A general expression for the strain energy of a homogeneous, isotropic, plane extensible elastica with an arbitrary undeformed configuration is derived. This expression appears to be suitable for one-dimensional models of polymers or vesicles, the natural configuration of which is characterized by locally changing curvature. In a linear setting, we derive the macroscopic stress–strain relations, providing an universal criterion for the neutral curve location. In this respect, we further demonstrate that the neutral curve existence constitutes the fundamental requirement for the conformational dynamics of any inextensbile biological filament.
General theory for plane extensible elastica with arbitrary undeformed shape / Taloni, Alessandro; Vilone, Daniele; Ruta, Giuseppe. - In: INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE. - ISSN 0020-7225. - 193:(2023). [10.1016/j.ijengsci.2023.103941]
General theory for plane extensible elastica with arbitrary undeformed shape
Giuseppe RutaUltimo
Writing – Review & Editing
2023
Abstract
A general expression for the strain energy of a homogeneous, isotropic, plane extensible elastica with an arbitrary undeformed configuration is derived. This expression appears to be suitable for one-dimensional models of polymers or vesicles, the natural configuration of which is characterized by locally changing curvature. In a linear setting, we derive the macroscopic stress–strain relations, providing an universal criterion for the neutral curve location. In this respect, we further demonstrate that the neutral curve existence constitutes the fundamental requirement for the conformational dynamics of any inextensbile biological filament.File | Dimensione | Formato | |
---|---|---|---|
Taloni_General_2023.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
959.53 kB
Formato
Adobe PDF
|
959.53 kB | Adobe PDF | |
Taloni_General_2023_preprint.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Creative commons
Dimensione
717.36 kB
Formato
Adobe PDF
|
717.36 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.