The third string bordism group Bord^String_3 is known to be Z/24Z. Using Waldorf’s notion of a geometric string structure on a manifold, Bunke–Naumann and Redden have exhibited integral formulas involving the Chern–Weil form representative of the first Pontryagin class and the canonical 3-form of a geometric string structure that realize the isomorphism Bord^String_3 → Z/24Z. We will show how these formulas naturally emerge when one considers certain natural U(1)-valued and R-valued 3d TQFT associated with the classifying stacks of Spin bundles with connection and of String bundles with geometric structure, respectively.
Integrals detecting degree 3 string cobordism classes / Fiorenza, Domenico; Landi, Eugenio. - In: BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA. - ISSN 1972-6724. - (2023). [10.1007/s40574-023-00378-4]
Integrals detecting degree 3 string cobordism classes
Fiorenza, Domenico;Landi, Eugenio
2023
Abstract
The third string bordism group Bord^String_3 is known to be Z/24Z. Using Waldorf’s notion of a geometric string structure on a manifold, Bunke–Naumann and Redden have exhibited integral formulas involving the Chern–Weil form representative of the first Pontryagin class and the canonical 3-form of a geometric string structure that realize the isomorphism Bord^String_3 → Z/24Z. We will show how these formulas naturally emerge when one considers certain natural U(1)-valued and R-valued 3d TQFT associated with the classifying stacks of Spin bundles with connection and of String bundles with geometric structure, respectively.File | Dimensione | Formato | |
---|---|---|---|
Fiorenza_Integrals-detecting_2023.pdf
solo gestori archivio
Note: versione dell'editore
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
394.77 kB
Formato
Adobe PDF
|
394.77 kB | Adobe PDF | Contatta l'autore |
Fiorenza_preprint_Integrals-detecting_2023.pdf
accesso aperto
Note: preprint
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
269.98 kB
Formato
Adobe PDF
|
269.98 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.