors' perceptions Francesco Santelli, Teresa Gentile, Davide Bizjak and Lorenzo Fattori	527
Working Students and job market outcomes: Insights from the University of Florence Gabriele Lombardi, Valentina Tocchioni and Alessandra Petrucci	532
Bayesian methods and applications 1	
Analyzing RNA data with scVelo: identifiability issues and a Bayesia implementation Elena Sabbioni, Enrico Bibbona, Gianluca Mastrantonio and Guido Sanguinetti	in 538
Approximate Bayesian Computation for Probabilistic Damage Identification Cecilia Viscardi, Silvia Monchetti, Luisa Collodi, Gianni Bartoli, Michele Betti, Michele Boreale and Fabio Corradi	544
Estimation of scientific productivity with a hierarchical Bayesian mod	del 550
Maura Mezzetti and Ilia Negri Heat waves and free-knots splines Gioia Di Credico and Francesco Pauli	555
The Hierarchical Beta-Bernoulli Process as Out-of-Scope Query Detector Marco Dalla Pria and Silvia Montagna	560
Health and mortality	
A novel definition of comorbidity based on the Global Burden of Diseas project weights Angela Andreella, Lorenzo Monasta and Stefano Campostrini	es 566
An Age-Period-Cohort model of gender gap in youth mortality Giacomo Lanfiuti Baldi and Andrea Nigri	572
Kinlessness in adult and old age across Europe Marta Pittavino, Bruno Arpino and Elena Pirani	578
Parameter orthogonalization for Siler mortality model Claudia Di Caterina and Lucia Zanotto	584
Pseudo-observations in survival analysis Marta Cipriani, Alfonso Piciocchi, Valentina Arena and Marco Alfò	590
Sex Gap in Cancer-Free Life Expectancy: The Association with Smoking, Obe and Physical Inactivity Alessandro Feraldi, Cristina Giudici and Nicolas Brouard	esity 595
Women's Exposure to HIV in Africa: the Role of Intimate Partner Violence Micaela Arcaio and Anna Maria Parroco	599

Mixture Models

An extension of finite mixtures of latent trait analyzers for biclustering bipartite networks	605
Dalila Failli, Maria Francesca Marino and Francesca Martella	
Constrained Mixtures of Generalized Normal Distributions Pierdomenico Duttilo, Alfred Kume and Stefano Antonio Gattone	611
Mixture-based clustering with covariates for ordinal responses Kemmawadee Preedalikit, Daniel Fernàndez, Ivy Liuc, Louise McMillan, Marta Nai Ruscone and Roy Costilla	617
Partial membership models for soft clustering of multivariate count data Emiliano Seri, Thomas Brendan Murphy and Roberto Rocci	623
Regression for mixture models for extremes Viviana Carcaiso, Ilaria Prosdocimi and Isadora Antoniano-Villalobos	629
Robust matrix-variate mixtures of regressions Salvatore Daniele Tomarchio and Michael P. B. Gallaugher	635
Sampling methods and analysis of survey data	
On the use of auxiliary information to define the sampling design for large-scale geospatial data Chiara Bocci and Emilia Rocco	e 641
Optimal joint inclusion probabilities for spatial sampling Giuseppe Arbia, Piero Demetrio Falorsi and Vincenzo Nardelli	n.a.
Robustness and Balance of Sampling or Experimental Designs and Mixture of Designs Yves Tillé and Ejub Talovic	647
Robustness Bounds for Sampling and Experimental Designs Ejub Talovic and Yves Tillé	654
Statistical Matching: Hotdeck or Propensity Score? Elena Dalla Chiara, Marcello D'Orazio and Federico Perali	661
The Italian experience on register-based statistics considering measurement, coverage and sampling errors Marco Di Zio, Romina Filippini and Simona Toti	667
Space-time statistics	
A Hierarchical Spatio-Temporal Model for Time-Frequency Data: An application bioacoustic analysis Hiu Ching Yip, Gianluca Mastrantonio, Enrico Bibbona, Daria Valente and Marco Gamb	673
An approach to cluster time series extremes with spatial constraints Alessia Benevento, Fabrizio Durante and Roberta Pappadà	679
An integrated space-time model to evaluate the innovation drivers in Italy Emma Bruno, Rosalia Castellano and Gennaro Punzo	685

Revealing the dynamic relations between traffic and crowding using big data fr mobile phone network Selene Perazzini, Rodolfo Metulini and Maurizio Carpita	om 691
SMaC: Spatial Matrix Completion method Giulio Grossi, Alessandra Mattei and Georgia Papadogeorgou	697
The impact of traffic flow and road signs on road accidents: an approach based spatiotemporal point pattern analysis on linear networks Andrea Gilardi and Riccardo Borgoni	d on 702
Clustering and classification 1	
A clustering model for flow data: an application to international student mobility	,
Cinzia Di Nuzzo and Donatella Vicari	708
Contingency tables with structural zeros and discrete copulas Roberto Fontana, Elisa Perrone and Fabio Rapallo	713
Levels Merging in the Latent Class Model Christophe Biernacki	719
Model-based clustering of count processes with multiple change Shuchismita Sarkar and Xuwen Zhu	725
Similarity Measures and Internal Evaluation Criteria in Hierarchical Clustering of Categorical Data Jana Cibulková, Zdeněk Šulc, Hana Řezanková and Jaroslav Horníček	of 729
Spectral clustering of mixed data via association-based distance Alfonso Iodice D'Enza, Francesco Palumbo and Cristina Tortora	735
Dynamic models and time series	
A graph based convolution Neural Network approach for forecast reconciliation	n 741
Andrea Marcocchia and Pierpaolo Brutti	
A multivariate hidden semi-Markov model for the analysis of multiple air polluta	ants 747
Marco Mingione, Pierfrancesco Alaimo Di Loro, Francesco Lagona and Antonello Maruo	
A smooth transition autoregressive model for matrix-variate time series Andrea Bucci	753
Dynamic network models with time-varying nodes Luca Gherardini, Mauro Bernardi and Monia Lupparelli	759
Time lapse analysis of nuclear calcium spiking in plant cells during symbiotic signaling Ivan Sciascia, Andrea Crosino and Andrea Genre	765
Two-stage weighted least squares estimator of multivariate conditional mean observation-driven time series models Mirko Armillotta	770

Environmental learning and indicators

Assessing the performance of nuclear norm-based matrix completion methods CO ₂ emissions data	on 776
Rodolfo Metulini, Francesco Biancalani, Giorgio Gnecco and Massimo Riccaboni	
Deep Learning for smart and sustainable agriculture Amalia Vanacore, Armando Ciardiello, Annalisa Izzo, Pierdomenico Zaffino, Carolina Vecchio, Gennaro Pio Auricchio and Luigi Uccelli	782
Do green transition, environmental taxes and renew-able energy promote ecological sustainability in G7 countries? Evidence from panel quantile regression	788
Aamir Javed, Agnese Rapposelli and Asif Javed	
Doubly Robust DID for National Parks evaluation: "just" environmental benefits, or socioeconomics impacts as well? Riccardo D'Alberto, Francesco Pagliacci and Matteo Zavalloni	795
On the gap between emitted and absorbed carbon dioxide. Are trees enough to save us?	o 801
Lorenzo Mori and Maria Rosaria Ferrante	
Small scale analysis of energy vulnerability in the municipality of Palermo Giuliana La Mantia	806
Health statistics 2	
A test for non-differential misclassification error in database epidemiological st	udies 812
Giorgio Limoncella, Leonardo Grilli, Emanuela Dreassi, Carla Rampichini, Robert Platt and Rosa Gini	0.2
Is the COVID-19 'color code' of Italian regions subjected to political manipulation	on? 816
Giovanni Busetta and Fabio Fiorillo	
Modelling multilevel ordinal response under endogeneity: application to DTC patients' outcome Silvia D'Elia	822
Monitoring drugs-based diagnostic therapeutic paths in heart failure patients us state-sequence analysis techniques Nicole Fontana, Laura Savaré and Francesca Ieva	sing 827
Optimal two-stage design based on error rates under a Bayesian perspective Susanna Gentile and Valeria Sambucini	833
Migrants in Italy and return migration	
Comparing migrant and "native" Italian adolescents in risky behaviours from FSS and SHARE Corona surveys Daniela Foresta	n.a.
EU-Border crisis on Twitter: sentiments and misinformation analysis Elena Ambrosetti, Cecilia Fortunato and Sara Miccoli	839

Graduates' interregional migration in times of crisis: the Italian case Thais García-Pereiro, Ivano Dileo and Anna Paterno		
Intentions to stay: The experience of return migrants in Albania Maria Carella, Thaís García-Pereiro, Roberta Pace and Anna Paterno	848	
Return migration to home country: a systematic literature review with text minin and topic modelling Cecilia Fortunato, Andrea Iacobucci and Elena Ambrosetti	ng 853	
The allocation of time within native and foreign couples living in Italy Giovanni Busetta, Maria Gabriella Campolo and Antonino Di Pino Incognito	860	
Eiλείθυια comes from afar: The foreigners' contribution to fertility by Italian provinces Eleonora Miaci, Cristina Giudici, Eleonora Trappolini, Marina Attili, Cinzia Castagnaro Antonella Guarneri	866 and	
Sustainability assessment		
ESG, sustainability and stock market risk Michele Costa	871	
Exploring the effect of consumer motivation and perception of sustainability on choices with a Discrete Choice Experiment Gloria Solano-Hermosilla, Jesus Barreiro-Hurle and Ilaria Amerise	food 875	
Sustainability explained by ChatGPT artificial intelligence in a HITL perspective innovative approaches Vito Santarcangelo, Angelo Lamacchia, Emilio Massa, Saverio Gianluca Crisafulli, Massimiliano Giacalone and Vincenzo Basile	e: 881	
Measuring economic and ecological efficiency of urban waste systems in Italy: comparison of SFA and DEA techniques Massimo Gastaldi, Ginevra Virginia Lombardi, Agnese Rapposelli and Giulia Romano	a 887	
Profile based latent distance association analysis for sparse tables. Application the attitude of EU citizens towards sustainable tourism Francesca Bassi, Josè Fernando Vera and Juan Antonio Marmolejo Martin	n to 893	
Sustainable tourism: a survey on the propensity towards eco-friendly accommodations Claudia Furlan and Giovanni Finocchiaro	899	
Bayesian methods and applications 2		
A comparison of computational approaches for posterior inference in Bayesian Poisson regression Laura D'Angelo	903	
Bias-reduction methods for Poisson regression models Luca Presicce, Tommaso Rigon and Emanuele Aliverti	908	
Finite Mixture Model for Multiple Sample Data Alessandro Colombi, Raffaele Argiento, Federico Camerlenghi and Lucia Paci	913	

On Bayesian power analysis in reliability Fulvio De Santis, Stefania Gubbiotti and Francesco Mariani				
Power priors elicitation through Bayes factors Roberto Macri Demartino, Leonardo Egidi and Nicola Torelli	923			
Predictive Bayes factors Leonardo Egidi and Ioannis Ntzoufras	929			
Clustering and classification 2				
A Clusterwise Regression Method for Distributional-Valued Data Antonio Balzanella, Rosanna Verde and Francisco de A.T. de Carvalho	935			
A novel statistical-significance based semi-parametric GLMM for clustering countries standing on their innumeracy levels Alessandra Ragni, Chiara Masci, Francesca Ieva and Anna Maria Paganoni	939			
Introducing a novel directional distribution depth function for supervised classification Edoardo Redivo and Cinzia Viroli	945			
Clustering alternatives in the preference-approval context Alessandro Albano, José Luis Garcia-Lapresta, Mariangela Sciandra and Antonella Plaia	950 a			
Computational assessment of k-means clustering on a Structural Equation Mod based index Mariaelena Bottazzi Schenone, Elena Grimaccia and Maurizio Vichi	del 955			
Handling missing data in complex phenomena: an ultrametric model-based approach for clustering Francesca Greselin and Giorgia Zaccaria	961			
Economics and labour markets				
A multivariate ranking analysis on the employability of young adults Rosa Arboretti, Elena Barzizza, Nicolo Biasetton, Riccardo Ceccato, Monica Fedeli and Concetta Tino	967			
Analysis of the Gender Pay Gap in the Italian Labour Market Giulia Cappelletti and Daniele Toninelli	973			
Evaluating the effect of home-based working employing causal Bayesian netwo and potential outcomes Lorenzo Giammei	orks 979			
Patterns of flexible employment careers. Does measurement error matter? Mauricio Garnier-Villarreal, Dimitris Pavlopoulos and Roberta Varriale	985			
Staying or leaving? A nonlinear framework to explore the role of employee well being on retention Ulpiani Kocollari, Fabio Demaria and Maddalena Cavicchioli	l- 991			
The CAP instruments impact on GVA and employment: a multivalued treatment approach	nt 997			
Montezuma Dumangane and Marzia Freo				

The determinants of leaving the parental home in Italy: 2012-18 Ilaria Rocco and Gianpiero Dalla Zuanna				
Environmental modeling				
A Bayesian weather-driven spatio-temporal model for PM10 in Lombardy Michela Frigeri, Alessandra Guglielmi and Giovanni Lonati				
A preliminary study on shape descriptors for the characterization of microplasingested by fish Greta Panunzi, Tommaso Valente, Marco Matiddi and Giovanna Jona Lasinio				
Artificial neural network in predicting odour concentrations: a case study Veronica Distefano and Gideon Mazuruse	1021			
Bayesian analysis of PM10 concentration by spatio-temporal ARIMA and STS models Michela Frigeri and Ilenia Epifani	S 1026			
Functional ANOVA to monitor yearly Adriatic sea temperature variations Annalina Sarra, Adelia Evangelista, Tonio Di Battista and Nicola Di Deo	1032			
New perspectives in the measurement of biodiversity Linda Altieri, Daniela Cocchi and Massimo Ventrucci	1038			
Multivariate data analysis 2				
Feature Selection via anomaly detection autoencoders in radiogenomics stud				
Alessia Mapelli, Michela Carlotta Massi, Nicola Rares Franco, Francesca Ieva, Catharine West, Petra Seibold, Jenny Chang-Claude and the REQUITE and RADprecis Consortia	1044 se			
Further considerations on the Spectral Information Criterion	1050			
How to increase the power of the test in sparse contingency tables: a simulat study Federica Nicolussi and Manuela Cazzaro	ion 1057			
Latent event history models for quasi-reaction systems Matteo Framba, VeronicaVinciotti and Ernst Wit	1063			
Quantile-based graphical models for continuous and discrete variables Luca Merlo, Marco Geraci and Lea Petrella	1069			
The logratio Student t distribution Gianna Monti and Gloria Mateu-Figueras	1075			
Statistics in Society 2				
A decomposition of the changes in tourism demand in Tuscany over the 2019 period	9-2021 1079			
Mauro Mussini				
Bayesian networks as a territorial gender impact assessment tool Flaminia Musella, Lorenzo Giammei, Fulvia Mecatti and Paola Vicar	1084			

XVIII

Can statistics be helpful in detecting electoral fraud? Massimo Attanasio, Vincenzo G. Genova and Michele Tumminello				
Companies' sustainability disclosure and contrast to hunger: the role of social inclusion Chiara Di Maria and Rodolfo Damiano	l 1093			
Passing network-based performance indicator in football: evidence from UEF Champions League 2016-2017 Riccardo Ievoli, Lucio Palazzo and Giancarlo Ragozini	A 1099			
Topic Modeling for the travel and tourism industry: classical and innovative methods compared Fabrizio Di Mari	1105			
Bayesian methods and applications 3				
An Importance Sampling Algorithm For Bayesian Logistic Regression with Independent Gaussian Scale Mixture Prior Paolo Onorati and Brunero Liseo	1111			
Bayesian analysis of Amazon's best-selling books via finite nested mixture m Laura D'Angelo and Francesco Denti	odel 1117			
Binomial Extended Stochastic Block Model for Brain Networks	1121			
Valentina Ghidini, Sirio Legramanti and Raffaele Argiento	1121			
Detecting latent spatial patterns in mass spectrometry brain imaging data via Bayesian mixtures Giulia Capitoli, Simone Colombara, Alessia Cotroneo, Francesco De Caro, Riccardo M Chiara Schembri, Alfredo G. Zapiola and Francesco Denti	1127			
Efficient expectation propagation for high-dimensional probit models Augusto Fasano, Niccolo Anceschi, Beatrice Franzolini and Giovanni Rebaudo	1133			
Model-based clustering of non-stationary time series with common historical change times Riccardo Corradin, Luca Danese, Wasiur KhudaBukhsh and Andrea Ongaro	1139			
Functional Data Analysis				
A functional Ground Motion Model for Italy built with a weighted analysis of reconstructed seismic curves Teresa Bortolotti, Riccardo Peli, Giovanni Lanzano, Sara Sgobba and Alessandra Mena	1145 afoglio			
Conditional Gaussian Graphical Models for Functional Variables whit Partial Separable Operators Rita Fici, Gianluca Sottile and Luigi Augugliaro	1149			
Does the Inflation Factor need tuning? Simulation-based adjustment for Outli Detection via the Functional Boxplot Annachiara Rossi, Andrea Cappozzo and Francesca Ieva	er 1155			
Functional Graphical Models to map Brexit debate on Twitter Nicola Pronello, Emiliano del Gobbo, Lara Fontanella, Rosaria Ignaccolo, Luigi Ippoli and Sara Fontanella	1160 ^{ti}			
XIX				

Measuring Dependence in Multivariate Functional Datasets Francesca Ieva, Michael Ronzulli and Anna Maria Paganoni				
Robust Statistical Process Monitoring of Multivariate Functional Data Christian Capezza, Fabio Centofanti, Antonio Lepore and Biagio Palumbo	1173			
The effects of mobility restrictions on public health: a functional data analysis for a ltaly over the years 2020 and 2021 Veronica Mazzola, Giovanni Bonaccorsi, Piercesare Secchi and Francesca Ieva	for 1179			
Machine Learning and text mining				
A vocabulary-based approach for risk detection in textual annotations of contra of public procurement Giulio Giacomo Cantone, Simone Del Sarto and Michela Gnaldi	acts 1185			
Explainable Machine Learning based on Group Equivariant Non-Expansive Operators (GENEOs). Protein pocket detection: a case study Giovanni Bocchi, Alessandra Micheletti, Patrizio Frosini, Alessandro Pedretti, Andrea R Beccari, Filippo Lunghini, Carmine Talarico and Carmen Gratteri	1191 			
Hedging global currency risk with factorial machine learning models Paolo Pagnottoni and Alessandro Spelta	1197			
InstanceSHAP: An instance-based estimation approach for Shapley values Golnoosh Babaei and Paolo Giudici	1203			
Networks & Nature Based Solutions: an application for Milan hydric resources Alessia Forciniti and Emma Zavarrone	1209			
The Roe v. Wade sentence: an analysis of tweets trough Symmetric Non-Neg Matrix Factorization Maria Gabriella Grassia, Marina Marino, Rocco Mazza and Agostino Stavolo	ative 1215			
Multivariate data analysis 3				
A comparison of different techniques for handling missing covariate values in propensity score methods Anna Zanovello, Alessandra R. Brazzale and Omar Paccagnella	1219			
A New Penalized Estimator for Sparse Inference in Gaussian Graphical Mode Adaptive Non-Convex Approach Daniele Cuntrera, Vito M.R. Muggeo and Luigi Augugliaro	ls: An 1224			
A tool for assessing weak identifiability of statistical models Antonio Di Noia, Francesco Denti and Antonietta Mira	1230			
Computing Highest Density Regions with Copulae Nina Deliu and Brunero Liseo	1235			
Parameter estimation via Indirect Inference for multivariate Wrapped Normal distributions Francesca Labanca and Anna Gottard	1241			

Sequential marginal likelihood selection for the estimation of sparse correlation matrices Claudia Di Caterina and Davide Ferrari			
Nonparametric statistical methods			
A Comparison of Distribution-Free Control Charts Michele Scagliarini	1252		
Characterizing Heterogeneity of Causal Effects in Air Pollution in Florida Dafne Zorzetto	1257		
Comparing three robust procedures for CANDECOMP/PARAFAC estimation Valentin Todorov, Violetta Simonacci, Michele Gallo and Nikolay Trendafilov	1262		
How active is a genetic pathway? Comparative analysis of post-hoc permutation based methods Anna Vesely and Angela Andreella	ion- 1268		
Non Parametric Combination methodology: a literature review on recent developments Elena Barzizza, Nicolò Biasetton and Riccardo Ceccato	1274		
Regression modeling			
A Quantile Regression Model to Evaluate the Performance of the Italian Cour Law	ts of 1280		
Carlo Cusatelli, Massimiliano Giacalone and Eugenia Nissi			
A variable selection procedure based on predictive ability: a preliminary study logistic regression Rosaria Simone and Mariarosaria Coppola	on 1285		
Comparison of binary regressions with asymmetric link function for imbalance	d		
data Michele La Rocca, Marcella Niglio and Marialuisa Restaino	1291		
New advances in Regression Forests Mila Andreani, Lea Petrella and Nicola Salvati	1297		
On the Optimal Non-Convexity of Penalty in Sparse Regression Models Daniele Cuntrera, Vito M.R. Muggeo and Luigi Augugliaro	1303		
Using expectile regression with latent variables for digital assets Beatrice Foroni, Luca Merlo and Lea Petrella	1309		
1 Program	1315		

4 Program

1315

Preface

This book includes the contributions presented at the Intermediate Meeting of the Italian Statistical Society (SIS) "SIS 2023 - Statistical Learning, Sustanaibility and Impact Evolution" held in Ancona at the Università Politecnica delle Marche, from June 21th to 23th of 2023.

The new challenges of digitalization, innovation and sustainability are showing the crucial role of data-driven approaches in supporting decision-making processes. Methodologies resulting from the integration of different know-how seem to be a reliable way to deal with the increasing need to measure the impact of the policies and to forecast scenarios. This meeting welcomed any attempt to face new challenges.

The conference registered more than 250 presentations, including 3 keynote speakers in 3 plenary sessions and 72 presentations in 24 invited sessions, all dealing with specific themes in methodological and/or applied statistics and demography. Furthermore, more than 180 contributions, with one or more authors, have been spontaneously submitted to the Program Committee and arranged in 30 contributed sessions.

The numerous participation of researchers in the conference shows how the challenges of sustainability, in its broadest sense, are of interest to both methodological and applied statistics.

With the publication of this book, we wish to offer to all members of the Italian Statistical Society, all international academics, researchers, Ph.D. students, and all interested practitioners, a good snapshot of the on-going research in the statistical and demographic fields.

We aim to provide all members of the Italian Statistical Society - as well as international academics, researchers, Ph.D. students, and interested practitioners - with a comprehensive overview of the ongoing research in the fields of statistics and demography.

We extend our heartfelt gratitude to all the contributors for submitting their works to the conference and to the researchers for their outstanding job in serving as referees and discussants with precision and timeliness.

A special appreciation goes to the Scientific and Organizational Committees for their tremendous efforts in managing all the organizational aspects, as well as to the Università Politecnica delle Marche and the Department of Economic and Social Science for making this event possible.

Finally, we wish to express our gratitude to the publisher Pearson Italia for all the support received.

Using expectile regression with latent variables for digital assets

Beatrice Foroni^a, Luca Merlo^b, and Lea Petrella^a

^aMEMOTEF Department, Sapienza University of Rome; beatrice.foroni@uniromal.it, lea.petrella@uniromal.it

^bDepartment of Human Sciences, European University of Rome; luca.merlo@unier.it

Abstract

In this paper we introduce a linear expectile hidden Markov model with the goal of modeling the entire conditional distribution of asset returns and, at the same time, to grasp unobserved serial heterogeneity and rapid volatility jumps typical of financial time series. The temporal evolution of asset returns is captured by introducing time-dependent coefficients evolving according to a latent discrete homogeneous Markov chain. To implement the procedure, we consider the Asymmetric Normal distribution as a working likelihood for the estimation of model parameters and the estimation procedure is carried out using an efficient EM algorithm. The empirical application investigates the relationship between daily Bitcoin returns and major world market indices.

Keywords: Bitcoin, financial time series, hidden Markov models, tail risk

1. Introduction

The recent exploit of the cryptocurrency market have attracted investors and risk managers as never before. The enormous price jumps and levels of high volatility of these digital assets, and Bitcoin in particular, caused by speculative behaviors have threatened the stability of financial markets (19), and research and practitioners have recently started to investigate the peculiar characteristics of cryptocurrencies, as well as their relationship with tradition financial markets. Many contributions to this strand of literature rely on well-known econometric techniques such as GARCH models (9), variance decomposition (6; 21) and Granger causality test (4). Rather than investigating measures of conditional central tendencies, fewer works have focused on the tails of returns distribution. For instance, (15) focused on the tail connectedness among major cryptocurrencies in extreme downward and upward market conditions using LASSO penalized quantile regressions, while (22) apply a risk spillover approach based on generalized quantiles, showing the existence of a downside risk spillover between Bitcoin and traditional assets. From a risk management perspective, it is of extreme importance to be able to investigate the dynamics of extreme occurrences. Since the seminal work of (10), quantile regression has represented one of the most used approaches for modeling the entire distribution of returns while accounting for the well-known stylized facts, i.e., high kurtosis, skewness and serial correlation, that typically characterize financial assets. Since then, several generalizations of the concept of quantiles have been presented, among which we find expectile regression (14), which, similar to quantile regression, allows to describe the entire conditional distribution of a response variable based on an asymmetric squared loss function. Despite having a more difficult interpretation, expectiles possess several advantages, both from an informative and a computational point of view. In particular, the asymmetric squared loss is continuously

differentiable, which makes the estimators and their covariance matrix easier to compute using fast and efficient algorithms. In the context of risk management, expectiles have gained an important role as potential competitors to the Value at Risk (VaR) and the Expected Shortfall measures, and indeed possess several interesting properties in terms of risk measures, being the only risk measure that is both coherent and elicitable (11; 23). However, homogeneous regression models are not able to capture the volatility clustering behavior that often financial time series exhibit. In this context, hidden Markov models (HMMs) have been intensively employed to characterize temporal evolution of returns distribution, modeling volatility regime shifting trough a latent Markov chain. Since (8), different works have combined the quantile framework with HMMs by introducing in the model parameters that vary according to the outcome of a latent Markov process (20; 12; 13). To the best of our knowledge, however, an expectile hidden Markov regression model has not been explored yet. In this paper we introduce an expectile regression model to analyze the entire conditional distribution of Bitcoin returns where the dynamics of returns over time is described by state-specific regression coefficients which follow a latent discrete homogeneous Markov chain. The proposed model contributes to the existing literature regarding the relations between cryptocurrencies and traditional asset class to control for potential inherent risks related to the participation in crypto exchanges. As usual for latent variable models, inference is carried out in a Maximum Likelihood (ML) approach using an Expectation-Maximization (EM) algorithm based on the asymmetric normal distribution of (17) as working likelihood. In the empirical analysis, we model daily Bitcoin log-returns as a function of major stock and global market indices, including Crude Oil, Standard & Poor's 500 (S&P500), Gold COMEX daily closing prices and the Volatility Index (VIX) from September 2014 until October 2022.

The rest of the paper is organized as follows. In Sect. 2. we specify the proposed model with the EM algorithm for estimating the model parameters and the computational aspects. Sect. 3. discusses the results obtained and concludes.

2. Model Specification and Inference

In this section we describe the proposed expectile hidden Markov regression model. Formally, let $\{S_t\}_{t=1}^T$ be a latent, homogeneous, first-order Markov chain defined on the discrete state space $\{1, \ldots, K\}$. Let $\pi_k = Pr(S_1 = k)$ be the initial probability of state $k, k = 1, \ldots, K$, and $\pi_{k|j} = Pr(S_{t+1} = k|S_t = j)$, with $\sum_{k=1}^K \pi_{k|j} = 1$ and $\pi_{k|j} \ge 0$, denote the transition probability between states j and k, that is, the probability to visit state k at time t + 1 from state j at time $t, j, k = 1, \ldots, K$ and $t = 1, \ldots, T$. More concisely, we collect the initial and transition probabilities in the K-dimensional vector π and in the $K \times K$ matrix Π , respectively. To build the proposed model, let Y_t denote a continuous observable response variable and $X_t = (1, X_{t2}, \ldots, X_{tP})'$ be a vector of P exogenous covariates, with the first element being the intercept, at time $t = 1, \ldots, T$.

For a given expectile level $\tau \in (0, 1)$, the proposed linear expectile hidden Markov model is defined as follows:

$$Y_t = \mathbf{X}'_t \boldsymbol{\beta}_k(\tau) + \epsilon_{tk}(\tau), \tag{1}$$

where $\mu_{tk} = \mathbf{X}'_t \boldsymbol{\beta}_k(\tau)$ defines the linear expectile model, $\boldsymbol{\beta}_k(\tau) = (\beta_{1k}(\tau), \dots, \beta_{Pk}(\tau))' \in \mathbb{R}^P$ is the state-specific coefficient vector that assumes one of the values $\{\boldsymbol{\beta}_1(\tau), \dots, \boldsymbol{\beta}_K(\tau)\}$ depending on the outcome of the unobservable Markov chain S_t and $\epsilon_{tk}(\tau)$ is the error term whose conditional τ -th expectile is assumed to be zero. When $\tau = \frac{1}{2}$, expectile regression reduces to the standard mean regression while, when $\tau \neq \frac{1}{2}$, the regression targets the entire conditional distribution of the response given the covariates. The estimation of the model parameters is carried on through a Maximum Likelihood approach. We employ the Asymmetric Normal (AN) distribution, originally introduced by (16), to describe the conditional distribution of the response given covariates and the state occupied by the latent process at time t, whose probability density function is given by

$$f_Y(y_t|\boldsymbol{X}_t = \boldsymbol{x}_t, S_t = k) = \frac{2\sqrt{\tau(1-\tau)}}{\sqrt{\pi\sigma_k^2}(\sqrt{\tau} + \sqrt{1-\tau})} \exp\left[-\omega_\tau\left(\frac{y_t - \mu_{tk}}{\sigma_k}\right)\right],\tag{2}$$

where $\omega_{\tau}(\cdot)$ is the expectile loss function defined as $\omega_{\tau}(u) = u^2 | \tau - \mathbb{I}(u < 0) |$, which assigns weights τ and $1 - \tau$ to positive and negative deviations, respectively, and $\mathbb{I}(\cdot)$ denotes the indicator function. The location parameter μ_{tk} is defined by the linear model $\mu_{tk} = x'_t \beta_k(\tau)$ and corresponds to the τ -th expectile, $\sigma_k > 0$ is a scale parameter and $\tau \in (0, 1)$ determines the asymmetry of the distribution. Particularly, when $\tau = \frac{1}{2}$ the density in eq. (2) reduces to the well-known normal distribution, and μ_{tk} and σ_k coincide with its mean and standard deviation, respectively. The use of this distribution is deemed to be as a likelihood inferential tool for estimating the model parameters in a regression framework rather a parameter is made through the development of an EM algorithm (1). To ease the notation, unless specified otherwise, hereinafter we omit the expectile level τ , yet all model parameters are allowed to depend on it. The complete log-likelihood of the proposed model is defined as follows for a given number of hidden states K:

$$\ell_{c}(\boldsymbol{\theta}_{\tau}) = \sum_{k=1}^{K} \gamma_{1}(k) \log \pi_{k} + \sum_{t=1}^{T} \sum_{k=1}^{K} \sum_{j=1}^{K} \xi_{t}(j,k) \log \pi_{k|j} + \sum_{t=1}^{T} \sum_{k=1}^{K} \gamma_{t}(k) \log f_{Y}(y_{t}|\boldsymbol{x}_{t}, S_{t} = k),$$
(3)

where $\theta_{\tau} = (\beta_1, \dots, \beta_K, \sigma_1, \dots, \sigma_K, \pi, \Pi)$ represents the vector of all model parameters, $\gamma_t(k)$ denotes a dummy variable equal to 1 if the latent process is in state k at occasion t and 0 otherwise, and $\xi_t(j,k)$ is a dummy variable equal to 1 if the process is in state j in t-1 and in state k at time t and 0 otherwise.

To estimate θ_{τ} , the algorithm iterates between the E- and M-steps until convergence, as briefly showed in what follows. In the E-step, at the generic (h + 1)-th iteration, the unobservable indicator variables $\gamma_t(k)$ and $\xi_t(j,k)$ in eq. (3) are replaced by their conditional expectations given the observed data and the current parameter estimates $\theta_{\tau}^{(h)}$. To compute such quantities one can use the Forward-Backward algorithm of (18). Then, we use these to calculate the conditional expectation of the complete log-likelihood function in eq. (3) given the observed data and the current estimates. In particular, in the M-step update of the regression coefficients is obtained by using Iteratively Reweighted Least Squares for cross-sectional data with appropriate weights.

The EM algorithm is initialized by assigning the initial states partition, $\{S_t^{(0)}\}_{t=1}^T$, to a Multinomial distribution with probabilities 1/K. From the generated partition, the elements of $\Pi^{(0)}$ are computed as proportions of transition, while we obtain $\beta_k^{(0)}$ and $\sigma_k^{(0)}$ by fitting mean regressions on the observations within state k. A multiple random starts strategy is adapted to deal with the possibility of multiple roots. Once we computed the ML estimate of the model parameters, to estimate the standard errors we employ a parametric bootstrap scheme, refitting the model to R bootstrap samples and approximating the standard error of each model parameter with the corresponding standard deviation of the bootstrap estimates.

3. Main Results and Conclusions

The empirical analysis is based on the log-returns of Bitcoin, Crude Oil, S&P500, Gold COMEX daily closing prices and the VIX from September 2014 to October 2022. We consider the following model with the idea of providing insights into the temporal evolution of Bitcoin returns and its relationship with traditional global financial assets

$$\mu_{tk}^{Bitcoin} = \beta_{1k}(\tau) + \beta_{2k}(\tau)r_t^{Crude\ Oil} + \beta_{3k}(\tau)r_t^{S\&P500} + \beta_{4k}(\tau)r_t^{Gold} + \beta_{5k}(\tau)r_t^{VIX}, \quad (4)$$

with $\mu_{tk}^{Bitcoin}$ corresponding to the τ -th conditional expectile of Bitcoin return at time t in state k, while $r_t^{Crude \ Oil}$ denotes the return of the same date for Crude Oil, and similarly for the other indices. We fit the proposed model for two values of K, representing high and low volatility market conditions, at three expectile levels $\tau = \{0.10, 0.50, 0.90\}$, which allow us to focus on both downside and upside

risks. For the selected models, we report the clustering results in Figure 1 at $\tau = 0.50$ expectile level. The plot shows the time series of Bitcoin daily returns colored according to the estimated posterior probability of class membership, max $\gamma_t(k)$, with the vertical dashed lines representing globally relevant events such as the Chinese stock market crash in 2015, the cryptocurrencies crash at the beginning of 2018, the COVID-19 market crash in March 2020, Biden's election at the USA presidency in November 2020 and the Russian invasion of Ukraine at the beginning of 2022. Here we clearly see that the latent components can be associated to specific market regimes characterized by low and high volatility periods. Specifically, light-blue points (State 1) tend to identify low returns, while dark-blue ones (State 2) correspond to periods of extreme positive and negative returns. Table 1 shows the parameter estimates along with the standard errors (in brackets) computed by using the parametric bootstrap technique over R = 1000 resamples, as illustrated in Sec. 2. As it happens in the quantile regression framework, the state-specific intercepts are increasing somewhat with τ , with State 1 having lower values than State 2 for all τ 's. Moving forward with the analysis, at $\tau = 0.50$ we observe none or few interactions among Bitcoin and financial assets, during low and high volatility states, respectively. In particular, S&P500 and Gold significantly influence the mean of Bitcoin only in the second state, highlighting a weak hedge behavior of the crypto-asset during tranquil periods and confirming results founded in (2; 5). If we move to the tails of return distributions, in the not-at-risk state (State 1) at the extreme left-tail ($\tau = 0.10$) the S&P500, Gold and the VIX index positively influence Bitcoin returns, while only S&P500 and Gold significantly influence the right-tail ($\tau = 0.90$) expectiles of the cryptocurrency, exposing a connection during high volatility periods between traditional financial markets and Bitcoin both for negative and positive returns. In the at-risk state (State 2) we observe a positive influence of the S&P500 and Gold across the conditional distribution of returns. Also, one can see that Crude Oil is negatively associated with the crypto returns at the 10-th expectile. This finding is in line with (3) but it is contrary to the works of (7) and (6), which may be due to the events and crises occurred in the last years.

In conclusion, we developed a linear expectile hidden Markov model for the analysis of time series where temporal behaviors of the data are captured via time-dependent coefficients following an unobservable discrete homogeneous Markov chain. The proposed method enables us to model the entire conditional distribution of asset returns and, at the same time, to grasp unobserved serial heterogeneity and rapid volatility jumps that would otherwise go undetected. With this model we strengthen the existing literature in this field, contributing towards a deeper understanding of the interrelations between Bitcoin and traditional financial markets.

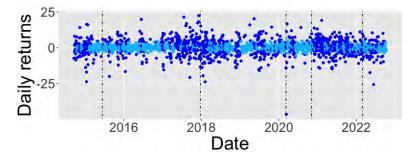


Figure 1: Bitcoin returns series classified according to the estimated posterior probability of class membership at $\tau = 0.50$. Vertical dashed lines indicate globally relevant events in the financial markets that occurred in 2015,06; 2017,12; 2020,03; 2020,11; and 2022,02.

	Intercept	Crude Oil	S&P500	Gold	VIX	σ_k
State 1						
$\tau = 0.10$	-1.036 (0.280)	0.024 (0.021)	0.595 (0.096)	0.189 (0.072)	0.029 (0.012)	1.433 (0.040)
$\tau = 0.50$	0.122 (0.158)	0.031 (0.072)	0.409 (0.383)	0.263 (0.249)	0.009 (0.036)	1.695 (0.062)
$\tau=0.90$	1.297 (0.061)	-0.009 (0.020)	0.589 (0.088)	0.134 (0.065)	0.014 (0.011)	1.335 (0.041)
State 2						
$\tau = 0.10$	-6.52 (0.060)	-0.256 (0.096)	2.072 (0.476)	1.032 (0.320)	-0.055 (0.058)	4.964 (0.157)
$\tau = 0.50$	0.242 (0.092)	-0.056 (0.055)	1.087 (0.357)	0.613 (0.214)	-0.025 (0.026)	6.164 (0.169)
$\tau=0.90$	6.244 (0.229)	0.017 (0.079)	0.948 (0.291)	0.835 (0.249)	-0.002 (0.041)	4.692 (0.128)

Table 1: State-specific parameter estimates for three expectile levels, with bootstrapped standard errors (in brackets) obtained over 1000 replications. Point estimates are displayed in boldface when significant at the standard 5% level.

References

- [1] Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. of Math. Stat. **41**(1), 164–171 (1970)
- [2] Bouri, E., Jalkh, N., Molnár, P., Roubaud, D.: Bitcoin for energy commodities before and after the december 2013 crash: diversifier, hedge or safe haven? Appl. Econ. 49(50), 5063–5073 (2017)
- [3] Bouri, E., Lucey, B., Roubaud, D.: Cryptocurrencies and the downside risk in equity investments. Fin. Res. Lett. 33, 101,211 (2020)
- [4] Bouri, E., Lucey, B., Roubaud, D.: The volatility surprise of leading cryptocurrencies: Transitory and permanent linkages. Fin. Res. Lett. **33**, 101,188 (2020)
- [5] Bouri, E., Molnár, P., Azzi, G., Roubaud, D., Hagfors, L.I.: On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier? Fin. Res. Lett. 20, 192–198 (2017)
- [6] Corbet, S., Meegan, A., Larkin, C., Lucey, B., Yarovaya, L.: Exploring the dynamic relationships between cryptocurrencies and other financial assets. Econ. Lett. **165**, 28–34 (2018)
- [7] Dyhrberg, A.H.: Hedging capabilities of Bitcoin. Is it the virtual gold? Fin. Res. Lett. 16, 139–144 (2016)
- [8] Farcomeni, A.: Quantile regression for longitudinal data based on latent markov subject-specific parameters. Stat. and Comput. 22(1), 141–152 (2012)
- [9] Guesmi, K., Saadi, S., Abid, I., Ftiti, Z.: Portfolio diversification with virtual currency: Evidence from Bitcoin. Int. Rev. of Fin. Anal. 63, 431–437 (2019)
- [10] Koenker, R., Bassett, G.: Regression quantiles. Econ.: J. of the Econ. Soc. 46(1), 33–50 (1978)
- [11] Lambert, N.S., Pennock, D.M., Shoham, Y.: Eliciting properties of probability distributions. In: Proc. of the 9th ACM Conf. on Electron. Commer., pp. 129–138. ACM (2008)
- [12] Maruotti, A., Petrella, L., Sposito, L.: Hidden semi-Markov-switching quantile regression for time series. Comp. Stat. & Data Anal. 159, 107,208 (2021)
- [13] Merlo, L., Maruotti, A., Petrella, L., Punzo, A.: Quantile hidden semi-Markov models for multivariate time series. Stat. and Comp. 32(4), 1–22 (2022)
- [14] Newey, W.K., Powell, J.L.: Asymmetric least squares estimation and testing. Econometrica: Journal of the Econometric Society pp. 819–847 (1987)
- [15] Shahzad, S.J.H., Bouri, E., Ahmad, T., Naeem, M.A.: Extreme tail network analysis of cryptocurrencies and trading strategies. Fin. Res. Lett. 44, 102,106 (2022)
- [16] Waldmann, E., Sobotka, F., Kneib, T.: Bayesian geoadditive expectile regression. arXiv preprint arXiv:1312.5054 (2013)
- [17] Waldmann, E., Sobotka, F., Kneib, T.: Bayesian regularisation in geoadditive expectile regression. Stat. and Comp. 27(6), 1539–1553 (2017)
- [18] Welch, L.R.: Hidden Markov models and the Baum-Welch algorithm. IEEE Inf. Theory Soc. Newsl. 53(4), 10–13 (2003)
- [19] Yarovaya, L., Brzeszczyński, J., Lau, C.K.M.: Intra-and inter-regional return and volatility spillovers across emerging and developed markets: Evidence from stock indices and stock index

futures. Intern. Rev. of Fin. Anal. 43, 96–114 (2016)

- [20] Ye, W., Zhu, Y., Wu, Y., Miao, B.: Markov regime-switching quantile regression models and financial contagion detection. Insur.: Math. and Econ. **67**, 21–26 (2016)
- [21] Yi, S., Xu, Z., Wang, G.J.: Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency? Intern. Rev. of Fin. Anal. 60, 98–114 (2018)
- [22] Zhang, Y.J., Bouri, E., Gupta, R., Ma, S.J.: Risk spillover between bitcoin and conventional financial markets: An expectile-based approach. The N. Am. J. of Econ. and Fin. 55, 101,296 (2021)
- [23] Ziegel, J.F.: Coherence and elicitability. Math. Fin. 26(4), 901–918 (2016)