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A B S T R A C T

A general expression for the strain energy of a homogeneous, isotropic, plane extensible elastica
with an arbitrary undeformed configuration is derived. This expression appears to be suitable
for one-dimensional models of polymers or vesicles, the natural configuration of which is
characterized by locally changing curvature. In a linear setting, we derive the macroscopic
stress–strain relations, providing an universal criterion for the neutral curve location. In this
respect, we further demonstrate that the neutral curve existence constitutes the fundamental
requirement for the conformational dynamics of any inextensbile biological filament.

. Introduction

The old theories of flexure were based on the assumption that the strain of rod-like elastica consists of extension and contraction
f an arrangement of longitudinal filaments, oftenly dubbed fibers (Bernoulli, 1691; Euler, 1771, 1960). In this context, the reduction
f the elastica problem to that of a one-dimensional line, in a state of plane strain (Michell, 1901), was naturally taken as the
ompelling point of view. By instance, Lagrange considers the three-dimensional elastica as a fil flexible et en même temps extensible
t contractible (Lagrange, 1853). Yet, in Kirchoff’s theory the three-dimensional deformation of a slender elastic rod is reduced to the
ending deformation of a one-dimensional curve (Kirchhoff, 1859). Moreover, the theory of the bending and twisting of thin rods
nd wires was for a long time developed independently of the general three-dimensional equations of elasticity, by one-dimensional
ethods akin to those employed by Bernoulli and Euler (Love, 2013). However, the problem of which, among the fibers composing

he elastica, was eligible to be taken as the representative curve, remained unsettled till the profound works of Parent and Coulomb.
lready in 1695, Jacob Bernoulli had argued that the bending moment had to be taken, at each cross-section, with respect to the
oint where it intersects the line of fulcra, i.e. the line which does not suffer any extension nor contraction all along the deformation:
he neutral fiber. If the tensions vary linearly over the rod rigid cross-section, the neutral line coincides with its central line. Although
his fact was already known by Beeckman, Hooke, Huygens, Varignon and Mariotte (Euler, 1960; Timoshenko, 1983), it was only
n 1713 that these observations took the mathematical form of the Parent criterion (Parent, 1713).

The issue of the existence and ensuing location of the neutral fiber, avoiding any specific elastic hypothesis about the law of
ariation of the tensions over the cross-section, remains today unjustly unattended by modern scientists. Indeed, what was considered
s the elastic problem for a hundred of years has been regarded with condescension by later historians. Mostly because it is wrongly
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assumed that later works on three-dimensional elasticity somehow fixed it. However, in modern theories of bending, such as Saint
Venant’s, the existence of the neutral line is implicitly postulated ad hoc, not proved (Euler, 1960; Truesdell, 1984). In this paper,
our purpose is to tackle a problem of a more limited reach: assuming Hooke’s law, we wish to establish a criterion for the existence
and placement of a neutral curve starting from a generic, non-straight, configuration of the elastica, contrary to the usual theory of
slender beams.

The problem of spontaneously curved bands was already known to Jacob Bernoulli, as testified by a posthumous fragment
published in 1744 (Truesdell, 1984). In the same year, Euler’s treatise on elastic curves also appeared: there, the law of an elastica
endowed with an initial non-zero curvature was asserted (Euler, 1960). A systematic theory of rods with curved undeformed
configuration is substantially due to Clebsch (1862), although already outlined by Kirchhoff (1859), to whom the notion of
‘‘unstressed state’’ must probably be acknowledged. Only in Timoshenko’s theory of curved beams (Timoshenko, 1955), however, it is
shown that the neutral fiber does not correspond to the line of centroids. Surprisingly, in the 20th century the problem of the elastica
whose undeformed shapes are circular arcs or rings, in particular, has been taken up by several authors (Antman, 1968; Atanackovic,
1998; Chaskalovic & Naili, 1995; Fu & Waas, 1995; Kämmel, 1967; Katifori, Alben, & Nelson, 2009; Kosel, 1984; Lagrange, Jiménez,
Terwagne, Brojan, & Reis, 2016; Schmidt, 1996; Schmidt et al., 1979; Troger & Steindl, 2012; Vakakis & Atanackovic, 1999),
seemingly neglecting Timoshenko’s work. As a matter of fact, when the one-dimensional representation of a naturally skewed elastica
is provided, usually this corresponds to the line of centroids (Antman, 1968; Atanackovic, 1998); this is assumed, sometimes tacitly,
to be the neutral fiber, which can be extensible Antman (1968), Atanackovic (1998), Kämmel (1967), Lagrange et al. (2016),
Magnusson, Ristinmaa, and Ljung (2001), Oshri and Diamant (2016), Tadjbakhsh (1966), or inextensible Chaskalovic and Naili
(1995), Fu and Waas (1995), Katifori et al. (2009), Kosel (1984), Schmidt (1996), Schmidt et al. (1979), Troger and Steindl (2012),
Vakakis and Atanackovic (1999).

In this paper we consider the deformation of an elastica with a spontaneous non-uniform curvature, thus generalizing the theory
of curved beams. Our work is motivated by the fact that natural biological filaments cannot be considered straight in their native
state, nor endowed with a uniform curvature. To the contrary, biological materials develop into a variety of complex shapes, which
can sense and respond to local curvature. This field of mechanobiology (Schoen, Pruitt, & Vogel, 2013) poses fundamental questions
about the function of geometry, especially on the role that the local curvature plays in biological systems (Schamberger et al., 2022).
In particular, the curvature appears as a determining factor in important biological functional tasks executed by many bio-polymers
inside the cell (Bausch & Kroy, 2006; Brangwynne, Koenderink, MacKintosh, & Weitz, 2008; Ghosh & Gov, 2014; Harada, Noguchi,
Kishino, & Yanagida, 1987; Schaller et al., 2010), as well as in the design of next-generation genomics technologies (Dorfman, 2018).

On top of that, none of the three major classes of cytoskeletal filaments, microtubules, actin filaments, and intermediate filaments,
can be considered homogeneous nor isotropic, as each is formed from chains of discrete protein monomers (Alberts, 2017). At
the typical level of description in usual molecular mechanics models, however, they are often treated as traditional engineering
elements (Howard & Clark, 2002): they are considered plane elastica, the mechanical behavior of which is entirely dictated by
Bernoulli–Euler’s theory. Our model does not deviate from this conceptual framework; however, our construction can be easily
generalized to realistically account for non-homogeneous filaments with varying geometrical and mechanical properties.

Our starting point is the derivation of the strain energy associated to any three-dimensional elastica deformation, as the energy
cost of a shape fluctuation is the significant starting concept of any dynamical model in polymer physics (Doi, Edwards, & Edwards,
1988; Rubinstein et al., 2003). The one-dimensional representation of the elastica arises as the natural context for the strain energy
formulation (Section 2). The macroscopic constitutive relations are obtained from the strain energy function (Section 3), and in
Section 4 we demonstrate that the strain energy minimization with respect to a suitable choice of a reference frame furnishes the
criterion for locating the neutral curve. We conclude the paper in Section 5, discussing the implication of our findings in terms of
polymer dynamics and statistics, providing the evidence that the developed framework yields the correct generalization of flexible
and semiflexible polymers models, and of simplified one-dimensional models of fluctuating vesicles. We discuss the relevance that
the old-fashioned concept of neutral fiber acquires in modern polymer physics. We show, indeed, that a renovated interest around it
is motivated by the fact that its existence is provided by the minimum energy principle at the base of any polymer conformational
change. We discuss the correct and convenient way of implementing our model in computer simulations and, finally, the relevance
of our model in describing real biological non-homogeneous filaments.

2. The model

We consider the deformation of an homogeneous plane extensible elastica (Antman, 1968), i.e., a prismatic hyperelastic three-
dimensional body with rectangular sections having ’thin’ sides (height ℎ and depth 𝑏) and generic length, subject to the only
restriction that its deformations take place in a plane, thus excluding twisting. According to the Cosserat’s theories (Cosserat &
Cosserat, 1909; Green, Naghdi, & Wenner, 1974a, 1974b; Naghdi & Rubin, 1984; Rubin, 2000), any elastic deformation stems
from a natural body configuration or state, defined as the shape corresponding to the unstressed condition (Love, 2013). The work
performed in passing from the natural to the deformed state is the strain or stored energy, which is the pivotal concept in our model.

We propose to compute the strain energy using a finite difference scheme, as displayed in Fig. 1. The undeformed body is
schematically subdivided in 𝑁 elementary blocks of arbitrary volumes 𝛥𝑉 (𝑖) (𝑖 = [1, 𝑁]) (Fig. 1A). To each elementary volume a
local reference system is assigned, where the 𝜉 and 𝜂𝛼 axes define the block’s longitudinal and transverse directions, respectively,
and the origin is arbitrarily placed at an height 𝛼ℎ (0 ≤ 𝛼 ≤ 1) from the block’s bottom surface, see Fig. 1A, and at the left side of
the block as shown in figure. We now introduce a reference segment of length 𝛥𝐿(𝑖)

𝛼 , equivalent to the longitudinal dimension of the
2

plane 𝜂𝛼 = 0 (Fig. 1A). Assuming the cross-sections to remain rigid, the body deformation necessarily involves the deformation of
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Fig. 1. Derivation of the strain energy. A: The elementary block with its local reference frame 𝜉-0-𝜂𝛼 , having the origin placed at an height 𝛼ℎ from the bottom
surface (𝛼 ∈ [0, 1]). A reference fiber (𝜂𝛼 = 0) is characterized by its length 𝛥𝐿𝛼 (dotted black line) and by 𝑅𝛼 , with the corresponding spontaneous curvature
𝐾𝛼 = 1

|𝑅𝛼 |
. 𝑅𝛼 is the distance of the origin of the local reference frame from the intersection between the extended sides of the block, with a positive sign if its

orientation is concordant with that of 𝜂𝛼 ; it becomes the curvature radius in the continuum limit. A′: The block undergoes a deformation to a new shape (dark
blue), while the original configuration is in light blue. Shape change entails 𝑅𝛼 → 𝑟𝛼 . Any fiber of the block endures a deformation represented by the fiber
displacement 𝑢(𝜂𝛼 ) = 𝛥𝑙(𝜂𝛼 ) − 𝛥𝐿(𝜂𝛼 ) (green arrows). B: The undeformed elastica is displayed as a sequence of elementary blocks, each with its own shape. The
sequence of the reference segments is shown as a dotted black polygonal 𝐿𝛼 , while the orientation, or cross-sectional bending angle 𝛷(𝑖) of each block is in red.
The green dashed lines correspond to the 𝛼(𝑖)

𝑈 fibers. Conventionally, the construction assumes that the left section of each block remains straight-angled, so that
the orientation angles are defined at the left side of each block. B′: The deformation of the elastica involves the deformation of the reference polygonal chain,
𝐿𝛼 → 𝑙𝛼 (dotted black line). The orientation varies from 𝛷(𝑖) to 𝜑(𝑖). C: In the continuum limit, the material reference curve is represented by a solid black curve.
The tangent to this curve, 𝐓𝛼 (𝑠), forms with the 𝑥-axis the spontaneous bending angle 𝛷(𝑠). C′: The deformed material curve (solid black line) stems from its
undeformed configuration (dotted black line). The black arrow represents the new tangent 𝐭𝛼 (𝑠), while its corresponding bending angle 𝜑(𝑠) is in red.

each block, passing from the volume 𝛥𝑉 (𝑖) to 𝛥𝑣(𝑖). At the same time, the reference segment 𝛥𝐿(𝑖)
𝛼 transforms into 𝛥𝑙(𝑖)𝛼 . As in usual

theories of elastic flexure, we assume that the stress is determined by the strain Truesdell and Noll (2004), and the strain consists
of the displacements of independent longitudinal filaments 𝑢(𝑖)(𝜂𝛼) = 𝛥𝑙(𝑖)(𝜂𝛼) − 𝛥𝐿(𝑖)(𝜂𝛼). Embracing the microscopical validity of
Hooke’s law, we sum, à la Leibniz, over the contributions of the fibers upon the entire cross section. Thus, the elementary block’s
strain energy can be written as

𝛥𝐸(𝑖)
𝛼 = 𝑏𝑌

2 ∫

(1−𝛼)ℎ

−𝛼ℎ

[

𝑢(𝑖)(𝜂𝛼)
𝛥𝐿(𝑖)(𝜂𝛼)

]2

𝛥𝐿(𝑖)(𝜂𝛼) 𝑑𝜂𝛼 , (1)

where 𝑌 is a parameter which has the dimensions of a stress and depends on the material properties. Therefore the strain energy (1)
represents the work performed in deforming the elementary block from the unstressed configuration reported in Fig. 1A, to that
in Fig. 1A′. However, in continuity with usual theories, the strain energy (1) is associated to the deformation of the representative
material segment. Nevertheless, 𝛥𝐸(𝑖)

𝛼 is a scalar quantity and, as such, must be invariant under a change of the local reference
frame, i.e., a change of the material representative segment. As a matter of fact, by applying the transformation 𝜂𝛼 = 𝜂𝛽 − (𝛼 − 𝛽)ℎ,
the property 𝛥𝐸(𝑖)

𝛼 = 𝛥𝐸(𝑖)
𝛽 is always satisfied, as it is demonstrated in the Supplementary Informations (SI). The analytical derivation

of the energy (1) is fully developed in SI. We hereby report the final expression:

𝛥𝐸(𝑖) = 𝑌 𝛥𝐿(𝑖)
{

𝐹 (𝑖) 𝜀(𝑖)2 + 2𝑆(𝑖) 𝜀(𝑖)𝜇(𝑖) + 𝐼 (𝑖) 𝜇(𝑖)2
}

, (2)
3

𝛼 2 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼 𝛼
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where we have introduced the axial strain

𝜀(𝑖)𝛼 =
𝛥𝑙(𝑖)𝛼 − 𝛥𝐿(𝑖)

𝛼

𝛥𝐿(𝑖)
𝛼

(3)

and the bending measure (Antman, 1968)

𝜇(𝑖)
𝛼 = 1

𝛥𝐿(𝑖)
𝛼

(

𝛥𝑙(𝑖)𝛼
𝑟(𝑖)𝛼

−
𝛥𝐿(𝑖)

𝛼

𝑅(𝑖)
𝛼

)

. (4)

The quantities 𝑅(𝑖)
𝛼 and 𝑟(𝑖)𝛼 are the radii connecting the intersection point between the extensions of the block limiting sections, with

he origin of the block’s local reference system: they have a sign corresponding to their orientation, as shown in the SI (see Fig. 1A,A′

or the details). In the following we will show how, in the continuum limit, they correspond to the local radii of curvature of the
ndeformed and deformed configurations, respectively. For simplicity, from now on we will refer to such quantities as curvature
adii also in the discrete case. Likewise, we will define the block spontaneous curvature as 𝐾 (𝑖)

𝛼 = 1
|

|

|

𝑅(𝑖)
𝛼
|

|

|

, while 𝑘(𝑖)𝛼 = 1
|

|

|

𝑟(𝑖)𝛼
|

|

|

.

Most importantly, according to Timoshenko’s curved beam theory (Timoshenko, 1955), 𝐹 (𝑖)
𝛼 represents the reduced area, 𝐼 (𝑖)𝛼 the

reduced moment of inertia and 𝑆(𝑖)
𝛼 the reduced axial-bending coupling moment. They have a simple integral expression furnished

n SI, corresponding to the formula obtained by Kämmel in the theory of a ring allowing axial compressibility and subjected
o hydrostatic pressure (Kämmel, 1967), and subsequently used in the analysis of compressible rings (Atanackovic, 1998). Our
erivation, however, sheds light on a fundamental aspect that remained seemingly unnoticed in the past analysis: that is, 𝐹 (𝑖)

𝛼 , 𝑆(𝑖)
𝛼

nd 𝐼 (𝑖)𝛼 take different forms according to whether the intersection between the sidelines containing the block’s sections lies above
r below the elementary volume, i.e., they depend on the direction of 𝑅(𝑖)

𝛼 (see SI). This dependence is compactly expressed as

𝐹 (𝑖)
𝛼 = 𝑏

𝐾 (𝑖)
𝛼

ln
(

1 + ℎ max[𝐾 (𝑖)
0 , 𝐾 (𝑖)

1 ]
)

, (5)

𝑆(𝑖)
𝛼 =

sgn
(

𝐾 (𝑖)
0 −𝐾 (𝑖)

1

)

𝐾 (𝑖)
𝛼

[

𝑏ℎ − 𝐹 (𝑖)
𝛼
]

, (6)

𝐼 (𝑖)𝛼 =
sgn

(

𝐾 (𝑖)
0 −𝐾 (𝑖)

1

)

𝐾 (𝑖)
𝛼

[

𝑏
( 1
2
− 𝛼

)

ℎ2 − 𝑆(𝑖)
𝛼

]

. (7)

f the center of the intersection point is placed below the block’s bottom line (𝛼 = 0), hence 𝐾 (𝑖)
0 > 𝐾 (𝑖)

1 and the function
gn

(

𝐾 (𝑖)
0 −𝐾 (𝑖)

1

)

= 1. In the opposite case, the curvature of the upper fiber 𝛼 = 1 is such that 𝐾 (𝑖)
1 > 𝐾 (𝑖)

0 , and sgn
(

𝐾 (𝑖)
0 −𝐾 (𝑖)

1

)

= −1.
By inspection of the expression (6), there exists one value of 𝛼 for which stretching and bending term are decoupled, i.e. 𝑆(𝑖)

𝛼 = 0.
This value corresponds to

𝛼𝑈 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
ln(1+ℎ𝐾0)

− 1
ℎ𝐾0

𝐾0 > 𝐾1

1 −
[

1
ln(1+ℎ𝐾1)

− 1
ℎ𝐾1

]

𝐾1 > 𝐾0 ,

(8)

with 𝑆𝛼 > 0 for 𝛼 < 𝛼𝑈 , and 𝑆𝛼 < 0 for 𝛼 > 𝛼𝑈 . Moreover, it is worth to notice that it results

lim
𝐾0∕1→0+

𝛼𝑈 = 1
2
.

his means that the fiber allowing the axial-bending uncoupling coincides with the line of centroids in the case of flat undeformed
onfiguration, recovering the classical beam theories result, as shown in the SI.

Formally, the full body strain energy is the sum of the elementary blocks strain energy, i.e. 𝐸𝛼 =
∑𝑁

𝑖=1 𝛥𝐸
(𝑖)
𝛼 . In our finite difference

scheme, the ordered sequence of consecutive 𝛥𝐿(𝑖)
𝛼 constitutes the representative undeformed material polygonal chain 𝐿𝛼 in Fig. 1B.

Correspondingly, the ordered sequence of consecutive 𝛥𝑙(𝑖)𝛼 composes the representative deformed material polygonal chain 𝑙𝛼 in
Fig. 1B′. Now, adopting as unique reference system the laboratory frame as in Fig. 1B,B′, the strain energy 𝐸𝛼 is expressible in
terms of the axial strain (3), and of the bending measure 𝜇(𝑖)

𝛼 , which assumes an alternative but equivalent expression to that in (4)
(Antman, 1968; Atanackovic, 1998; Greenberg, 1967; Kämmel, 1967):

𝜇(𝑖)
𝛼 =

𝛥𝛷(𝑖) − 𝛥𝜑(𝑖)

𝛥𝐿(𝑖)
𝛼

, (9)

where 𝛷(𝑖) (𝜑(𝑖)) is the (𝑖)-th cross-sectional orientation angle with respect the 𝑥–axis in the undeformed (deformed) configuration
(see Fig. 1B and 1B′). Hence

𝐸𝛼 = 𝑌
𝑁
∑

𝛥𝐿(𝑖)
𝛼

{

𝐹 (𝑖)
𝛼 𝜀(𝑖)𝛼

2 + 2𝑆(𝑖)
𝛼 𝜀(𝑖)𝛼 𝜇(𝑖)

𝛼 + 𝐼 (𝑖)𝛼 𝜇(𝑖)
𝛼

2} . (10)
4

2 𝑖=1
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In our finite difference scheme, the blocks are assumed to be independent. Thus, nothing prevents us from assigning to each block
a different local reference frame, i.e., a different 𝛼. As a matter of fact, thanks to the property of invariance of 𝛥𝐸(𝑖)

𝛼 under a change
f local reference frame, the total energy 𝐸𝛼 is also invariant. We will revisit this important consideration in Section 4 when we
iscuss the existence of the neutral curve.

The continuum limit is taken by increasing 𝑁 up to the point that the poligonal chain 𝐿𝛼 (𝑙𝛼) tends to a finite curve, namely
he reference curve, or representative fiber ℒ𝛼 (𝓁𝛼) (Fig. 1C, 1C′). According to the older theories of flexure, a material fiber
an be envisaged as a translation of one of the outermost curves (𝛼 = 0 or 𝛼 = 1) along the orthogonal cross sections of the
ody. The Cartesian components of the material line, or fiber, in the laboratory frame are expressed as 𝐋α(𝑠)

(

𝑋𝛼(𝑠), 𝑌𝛼(𝑠)
)

and
α(𝑠)

(

𝑥𝛼(𝑠), 𝑦𝛼(𝑠)
)

, respectively, where 𝑠 is the same internal parameter for both the undeformed reference fiber ℒ𝛼 ∶ [𝑠𝑚, 𝑠𝑀 ] → R2

nd deformed one 𝓁𝛼 ∶ [𝑠𝑚, 𝑠𝑀 ] → R2. By introducing the tangents 𝐓α = 𝑑𝐋α
𝑑𝑠 and 𝐭α = 𝑑𝐥α

𝑑𝑠 to ℒ𝛼 and 𝓁𝛼 , the continuum limit of
he elastica strain energy is

ℰ𝛼 = 𝑌
2 ∫

𝑠𝑀

𝑠𝑚
𝑑𝑠

{

𝐹𝛼(𝑠)
|

|

𝐓α(𝑠)||

[

|

|

𝐭α(𝑠)|| − |

|

𝐓α(𝑠)||
]2 +

−
2𝑆𝛼(𝑠)
|

|

𝐓α(𝑠)||

[

|

|

𝐭α(𝑠)|| − |

|

𝐓α(𝑠)||
] [

𝜑′(𝑠) −𝛷′(𝑠)
]

+
𝐼𝛼(𝑠)
|

|

𝐓α(𝑠)||

[

𝜑′(𝑠) −𝛷′(𝑠)
]2
}

, (11)

where (⋅)′ denotes the derivative with respect to 𝑠. The expression (11) constitutes one of the main results of our analysis, extending
Timoshenko’s linear theory of curved beams to the case of an elastica with generic undeformed condition, identified by varying
local spontaneous curvature 𝐾(𝑠) = |

|

𝛷′(𝑠)|
|

. In the SI the differential form of the quantities in (5), (6) and (7) are furnished. In
particular, it is worth noticing how the condition for the axial-bending uncoupling (8) must be valid locally in the continuum limit,
i.e. 𝑆𝛼(𝑠) = 0. This can be achieved only if 𝛼𝑈 in (8) changes with 𝑠 according to

𝛼𝑈 (𝑠) =
|

|

𝐓0(𝑠)||
ℎ𝛷′(𝑠)

−
|

|

𝛷′(𝑠)|
|

𝛷′(𝑠)
1

ln
(

1 + ℎ |𝛷′(𝑠)|
min[|𝐓0(𝑠)|,|𝐓1(𝑠)|]

) . (12)

The classical case of a thin slender rod, beam or bar (Euler, 1960), is also derived in the SI for the sake of completeness. It is shown
how this constitutes the zero curvature limit of the general model represented by the energy expression (11).

3. Macroscopic constitutive relations

We now derive the macroscopic stress–strain relations for the elastica, given a generic undeformed configuration. Our starting
point is the strain energy density, defined as 𝑊𝛼 = 𝛥𝐸𝛼

𝛥𝐿𝛼
. Therefore, when the undeformed state has a constant curvature throughout

the whole elastica, from Eq. (2) it turns out that for a generic choice of the representative fiber

𝑊𝛼 = 𝑌
2
{

𝐹𝛼 𝜀𝛼
2 + 2𝑆𝛼 𝜀𝛼𝜇𝛼 + 𝐼𝛼 𝜇𝛼

2} . (13)

he macroscopic constitutive equations can be drawn from (13), according to the derivation furnished in Antman (1968), which
mploys the definition of the elastica as a three-dimensional body, or to an alternative variational approach in which the elastica
s treated as a one-dimensional medium (Tadjbakhsh, 1966):

⎧

⎪

⎨

⎪

⎩

𝑁𝛼 = 𝜕𝑊𝛼
𝜕𝜀𝛼

= 𝑌
(

𝐹𝛼𝜀𝛼 + 𝑆𝛼𝜇𝛼
)

𝑀𝛼 = 𝜕𝑊𝛼
𝜕𝜇𝛼

= 𝑌
(

𝑆𝛼𝜀𝛼 + 𝐼𝛼𝜇𝛼
)

.

(14)

𝑁𝛼 and 𝑀𝛼 are the elastica axial force and bending moment respectively, where the one-dimensional representation of the elastica
coincides with a generic fiber 𝛼. We recall that the bending measure enjoys two analogue definitions, Eqs. (4) and (9). From Eqs.(14),
it is immediately verified that linear decoupled relations only hold for the choice of the material fiber allowing for the axial-bending
uncoupling of the strain energy (2), namely 𝛼 = 𝛼𝑈 in Eq. (8). The same condition is valid in the classical case of flat initial
configuration, as it is shown in SI.

It is instructive to see how the constitutive relations transform under change of reference line, i.e. when shifting from the fiber
𝛼 to 𝛽. To this end, we firstly need to express how the strain and the bending measure are modified if the material line changes:

𝜀𝛼 =
𝛥𝐿𝛽

𝛥𝐿𝛼

[

𝜀𝛽 + ℎ(𝛼 − 𝛽)𝜇𝛽
]

, (15)

nd

𝜇𝛼 =
𝛥𝐿𝛽

𝛥𝐿𝛼
𝜇𝛽 . (16)

Therefore, plugging these relations into (14), it turns out that

⎧

⎪

⎨

⎪

𝑁𝛼 = 𝑁𝛽

(17)
5

⎩

𝑀𝛼 = 𝑀𝛽 + ℎ(𝛽 − 𝛼)𝑁𝛽 .
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The former transformations appear to be universal, in the sense that they are valid in the case of slender bars as well, as shown
in SI. Importantly, while the axial force is invariant under change of representative fiber, the bending moment gains an axial force
contribution which accounts for the different curvatures of the fibers 𝛼 and 𝛽. Moreover, when 𝑁𝛼 = 0, the bending moment
is invariant under changes of representative fiber: 𝑀𝛼 = 𝑀𝛽 . Physically this corresponds to the fact that, for a pure bending
transformation, the bending moment cannot depend on the fiber chosen as representative. For any other transformation for which
𝑁𝛼 ≠ 0, the bending moment will depend on the fiber on which it is computed, and the axial force contribution has to be summed
up to the total moment of the forces.

When the curvature is locally changing within the elastica, the continuum version of the strain energy density (13) is

𝒲𝛼(𝑠) =
𝑌

2 |
|

𝐓α(𝑠)||
2

{

𝐹𝛼(𝑠)
[

|

|

𝐭α(𝑠)|| − |

|

𝐓α(𝑠)||
]2 +

− 2𝑆𝛼(𝑠)
[

|

|

𝐭α(𝑠)|| − |

|

𝐓α(𝑠)||
] [

𝜑′(𝑠) −𝛷′(𝑠)
]

+ 𝐼𝛼(𝑠)
[

𝜑′(𝑠) −𝛷′(𝑠)
]2
}

, (18)

from which the constitutive equations in a local form can be defined as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑁𝛼(𝑠) =
𝜕𝒲𝛼 (𝑠)
𝜕|𝐭α(𝑠)|

= 𝑌

|𝐓α(𝑠)|
2

{

𝐹𝛼(𝑠)
[

|

|

𝐭α(𝑠)|| − |

|

𝐓α(𝑠)||
]

− 𝑆𝛼(𝑠)
[

𝜑′(𝑠) −𝛷′(𝑠)
]}

𝑀𝛼(𝑠) =
𝜕𝒲𝛼 (𝑠)
𝜕𝜑′(𝑠) = 𝑌

|𝐓α(𝑠)|
2

{

−𝑆𝛼(𝑠)
[

|

|

𝐭α(𝑠)|| − |

|

𝐓α(𝑠)||
]

+ 𝐼𝛼(𝑠)
[

𝜑′(𝑠) −𝛷′(𝑠)
]}

.

(19)

nce again, the value of 𝛼 needs to be varied throughout the elastica according to the law (12), for the stress–strain relationships (19)
o be locally decoupled.

. Neutral fiber location

The neutral fiber is the locus of points which does not undergo any longitudinal extension nor contraction during the elastica
eformation (Love, 2013). If there is one, this does not necessarily coincide with the line of centroids (Love, 2013) and its existence
epends entirely on the transformation put in use.

After Jacob Bernoulli’s first erroneous attempt of establishing a general principle for the neutral fiber placement, based on
he balance of bending moments between elongated and compressed fibers, the correct condition was enunciated by Parent in
713 (Parent, 1713) and rediscovered by Coulomb 60 years later (Coulomb, 1773): the neutral fiber is the locus of points separating the
egion of extension from that of compression, such that the longitudinal forces are balanced. This criterion, however, is easy to implement
n case of Hookean dependence of the tension over the cross-section, but is hard to be assessed for a generic (non-linear) stress–strain
elation, as precisely sought by Jacob Bernoulli.

Let us see how Parent’s principle applies to the case under investigation. We start by considering an elastica with uniform
pontaneous curvature, a situation encompassing the cases of a slender bar, a circular arc or an hyperbola. The requirement of the
ongitudinal forces balance corresponds to 𝑁𝛼 = 0. However, this constitutes just the necessary condition for the existence of the
eutral line. As a matter of fact, it does not furnish a precise answer about its placement because, in view of the first of Eq. (17),
t does not depend on the specific choice of the representative fiber. However, among all the representative fibers, for rigid cross
ections, only one satisfies the zero strain condition 𝜀𝛼 = 0, i.e., the value of 𝛼𝑈 in (8). Therefore, as a general principle, we can
onclude that the neutral fiber, when it exists, corresponds to the representative line which ensures the axial-bending uncoupling of
he strain energy. This is an universal property, valid for both flat and non-flat initial configurations. Moreover, it appears that for
ny transformation guaranteeing the existence of the neutral fiber, the bending moment is independent of the representative fiber
hoice, as implied by Eqs. (17).

We now investigate how the neutral fiber is identified when the curvature is not uniform throughout the elastica in the
ndeformed configuration. This is achieved by using the macroscopic constitutive relations in the local formulation (19). The
ondition implied by Parent’s principle requires 𝑁𝛼(𝑠) = 0 ∀𝑠, accompanied by the zero strain condition |

|

𝐭α(𝑠)|| = |

|

𝐓α(𝑠)||. While
n the case of elastica endowed with uniform spontaneous curvature the neutral fiber is identified with a material line, or fiber,
orresponding to a constant 𝛼, the situation is totally different for a generic undeformed configuration. As a matter of fact, in this
ase one cannot properly talk about neutral fiber, in the sense that the curve guaranteeing 𝑁𝛼(𝑠) = 0 together with the zero local
train conditions, does not overlap with one of the elastica material fibers. Rather, the concept of neutral fiber is replaced by that
f neutral curve, defined as the locus of points identified by the value of 𝛼𝑈 (𝑠) in Eq. (12). A typical situation is that depicted in
ig. 2C, where the initial curvature is a function of the internal parameter 𝑠, 𝐾𝛼(𝑠), and the neutral curve is shown as a black dotted
ine, jiggling around the line of centroids (dashed red line), and approaching the side of the elastica with maximum value of the
atural curvature. Notably, while any representative fiber is always orthogonal to the cross-section, the neutral curve is not, in
eneral.

Therefore, if the elastica transformation provides the existence of a neutral curve, it is possible to adopt a neutral arc-length
arametrization such that ||

|

𝐓𝛼𝑈 (𝑠)
|

|

|

= 1. Adopting this parametrization, the energy assumes the following simple form (see SI)

ℰ𝛼𝑈 = − 𝑏𝑌 ℎ2 𝑠𝑀
𝑑𝑠

[ 1 − 𝛼𝑈 (𝑠)
]

[

𝜑′(𝑠) −𝛷′(𝑠)
]2

′ . (20)
6

2 ∫𝑠𝑚 2 𝛷 (𝑠)
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Fig. 2. Neutral fiber location. A: The undeformed condition coincides with a straight bar of length 𝐿. The line of centroids (𝛼 = 1∕2) is depicted as a dotted
black fiber: taking this as the representative one-dimensional medium would give the axial-bending uncoupling (see SI). A′: The beam in panel A is bent into a
ring. If the line of centroids retains its length, it coincides with the neutral fiber and the axial forces are balanced (𝑁𝛼 = 0, ∀𝛼). Among all possible deformations
which transform a beam into a circle, the one allowing the existence of the neutral line costs the minimum amount of work. B: The undeformed condition is
a circle. The line of centroids (𝛼 = 1∕2) is depicted as a dashed red circle, while the material fiber granting the axial-bending uncoupling, defined by 𝛼𝑈 in
Eq. (8), is shown as a dotted black line. B′: The circle in panel B is deformed into a straight beam. If the line identified by 𝛼𝑈 keeps its length constant during
the circle extension, it coincides with the neutral fiber and Parent’s principle is satisfied. Any other stretching of the circle into a bar will cost more energy than
that leaving unchanged the neutral line. Notice that, although the circles in panels A′ and B have the same dimensions, the absence of axial forces implies that
the beam in A is longer than that in B′ (see SI). C: The generic undeformed configuration has a line of centroids shown as dashed red. The curve allowing the
axial-bending uncoupling in the Eq. (11) is show as black dotted. This curve does not overlap with any material fiber according to (12) C′: Any transformation
where the length of the black dotted line is left invariant fulfills Parent’s principle. Hence, the notion of neutral fiber shifts to that of neutral curve. Here the
final deformed condition is flat, showing how the neutral curve is deformed differently from any other material fiber.

At the same time, the bending moment takes the form

𝑀𝛼𝑈 (𝑠) = −𝑏𝑌 ℎ2
[ 1
2
− 𝛼𝑈 (𝑠)

]

[

𝜑′(𝑠) −𝛷′(𝑠)
]

𝛷′(𝑠)
. (21)

Let us take a moment to clarify what is implicit in the expression (20). The neutral curve requires that the value of 𝛼 changes with
𝑠 according to Eq. (12). As a consequence, the neutral arc-length parametrization entails that the strain energy (20) interpolates the
expressions (11), in the same fashion as 𝛼𝑈 (𝑠) interpolates among the different 𝛼. However, for a deformation that preserves the
neutral curve, the value of ℰ𝛼𝑈 ≡ ℰ𝛼 , thanks to the property of invariance of 𝛥𝐸𝛼 under a change of reference frame, which holds
locally also in the continuum limit.

5. Discussion

Our one-dimensional treatment of a three-dimensional elastica is in the wake of the old theories of flexure and bending.
Nevertheless, the choice of a fiber 𝛼 as the representative one-dimensional medium is purely arbitrary. As a matter of fact, the
linchpin of our analysis has been to disentangle the representative material fiber from the notion of neutral curve, which in general
does not overalp with a material fiber. Indeed, contrary to the modern three-dimensional theories of bending, we do not postulate
the existence of a neutral fiber, or a neutral curve, neither we identify it with the line passing through the centroids. Our main
achievement has been to furnish the exact criteria for its existence and its location. These criteria ultimately stem from the derivation
of the strain energy, and are encapsulated in the following universal condition:

𝜕𝛥𝐸𝛼
𝜕𝜀𝛼

|

|

|

|𝜀𝛼=0
= 0. (22)

Locating the position of the neutral line, being a fiber or a curve, does not have only an effect on the stiffness of a given cross-
sectional form: Eq. (22) implies that it becomes a crucial issue for any physical transformation aiming at minimizing the amount
7
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of work required, given a shape transformation. Let us explain this point with the help of Fig. 2: imagine to have a slender bar,
such that in panel A, transformed into the circle in panel A′. Among all the possible deformations that bend the elastic bar into a
ring, only one allows the presence of the neutral fiber, and is that leaving unvaried the line of the centroids. In this case, Parent’s
principle is satisfied and the longitudinal forces are balanced, i.e. 𝑁𝛼 = 0 ∀𝛼. We could imagine to give the bar a final circular shape
preserving the length of a different fiber, say the bottom material line (𝛼 = 0), together with Jacob Bernoulli (in his first attempt,
dating 1694) or Euler Euler (1960). In this case, however, 𝑁𝛼 ≠ 0, and the bottom line cannot be identified with the neutral fiber
although 𝜀𝛼=0 = 0. The important point is that the amount of work spent by deforming the beam into a circle is minimum if the
line of centroids keeps its length unvaried. This is plainly demonstrated in the SI. Now, it is also instructive to consider the opposite
case, where the circular shape is the unstressed condition (Fig. 2B), and the flat configuration is the deformed one (Fig. 2B′). The
neutral line in this case does not correspond to that of the centroids (red dashed line) but it is a circumference with smaller radius,
according to the value of (8) (black dotted line). Thus, the minimum amount of work required to ‘‘stretch’’ the circle into a bar is
obtained if the corresponding transformation leaves the neutral fiber unvaried. As a corollary, the bar shown in panel B′ of Fig. 2
is smaller than that in panel A, because the length of the extended beam in panel B′ is 𝑙 = 2𝜋ℎ

ln
(

𝐿+𝜋ℎ
𝐿−𝜋ℎ

) < 𝐿.

So far we addressed the cases of elastica endowed with spontaneous constant curvature. We now turn to the elastica with intrinsic
ocal curvature as in Fig. 2C. The variational version of the minimum principle in (22) is

𝛿ℰ𝛼

𝛿 |
|

𝐭α(𝑠)||

|

|

|

|

|
|𝐭α(𝑠)|=|𝐓α(𝑠)|

= 0. (23)

Imagine an elastic filament undergoing a shape transformation. One is generally inclined to think that such a system would prefer
to deform by minimizing its energy, skewing and swelling in the fashion that is the easiest of all. The expression (23) specifies that
such a minimum-cost deformation is only obtainable by preserving the length of the neutral curve. However, due to the immaterial
nature of the neutral curve, its profile may differ considerably from the actual three-dimensional configuration. This is graphically
represented in Fig. 2C′ where, for the sake of simplicity, the elastica deformed configuration is set to be straight and the neutral
curve is quite something else.

5.1. The importance of the neutral curve for ideal chains

The above considerations have a tremendous impact into both non-equilibrium properties and equilibrium statistics of polymers
or other macromolecules. Take for example the conformational dynamics of ideal chains (Doi et al., 1988; Rubinstein et al., 2003).
Ideal chains provide simplified one-dimensional models for real flexible and semiflexible biomolecules, being substantially the trace
of their backbone, with negligible self-interactions or excluded volume effects. Among semiflexible models, certainly the most
successful is the Worm-Like Chain (WLC) introduced by Kratky and Porod (Kratky & Porod, 1949; Marko & Siggia, 1995) for
inextensible stiff-rod polymers, for which the energy associated with conformational fluctuations may be captured by using merely
linear elasticity. The effective WLC energy associated with the bending is (Fixman & Kovac, 1973; Marko & Siggia, 1995; Yamakawa,
1977)

ℰ𝑊𝐿𝐶 =
𝑘𝐵𝑇
2 ∫

𝐿

0
𝑑𝑠𝐴𝑘(𝑠)2 (24)

where 𝑘𝐵 is the Boltzman constant, 𝑇 is the temperature and 𝐴 is the persistent length, characterizing the bending stiffness of the
olymer. As the expression (24) is derived from thin-rod linear elasticity, it entirely fits into the framework developed in this paper.
ndeed the stretching energy of a straight ribbon with inextensible neutral fiber, i.e., the line of centroids, can be expressed as

ℰ1∕2 =
𝑏𝑌 ℎ3

2 ∫

𝐿

0
𝑑𝑠

𝜑′(𝑠)2

12
(25)

if the same line of centroids (𝛼 = 1∕2) is assumed as the representative fiber (see SI). The analogy between the expression (24) and
(25) is apparent if one recalls that (𝑖) both expressions are derived assuming the arc-length parametrization for which |

|

|

𝐭(1∕2)(𝑠)
|

|

|

= 1,
(𝑖𝑖) the local curvature 𝑘(𝑠) ≡ |

|

𝜑′(𝑠)|
|

, and (𝑖𝑖𝑖) Young’s modulus 𝑌 exhibits a temperature dependence (Varshni, 1970) (in this respect
notice that also 𝐴 may depend on 𝑇 (Geggier, Kotlyar, & Vologodskii, 2011; Martin et al., 2018)). At the same time, from the
comparison of Eqs. (24) and (25) it emerges that the natural configuration of a polymer is tacitly assumed to be a rigid rod (Fuller,
1971; Tanaka & Takahashi, 1985), not only at 𝑇 = 0. This contrasts with real polymeric chains, whose microstructural shape is
naturally coiled. Taking into account the polymers natural curvature requires the formal extension of the ideal energy (24) along
the line marked by our theoretical analysis. In particular, in view of Eq. (23), the inextensibility requirement attains the higher
value of a principle of minimum energy. To be inextensible, however, is none of the polymer material lines, but the neutral curve.
This practically translates into fluctuations of the three dimensional polymer conformation and of its contour length, although
limited, in contrast with the classical WLC picture. Importantly, it elucidates the contour molecule fluctuations observed in short
to moderate length molecules, where 𝐿∕𝐴 ∼ 6 − 20 (Seol, Li, Nelson, Perkins, & Betterton, 2007), and it may help to explain the
extreme bendability of short DNA (Vafabakhsh & Ha, 2012). As a matter of fact, the difference between the length of a generic
fiber and that of the natural curve becomes more and more apparent for short filaments, or for increasing values of the ℎ∕𝐿 ratio.
Hence, assuming the neutral arc-length parametrization, the correct expression for the bending energy is the Eq. (20), while any
8

other material fiber representation based on constant 𝛼 requires the general expression (11). This contrasts with flexible polymers
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for which the concept of neutral curve loses importance and, even assuming the neutral arc-length parametrization (12), the energy
is given by

ℰ𝛼𝑈 = 𝑏𝑌
2 ∫

𝑠𝑀

𝑠𝑚
𝑑𝑠

{

ℎ
[

|

|

|

𝐭𝛼𝑈 (𝑠)
|

|

|

− 1
]2

− ℎ2
[ 1
2
− 𝛼𝑈 (𝑠)

]

[

𝜑′(𝑠) −𝛷′(𝑠)
]2

𝛷′(𝑠)

}

. (26)

inally, from a statistical mechanics point of view, at the equilibrium the Boltzmann distribution is 𝑒
−

ℰ𝛼𝑈
𝑘𝐵𝑇 rather than 𝑒

− ℰ𝑊𝐿𝐶
𝑘𝐵𝑇 ,

weighting a statistical ensemble composed by polymers configurations satisfying the constrain of having constant neutral curve
rather than constant line of centroids.

5.2. Numerical model for vesicles and polymers

Models for polymers, flexible films, membranes or vesicles often require a numerical implementation, in order to study shapes,
fluctuations and dynamics, complementing the statistical mechanics analytical approach (Nelson, Piran, & Weinberg, 1989). These
models in general consist of 𝑁 impenetrable circular beads connected by links, arranged in a configuration which requires a well
defined energy cost. A typical example is furnished by planar thermally fluctuating rings used as simplified models of fluctuating
vesicles such as red blood cells. The Liebler-Singh-Fisher (LSF) model (Leibler, Singh, & Fisher, 1987), by instance, considers
planar closed chains including the pressure and a curvature energy term such as ∑𝑁

𝑖=1
𝑘
𝛥𝐿

(

1 − cos𝛥𝜑(𝑖)), where 𝑘 is the constant
bending modulus. Many aspect and variants of LSF have been discussed in the physics literature using a wealth of analytical and
computational techniques (Camacho & Fisher, 1990; Camacho, Fisher, & Singh, 1991; Fisher, 1989; Gaspari, Rudnick, & Beldjenna,
1993; Haleva & Diamant, 2006; Landau, Lewis, & Schüttler, 2012; Levinson, 1992; Maggs, Leibler, Fisher, & Camacho, 1990; Mitra,
Menon, & Rajesh, 2008), allowing the stretching of the ring (Marconi & Maritan, 1993; Romero, 1992), as well as a spontaneous
curvature and locally varying bending modulus (Katifori et al., 2009).

In our theory the strain energy function (11) has been derived by a finite difference scheme, as the continuum limit of the sum
of the blocks strain energy (1). Therefore, the discrete form of the Eq. (11) constitutes, without any further approximation, the
appropriate expression to be used in numerical simulations (see Fig. 1B,B′ and SI). However, the fact that the uncoupling value
of 𝛼𝑈 in (8) depends crucially on the local value of the curvature of each block, makes it impossible to adopt a global neutral
arc-length parametrization for discrete chains. This means that a discrete decoupled expression for the strain energy function is
out of the question, because the discrete chain would result in a discontinuous polygonal, when 𝑁 is finite (green dashed lines in
Fig. 1B,B′). From an energetic point of view, there would be nothing wrong, as the energy would remain the same due to the strain
energy invariance under a change of reference frame. However, from a graphical perspective, it would look awful! On the other
side, adopting the constant 𝛼 description yields the correct and more convenient expression for the numerical implementation of
our model, valid for any value of 𝑁 :

𝐸𝛼 = 𝑌
2

𝑁
∑

𝑖=1
𝛥𝐿(𝑖)

𝛼

{

𝐹 (𝑖)
𝛼 𝜀(𝑖)𝛼

2 + 2
𝑆(𝑖)
𝛼

𝛥𝐿(𝑖)
𝛼

𝜀(𝑖)𝛼
[

𝛥𝛷(𝑖) − 𝛥𝜑(𝑖)] +
𝐼 (𝑖)𝛼

𝛥𝐿(𝑖)2
𝛼

[

𝛥𝛷(𝑖) − 𝛥𝜑(𝑖)]2
}

. (27)

We emphasize that this expression holds for any elastic chain, be extensible or unextensible. The unextensibility condition should
be enforced by keeping the lengths of the segments at the height 𝛼(𝑖)𝑈 constants, in any conformational change, and modifying the
representative 𝛼 fiber accordingly. However, the detailed procedure of the numerical implementation of our model will be the
subject of an upcoming publication.

5.3. Real filaments

Real biological filaments are characterized by local properties that can vary smoothly or abruptly along their contour. Our
analysis focused on what we believe to be the most prominent property: the spontaneous curvature. However, geometric and
mechanical properties may also characterize different portions of cellular filaments. In reality, filaments can only be considered
homogeneous on average, with different heights (ℎ) and depths (𝑏) identifying each discrete protein-based segment. Simultaneously,
the intrinsic mechanical properties of each monomer can differ, as in the case of the elastic modulus (𝑌 ), which we assumed to be
constant in our analysis.

We believe that the entire framework assembled in this paper can be adapted to handle and accurately describe realistic biological
filaments. The reasons lie in two main ingredients of our theory: the discrete scheme and the strain energy invariance under a change
of reference frame. The finite difference scheme allows for a more precise description of biological shapes than any continuum
theory, such as Cosserats’ theory (Cosserat & Cosserat, 1909; Green et al., 1974a, 1974b; Naghdi & Rubin, 1984; Rubin, 2000)
because any biological filament, whether it is a microtubule, actin, or intermediate filament, is ultimately composed of discrete
units. Since the blocks are independent in our model, the geometrical and mechanical characteristics of biological filaments can
be easily implemented locally, while preserving the general form of the strain energy as in (10). Furthermore, while the concept
of material fibers becomes meaningless for non-homogeneous filaments, or at least non-parallel ones, the parametrization in terms
of a reference segment 𝛼 ∈ [0, 1], inherent to any block, will always be possible, giving the concept of fiber a geometrical rather
than material meaning. Most importantly, the existence of a neutral curve, allowing the axial-bending decoupled form of the strain
9

energy, must remain valid in any context, highlighting once more the general value of our findings.
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