This work addresses the problem of trajectory and attitude maneuvering of a spacecraft equipped with two flexible solar panels, in response to an alert in two distinct operational scenarios: (a) detection of an approaching debris, and (b) collision avoidance of an impacting debris. In scenario (a) the approaching debris is assumed to be off a collision course with the satellite. As a result, the latter can track the debris, to provide supplementary observations (in addition to those given by ground stations) that allow improving the estimation of its trajectory. Instead, in scenario (b) an impact is predicted, therefore the satellite shall perform a collision avoidance maneuver. This is designed with the objective of minimizing propellant consumption, while ensuring a miss distance greater than a specified threshold value. This research considers the overall dynamics by modeling the spacecraft as a multibody structure, with the use of the Kane's method, which simplifies the process of deriving all the governing equations, while identifying their minimum number. Flexibility is introduced using a modal decomposition technique, under the assumption of small amplitude oscillations. In the two scenarios of interest, efficient strategies are introduced to rotate the solar panels, for the purpose of either maximizing their irradiation or minimizing their oscillations. Attitude maneuvers are driven by two distinct feedback control laws that enjoy quasi-global stability properties. Actuation is modeled as well, by assuming the use of a pyramidal array of four single-gimbal control momentum gyroscopes. Their steering law includes singularity avoidance, based on the singular value decomposition of the actuation matrix. Numerical simulations demonstrate that the agile attitude maneuvering strategies proposed in this study allow achieving the operational objectives in the two scenarios of interest, with limited elastic oscillations.

ATTITUDE MANEUVERS OF A FLEXIBLE SPACECRAFT FOR SPACE DEBRIS DETECTION AND COLLISION AVOIDANCE / Madonna, D. P.; Pontani, M.; Gasbarri, P.. - 2022:(2022), pp. 1-15. (Intervento presentato al convegno 73rd International Astronautical Congress, IAC 2022 tenutosi a Paris).

ATTITUDE MANEUVERS OF A FLEXIBLE SPACECRAFT FOR SPACE DEBRIS DETECTION AND COLLISION AVOIDANCE

Madonna D. P.;Pontani M.;Gasbarri P.
2022

Abstract

This work addresses the problem of trajectory and attitude maneuvering of a spacecraft equipped with two flexible solar panels, in response to an alert in two distinct operational scenarios: (a) detection of an approaching debris, and (b) collision avoidance of an impacting debris. In scenario (a) the approaching debris is assumed to be off a collision course with the satellite. As a result, the latter can track the debris, to provide supplementary observations (in addition to those given by ground stations) that allow improving the estimation of its trajectory. Instead, in scenario (b) an impact is predicted, therefore the satellite shall perform a collision avoidance maneuver. This is designed with the objective of minimizing propellant consumption, while ensuring a miss distance greater than a specified threshold value. This research considers the overall dynamics by modeling the spacecraft as a multibody structure, with the use of the Kane's method, which simplifies the process of deriving all the governing equations, while identifying their minimum number. Flexibility is introduced using a modal decomposition technique, under the assumption of small amplitude oscillations. In the two scenarios of interest, efficient strategies are introduced to rotate the solar panels, for the purpose of either maximizing their irradiation or minimizing their oscillations. Attitude maneuvers are driven by two distinct feedback control laws that enjoy quasi-global stability properties. Actuation is modeled as well, by assuming the use of a pyramidal array of four single-gimbal control momentum gyroscopes. Their steering law includes singularity avoidance, based on the singular value decomposition of the actuation matrix. Numerical simulations demonstrate that the agile attitude maneuvering strategies proposed in this study allow achieving the operational objectives in the two scenarios of interest, with limited elastic oscillations.
2022
73rd International Astronautical Congress, IAC 2022
collision avoidance; singular value decomposition; solar panels; space debris
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
ATTITUDE MANEUVERS OF A FLEXIBLE SPACECRAFT FOR SPACE DEBRIS DETECTION AND COLLISION AVOIDANCE / Madonna, D. P.; Pontani, M.; Gasbarri, P.. - 2022:(2022), pp. 1-15. (Intervento presentato al convegno 73rd International Astronautical Congress, IAC 2022 tenutosi a Paris).
File allegati a questo prodotto
File Dimensione Formato  
Madonna_Attitude_2023.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1686389
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact