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INTEGRALS DETECTING DEGREE 3 STRING COBORDISM

CLASSES

DOMENICO FIORENZA AND EUGENIO LANDI

Abstract. The third string bordism group is known to be Z{24Z. Using Wal-

dorf’s notion of a geometric string structure on a manifold, Bunke–Naumann and

Redden have exhibited integral formulas involving the Chern-Weil form represen-

tative of the first Pontryagin class and the canonical 3-form of a geometric string

structure that realize the isomorphism BordString3 Ñ Z{24Z (these formulas have

been recently rediscovered by Gaiotto–Johnson-Freyd–Witten). We will show how

these formulas naturally emerge when one considers certain natural Up1q-valued

and R-valued 3d TQFT associated with the classifying stacks of Spin bundles with

connection and of String bundles with geometric structure, respectively.

1. Introduction

It is not hard to show that in degree n less or equal to 6 the String bordism group,

BordString
n is isomorphic to the framed bordism group Bordfr

n . Indeed, BString “

BOx8y is the eighth stage in the Whitehead tower of the classifying space of or-

thogonal group and so the obstructions to lifting the classifying map of the tangent

bundle of an n-dimensional string manifold M through all the higher stages of the

tower lie in the cohomology groups HkpM ; πkBOq for k ě 8. In particular, all of

these obstructions vanish if n ď 7. By the celebrated Pontryagin-Thom isomorphism

one has Bordfr
n – πnpSq, where S is the sphere spectrum or, equivalently, that Bordfr

n

is isomorphic to the n-th stable homotopy group of the spheres. All this together,

for n “ 3, gives

BordString
3 – Bordfr

3 – π3pSq – Z{24Z

One may wish to express the isomorphism ϕ : BordString
3

–
ÝÑ Z{24Z as some charac-

teristic number given by integrating some canonical differential 3-form on a closed

string 3-manifold M : ϕrMs “
ş

M
ωM . Clearly, there is no hope that this can be

true, since the integral takes real values while ϕ takes values in Z{24Z, and there

is no injective group homomorphism from Z{24Z to R. There is however a variant

of this construction that may work. Instead of considering just a string 3-manifold

M , one considers a string 3-manifold M endowed with some additional structure Υ.

This structure should be such that anyM admits at least one Υ. To the pair pM,Υq

there could be associated canonical 3-form ωM,Υ such that
ş

M
ωM,Υ takes integral

values. Then, if a change in the additional structure Υ results in a change in the

value
ş

M
ωM,Υ by a multiple of 24 one would have a well defined element

ż

M

ωM,Υ mod 24

1
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2 DOMENICO FIORENZA AND EUGENIO LANDI

in Z{24Z, depending only on the string 3-manifold M ; and this could indeed rep-

resent the isomorphism ϕ. In this form the statement is indeed almost true. The

correct version of it has been found by Bunke and Naumann [BN14] and, indepen-

dently, by Redden [Red11]. Their additional datum Υ consists of a triple pη,W,∇q,

where η is a geometric string structure on M in the sense of Waldorf [Wal13], W is

a spin 4-manifold with BW “ M ,1 and ∇ is a spin connection on W such that the

restriction ∇
ˇ

ˇ

M
coincides with the spin connection datum of the geometric string

structure η. Out of the data pM, η,W,∇q one can compute

ψpM, η,W,∇q :“
1

2

ż

W

pCW
1 p∇q ´

ż

M

ωη,

where pCW
1 p∇q is the Chern-Weil 4-form for the first Pontryagin class, evaluated

on the connection ∇, and ωη is the canonical 3-form associated with the geometric

string structure η.2 From the interplay between geometric string structures and

differential cohomology it follows that ψpM, η,W,∇q P Z. Keeping pM, ηq fixed and

letting pW,∇q vary, one finds

ψpM, η,W1,∇1q ´ ψpM, η,W0,∇0q “
1

2

ż

W

p1pW q,

whereW “ W1YMW
opp
0 denotes the closed spin 4-manifold obtained gluing together

W0 (with the opposite orientation) and W1 alongM , and 1
2
p1pW q P H4pW ;Zq is the

first fractional Pontryagin class of W . One has

ÂpW q “ ´
1

24

ż

W

p1pW q

for any closed oriented 4-manifold W . By the Atiyah-Singer index theorem, the Â-

genus of a closed oriented manifold is an integer if the manifold is spin, and is an even

integer if moreover the dimension of the manifold is of the form 8k ` 4. Therefore

in our case we have that
ş

W
p1pW q P 48Z and so

ş

W
1
2
p1pW q P 24Z. Therefore the

function

ψpM, ηq :“ ψpM, η,W,∇q mod 24

is well defined. One concludes by showing that ψpM, ηq is actually independent

of the geometric string structure η, and only depending on the string cobordism

class of M . Additivity is manifest from the definition, so the above integral formula

defines a group homomorphism ψ : BordString
3

–
ÝÑ Z{24Z. A direct computation with

the canonical generator of BordString
3 , i.e., with S3 endowed with the trivialization

of its tangent bundle coming from S3 – SUp2q, then shows that ψ is indeed an

isomorphism.

The aim of this note is to show how the above integral formula for ψ, as well as its

main properties, naturally emerge in the context of topological field theories with

values in the symmetric monoidal categories associated with morphisms of abelian

groups.

1Such a W surely exists, since BordSpin3 “ 0.
2This expression has been recently considered by Gaiotto–Johnson-Freyd–Witten in the context

of minimally supersymmetric models in two dimensions [GJFW19].
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2. Symmetric monoidal categories from morphisms of abelian groups

and TQFTs

By Bordξ
d,d´1pXq we will denote the symmetric monoidal category of pd, d ´ 1q-

bordism with tangential structure ξ and background fields X . Contenting us with

an informal definition,3 this we mean that the objects of Bordξ
d,d´1pXq are pd ´ 1q-

dimensional closed manifoldsM equipped with a certain reduction ξ of the structure

group of the “d-stabilized” tangent bundle TM‘R, and a map f : M Ñ X to a space,

or more generally smooth stack, of background fields X . Morphisms W : M0 Ñ M1

in Bordξ
d,d´1pXq are d-manifolds with a ξ-structure on the tangent bundle and map

to X such that BW “ M0

š

M1 and such that the restrictions of the tangential

structure and of the map to the target ofW coincide “up to a sign” with those of the

Mi’s. The only tangential structures we will be concerned with will be orientations,

spin, and string structures; we will denote them by or, Spin, and String, respectively.

The monoidal structure on Bordξ
d,d´1pXq is given by disjoint union.

Remark 2.1. The trivial bundle R will always be oriented with t1u as a positively

oriented basis. This way the datum of a d-stable orientation on pd´ 1q-manifold M

reduces to the datum of an orientation of M .

Example 2.2. Let X “ Ωd´1
cl be the smooth stack of closed pd ´ 1q-forms. Then an

object of Bordor
d,d´1pΩ

d´1
cl q is given by a closed oriented pd´1q-manifold M equipped

with an (automatically closed) pd ´ 1q-form ωd´1;M . A morphism W : M0 Ñ M1 in

Bordor
d,d´1pΩ

d´1
cl q is the datum of an oriented d-manifold W with BW “ M1

š

M
opp
0 ,

where “opp” denotes the opposite orientation, equipped with a closed pd ´ 1q-form

ωd´1;W such that

ωd´1;W

ˇ

ˇ

Mi

“ ωd´1;Mi

for i “ 0, 1.

Definition 2.3. Let C be a symmetric monoidal category. A pd, d´1q-dimensional C-

valued topological quantum field theory (TQFT for short) with tangential structure

ξ and background fields X is a symmetric monoidal functor

Z : Bordξ
d,d´1pXq Ñ C.

A typical target is C “ Vect, the category of vector spaces (over some fixed

field K). In this case the functor Z maps the pd ´ 1q-manifold M (with tangential

structure and background fields) to a vector space VM and the d-manifold W to a

liner map ϕW : VM0
Ñ VM1

. Equivalently, if W is a d-manifold with BW “ M , then

ZpW q is an element of VM .4 This example is so typical5 that when one speaks of a

TQFT without specifying the target C one means C “ Vect. Yet there are plenty of

3See, e.g., [Lur09,GP21] for for a rigorous definition, and, e.g., [Sch13] for an introduction to

smooth stacks in the context of field theories.
4this corresponds to thinking of all of the boundary of W as “outgoing” so that W0 “ H, and

to identifying elements of VM with linear maps K Ñ VM by means of the distinguished basis t1u

of K.
5It is the original Atiyah’s definition [Ati88]
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interesting targets other than Vect. Here we will be concerned with the symmetric

monoidal categories naturally associated with abelian groups and with morphisms

of abelian groups.

Definition 2.4. Let pA,`q be an abelian group.6 By Ab we will denote the sym-

metric monoidal category with

ObpAbq “ A;

HomAbpa, bq “

#

ida if a “ b

H otherwise

The tensor product is given by the sum (or multiplication) in A and the unit object

is the zero (or the unit) of A. Associators, unitors and braidings are the trivial ones.

Remark 2.5. Notice that Ab is a rigid monoidal category: the dual of an object a is

given by the opposite element ´a (or the inverse element a´1q.

Spelling out Definition 2.3 for C “ Ab we see that a TQFT with tangential

structure ξ and background fields X with values in Ab consists into a rule that

associates with any closed pd ´ 1q-manifold Md´1 (with tangential structure and

background fields) an element ZpMd´1q P A in such a way that:

‚ ZpMd´1 \ M 1
d´1q “ ZpMd´1q ` ZpM 1

d´1q (monoidality);

‚ if Md´1 “ BWd then ZpMd´1q “ 0 (functoriality).

Example 2.6 (Stokes’ theorem for closed forms). A paradigmatic example of a TQFT

with values in an abelian group is provided by Stokes’ theorem. Take the stack X of

background fields to be the smooth stack Ωd´1
cl of closed pd´1q-forms as in Example

2.2, and let Rb be the symmetric monoidal category associated with the abelian

group pR,`q. Then

Z : Bordor
d,d´1pΩd´1

cl q Ñ Rb

pMd´1, ωd´1q ÞÑ

ż

Md´1

ωd´1

is a TQFT. The monoidality ZppM,ωMq \ pM 1, ωM 1qq “
ş

M
ωm `

ş

M 1 ωM 1 is given

by the additivity of the integral, and functoriality is precisely Stokes’ theorem: if

Md´1 “ BWd and ωd´1 is the restriction to Md´1 of a closed pd ´ 1q-form on Wd

(that we will denote by the same symbol ωd´1), we have

ZpMd´1, ωd´1q “

ż

Md´1

ωd´1 “

ż

BWd

ωd´1 “

ż

Wd

dωd´1 “ 0.

Remark 2.7. Chern-Weil theory provides differential form representatives for Pon-

tryagin classes. These representatives can be seen as morphisms of smooth stacks

pCW
k : BSO∇ Ñ Ω4k

cl ,

6We will be also using the multiplicative notation pA, ¨q.
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where BSO∇ “ limÝÑBSOpnq∇ is the stack of principal SO-bundles with connections.

We have an induced symmetric monoidal morphism

Bordor
4k`1,4kpBSO∇q Ñ Bordor

4k`1,4kpΩ4k
cl q

and so a TQFT

Z : Bordor
4k`1,4kpBSO∇q Ñ Rb

pM4k, P,∇q ÞÑ

ż

M4k

pCW
k p∇q.

If one keeps the principal bundle P fixed and changes the so-connection ∇ into a

new connection ∇1, the difference pCW
k p∇q ´ pCW

k p∇1q is an exact form, so that our

TQFT descends to a TQFT with background fieldsBSO, i.e., we have a commutative

diagram

Bordor
4k`1,4kpBSO∇q Rb

Bordor
4k`1,4kpBSOq

The (p4k ` 1q-stabilized) tangent bundle provides a symmetric monoidal section to

the forgetful morphism Bordor
4k`1,4kpBSOq Ñ Bordor

4k`1,4k, so we get an absolute (i.e.,

with trivial background) oriented TQFT

Z : Bordor
4k`1,4k Ñ Rb

M4k ÞÑ

ż

M4k

pkpTMq.

The same argument applies replacing the single Pontryagin class pk with a poly-

nomial Φ “ Φpp1, p2, . . . q in the Pontryagin classes. This way one obtains plenty

of R-valued oriented TQFTs. These are in particular R-valued oriented cobordism

invariants, and Thom’s isomorphism

ΩSO
‚ b R – Rrp1, p2, . . . s

implies that indeed every R-valued oriented cobordism invariant is of this form.

More generally, one can associate a symmetric monoidal category with a morphism

of abelian groups, as follows.

Definition 2.8. Let ϕA : Amor Ñ Aob be a morphism of abelian groups. By ϕb
A we

will denote the symmetric monoidal category with

Obpϕb
Aq “ Aob;

Homϕb
A

pa, bq “ tx P Amor : a ` ϕApxq “ bu.

The composition of morphism is given by the sum in Amor. The tensor product of

objects and morphisms is given by the sum in Aob and in Amor, respectively. The

unit object is the zero in Aob. Associators, unitors and braidings are the trivial ones,

i.e., they are given by the zero in Amor.
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Remark 2.9. It is easy to see that Definition 2.8 is indeed a generalization of Defini-

tion 2.4: if ιA : 0 Ñ A denotes the initial morphism for A, then one has an evident

isomorphism ιbA – Ab.

As we did for TQFTs with values in Ab, we can spell out the data of a TQFT (with

tangential structure ξ and background fields X) with values in ϕb
A. It consists into a

rule that associates with any closed pd´1q-manifoldMd´1 (with tangential structure

and background fields) an element ZpMd´1q P Aob, and with any d-manifold Wd

(with tangential structure and background fields) an element ZpWdq P Amor in such

a way that:

‚ ZpMd´1 \M 1
d´1q “ ZpMd´1q `ZpM 1

d´1q and ZpWd \W 1
dq “ ZpWdq `ZpW 1

dq

(monoidality);

‚ if Md´1 “ BWd then ZpMd´1q “ ϕA pZpWdqq (functoriality).

The following example is the immediate generalization of Example 2.6.

Example 2.10 (Stokes’ theorem). Take as stack of background fields the smooth

stack Ωd´1 of smooth pd ´ 1q-forms. Then we have a TQFT

Z : Bordor
d,d´1pΩ

d´1q Ñ idb
R

pMd´1, ωd´1q ÞÑ

ż

Md´1

ωd´1

pWd, ωd´1q ÞÑ

ż

Wd

dωd´1.

As in Example 2.6, monoidality is given by the additivity of the integral and functo-

riality is given by Stokes’ theorem: if Md´1 “ BWd, ωd´1 is the restriction to Md´1

of a pd ´ 1q-form on Wd (that we will denote by the same symbol ωd´1), then we

have

ZpMd´1, ωd´1q “

ż

Md´1

ωd´1 “

ż

BWd

ωd´1 “

ż

Wd

dωd´1

“ ZpWd, ωd´1q “ idR pZpWd, ωd´1qq .

Example 2.11 (Holonomy and curvature). A generalization of the above Example for

d “ 2 is obtained by taking X “ BUp1q∇, the stack of principal Up1q-bundles with

connection. As target we take the symmetric monoidal category associated with the

exponential morphism

expp2πi´q : R Ñ Up1q.

There’s a natural TQFT produced by these data and given by

Z : Bordor
2,1pBUp1q∇q Ñ expp2πi´qb

pM1, P,∇q ÞÑ holM1
p∇q

pW2, P,∇q ÞÑ
1

2πi

ż

W2

F∇,

where holM1
p∇q is the holonomy of the connection ∇ along the closed oriented 1-

manifoldM1 (i.e., the usual holonomy along a copy of S1, extended monoidally using
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the fact that M1 is a disjoint union of finitely many copies of S1), and F∇ is the

curvature 2-form of ∇. The fact that Z is a TQFT is encoded in the fundamental

integral identity relating holonomy along the boundary and curvature in the interior:

holBW2
p∇q “ exp

ˆ
ż

W2

F∇

˙

.

Remark 2.12. The stackBUp1q∇ can be seen as the stack associated by the Dold-Kan

correspondence with the chain complex of sheaves

C8p´; Up1qq
1

2πi
dlog

ÝÝÝÝÑ Ω1p´q,

with C8p´; Up1qq in degree 1. This precisely encodes the fact that the local data for

a principal Up1q-bundle with connection pP,∇q over smooth manifold M endowed

with an open cover U “ tUαuα P I are given by

‚ smooth maps gαβ : Uαβ Ñ Up1q

‚ 1-forms Aα on Uα

such that

‚ gαβgβγgγα “ 1 on Uαβγ ;

‚ Aβ ´ Aα “ 1
2πi

dlogpgαβq on Uαβ .

If M is a smooth manifold, the set of homotopy classes of maps from M to BUp1q∇
classifies the isomorphism classes of principal Up1q-bundles with connection over M ,

so that

rM,BUp1q∇s – Ĥ2pM ;Zq,

where Ĥnp´;Zq denotes degree n ordinary differential cohomology (or Deligne co-

homology), see, e.g., [Bry93,FSS12]. In terms of the Dold-Kan correspondence, this

reduces to the usual definition of ordinary differential cohomology as an hypercoho-

mology:

ĤnpM ;Zq – HnpM ;C8p´; Up1qq Ñ Ω1q – HnpM ;Z Ñ Ω0 Ñ Ω1q.

Remark 2.13. A second, equivalent, description of the stack BUp1q∇ is as the homo-

topy pullback

BUp1q∇ Ω2
cl

B2Z B2R

1
2πi

F

where F is the map sending Up1q-connection to its curvature and Ω2
cl Ñ BR is

actually the span

Ω2
cl Ñ

`

Ω0 Ñ Ω1 Ñ Ω2
cl

˘ „
ÐÝ BR,

and is the map inducing at the cohomology level the morphism Ω2
clpMq Ñ H2

dRpMq –

H2pM ;Rq mapping closed 2-form to its de Rham cohomology class. This description

is the one that directly encodes the naive idea of an ordinary differential cohomology

class as the datum of integral cohomology class together with a closed differential

form representing it, see, e.g., [Bun12, Proposition 3.24].
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Example 2.14 (Higher holonomies and curvatures). Example 2.11 admits an imme-

diate higher dimensional generalization. One considers the higher stack BnUp1q∇ of

Up1q-n-principal bundles with connection, that can be equivalently defined as the

homotopy pullback

BnUp1q∇ Ωn`1
cl

Bn`1Z Bn`1R

1
2πi

F

or via the Dold-Kan correspondence, as the stack associated by the n-terms Deligne

complex

C8p´,Up1qq
1

2iπ
dlog

ÝÝÝÝÑ Ω1 d
ÝÑ Ω2 Ñ ¨ ¨ ¨

d
ÝÑ Ωn,

and defines an pn` 1, nq-dimensional TQFT as

Z : Bordor
n`1,npBnUp1q∇q Ñ expp2πi´qb

pMn, P,∇q ÞÑ holMn
p∇q

pWn`1, P,∇q ÞÑ
1

2πi

ż

Wn`1

F∇,

Remark 2.15. The morphism of chain complexes

0 0 ¨ ¨ ¨ 0 Ωn

C8p´,Up1qq Ω1 ¨ ¨ ¨ Ωn´1 Ωn
1

2πi
dlog d d

id

induces a morphism of smooth stacks Ωn Ñ BnUp1q∇ interpreting n-forms as par-

ticular connections on trivial Up1q-n-bundles. For these particular connections, ho-

lonomy along a closed oriented n-manifold reduces to integration. More precisely,

we have a commutative diagram

rMn,Ω
ns rMn,B

nUp1q∇s

R Up1q.

ş

hol

expp2πi´q

Notice how the additivity of the integral is translated into the multiplicativity of

holonomy by the group homomorphism expp2πi´q. Moreover, for n-forms seen as

particular connections, the curvature is identified with the de Rham differential;

namely, we have a commutative diagram

Ωn Ωn`1
cl

BnUp1q∇

1
2πi

F

d

With our last Example in this Section we finally connect to spin structures.
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Example 2.16 (TQFTs from spin connections). Let BSpin “ limÝÑBSpinpnq be the

classifying space for the infinite spin group. One has H4pBSpin;Zq – Z, with a

generator given by the first fractional Pontryagin class 1
2
p1. This can equivalently

be seen as a map (well defined up to homotopy) 1
2
p1 : BSpin Ñ KpZ, 4q. Also

the Eilenberg-MacLane space KpZ, 4q can be seen as a classifying space: one has

KpZ, 4q – B3Up1q, i.e., KpZ, 4q is the classifying space for Up1q-principal 3-bundles.

Brylinksi and McLaughlin show in [BM94] how one can construct a Čech cocycle

representative for 1
2
p1 starting from a Čech cocycle representative for a principal

Spin bundle. This construction can be reinterpreted as a refinement of the map of

classifying spaces 1
2
p1 : BSpin Ñ B3Up1q to a morphism of smooth stacks

1

2
p1 : BSpin Ñ B3Up1q

Brylinski and McLaughlin also show how from the cocycle data for a spin connection

on a principal Spin bundle one can construct a Deligne cocycle representative for

an ordinary differential cohomology class 1
2
p̂1 lifting 1

2
p1 to differential cohomology.

This too admits a natural interpretation in terms of smooth stacks: it is a lifting

of 1
2
p1 to a morphism of smooth stacks 1

2
p̂1 : BSpin∇ Ñ B3Up1q∇, i.e., we have a

commutative diagram

(1)

BSpin∇ B3Up1q∇

BSpin B3Up1q,

1
2
p̂1

1
2
p1

Composing with the curvature morphism 1
2πi
F : B3Up1q∇ Ñ Ω4

cl from Example 2.14,

we obtain the commutative diagram

(2)

BSpin∇ B3Up1q∇ Ω4
cl

BSpin B3Up1q,

1
2
p̂1

1
2
p
CW
1

1
2πi

F

1
2
p1

where the bent arrow on the top is the Chern-Weil representative for 1
2
p1 seen as

a morphism of smooth stacks (see Remark 2.7). Therefore, we obtain a p4, 3q-

dimensional TQFT with background fields given by spin connections and target

expp2πi´qb by setting

ZSpin : Bord
or
4,3pBSpin∇q Ñ expp2πi´qb

pM3, P,∇q ÞÑ holM3

ˆ

1

2
p̂1p∇q

˙

pW4, P,∇q ÞÑ

ż

W4

1

2
pCW
1 p∇q.
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3. Geometric string structures

In this Section we recall Waldorf’s notion of a geometric string structure [Wal13].

We present it by using the language of smooth stacks. Doing this, on the one hand

the presentation is extremely fast, and on the other hand all the main features of

geometric string structures are very easily derived.

To begin with, recall that the classifying space of the string group is given, essen-

tially by definition, by the homotopy fiber of the first fractional Pontryagin class.

In other words BString is defined as the homotopy fiber product

BString ˚

BSpin KpZ, 4q
1
2
p1

.

We have already remarked that KpZ, 4q – B3Up1q, so that BString is equivalently

defined as the homotopy fiber of 1
2
p1 : BSpin Ñ B3Up1q. We have also recalled that,

seen this way, the first fractional Pontryagin class can be refined to a morphism of

smooth stacks 1
2
p1 : BSpin Ñ B3Up1q. This naturally leads to defining the smooth

stack of principal string bundles as the homotopy pullback

BString ˚

BSpin B3Up1q
1
2
p1

.

Explicitly, this means that a principal string bundle over a manifold M is the da-

tum of principal spin bundle P over M together with the choice of a trivialization

of the associated principal Up1q-3-bundle. Notice that this contains both a topolog-

ical condition (the Up1q-3-bundle has to be trivializable, and this is equivalent to
1
2
p1pP q “ 0 P H4pM ;Zq) and additional structure (the choice of a trivialization).

We also noticed that the morphism of stacks 1
2
p1 : BSpin Ñ B3Up1q admits a

refinement to a morphism of stacks 1
2
p̂1 : BSpin∇ Ñ B3Up1q∇, and this leads to

defining the stack of principal string connections as the homotopy pullback

BString∇ ˚

BSpin∇ B3Up1q∇
1
2
p̂1

.

Yet, it is not BString∇ the stack we are interested here, but a variant of it that

has a “more topological” nature as we are going to explain in Proposition 3.8 and

in Remark 3.9. To begin with, notice that the sequence of forgetful morphisms of
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chain complexes

C8p´; Up1qq Ω1 Ω2 Ω3

C8p´; Up1qq Ω1 Ω2 0

C8p´; Up1qq Ω1 0 0

C8p´; Up1qq 0 0 0

1
2πi

dlog d d

1
2πi

dlog d

1
2πi

dlog

induces the sequence of morphisms of smooth stacks

B3Up1q∇ Ñ BB2Up1q∇ Ñ B2BUp1q∇ Ñ B3Up1q.

Precomposing this on the left with 1
2
p̂1 : BSpin∇ Ñ B3Up1q∇ we obtain maps

1

2
p̂

piq
1 : BSpin∇ Ñ B3´iBiUp1q∇,

for i “ 0, . . . , 3.

Definition 3.1. For i “ 0, . . . , 3, the smooth stack BString
piq
∇

is defined as the

homotopy pullback

BString
piq
∇

˚

BSpin∇ B3´iBiUp1q∇
1
2
p̂

piq
1

.

The stack BString
p2q
∇

will be called the stack of geometric string structures.

Remark 3.2. In terms of Definition 3.1, the stack BString∇ of principal string con-

nections is BString
p3q
∇

and the morphism 1
2
p̂1 is 1

2
p̂

p3q
1 . If M is a smooth manifold,

then a map M Ñ BString
p3q
∇

consists in the datum of a principal spin connection on

M together with a trivialization of the associated Up1q-3-connection. On the other

hand, a map M Ñ BString
p0q
∇

consists in the datum of a principal spin connection

on M together with a trivialization of the associated Up1q-3-bundle, entirely for-

getting the connection data. A geometric string structure on M lies between these

two extremes: it consists into a principal spin connection on M together with a

trivialization of part of the data of the associated Up1q-3-connection.

Remark 3.3. By definition, the datum of a geometric string structures on a manifold

M is equivalently the datum of a homotopy commutative diagram

M ˚

BSpin∇ BB2Up1q∇
1
2
p̂

p2q
1

.
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As a consequence, two geometric string structures on M provide the fillers for the

homotopy commutative diagram

M

˚ BSpin∇ ˚

BB2Up1q∇

1
2
p̂

p2q
1

.

This shows that the first geometric string structure is changed into the second by

the action given by pasting a homotopy commutative diagram of the form

M

˚ ˚

BB2Up1q∇

.

By definition of based loop space of a pointed stack, such a diagram is equivalent

to a map from M to the based loop space of BB2Up1q∇, i.e., to B2Up1q∇. This

shows that equivalence classes of geometric string structures on M are a torsor for

rM,B2Up1q∇s – Ĥ3pM ;Zq.

Remark 3.4. The sequence of forgetful morphisms B3´iBiUp1q∇ Ñ B4´iBi´1Up1q∇
refines the commutative diagram

BSpin∇ B3Up1q∇

BSpin B3Up1q

1
2
p̂1

1
2
p1

to a commutative diagram

BSpin∇ B3Up1q∇ BB2Up1q∇ B2BUp1q∇ B3Up1q

BSpin B3Up1q
1
2
p1

1
2
p̂1

Remark 3.5. By the pasting law for homotopy pullbacks, the defining diagram for

the stack of geometric string structures can be factored as

BString
p2q
∇

Ω3 ˚

BSpin∇ B3Up1q∇ BB2Up1q∇
1
2
p̂1

ω3

.
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where both squares are homotopy pullbacks. This in particular shows that a geo-

metric string structure comes equipped with a canonical 3-form. From Remark 2.15

and Example 2.16 we obtain the commutative diagram

BString
p2q
∇

Ω3

BSpin∇ B3Up1q∇ Ω4
cl

1
2
p̂1

1
2πi

F

ω3

d

1
2
p
CW
1

showing that, if ω3,M is the canonical 3-form on a smooth manifold M equipped

with a geometric string structure and ∇ is the underlying spin connection, then one

has

dω3,M “
1

2
pCW
1 p∇q,

i.e., ω3,M is a trivialization of the Chern-Weil de Rham representative of the first

fractional Pontryagin class of the principal spin bundle P on M coming with the

choice of a spin connection on P .

Lemma 3.6. The sequence of forgetful morphisms B3´iBiUp1q∇ Ñ B4´iBi´1Up1q∇
induces a sequence of forgetful morphisms BString

piq
∇

Ñ BString
pi´1q
∇

for i “ 1, . . . , 3.

Proof. By the pasting law for homotopy pullbacks, we have the following homotopy

commutative diagram, where each square is a homotopy pullback, and where the

Si are stacks we give no particular name since we are not specifically interested in

them:

BString
p3q
∇

˚

BString
p2q
∇

Ω3 ˚

BString
p1q
∇

S1 BΩ2 ˚

BString
p0q
∇

S2 S3 B2Ω1 ˚

BSpin∇ B3Up1q∇ BB2Up1q∇ B2BUp1q∇ B3Up1q
1
2
p̂1

�
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Lemma 3.7. Forgetting the connection data induces a natural homotopy commuta-

tive diagram

BString
p0q
∇

BSpin∇

BString BSpin

Proof. From Definition 3.1 and Remark 3.4 we have the homotopy commutative

diagram

BString
p0q
∇

˚

BSpin∇ B3Up1q

BSpin B3Up1q

1
2
p̂

p0q
1

1
2
p1

.

Forgetting the middle line and recalling the definition of BString and the universal

property of homotopy pullbacks, we get a homotopy commutative diagram

BString
p0q
∇

˚

BSpin∇ BString

BSpin B3Up1q
1
2
p1

which in particular in its leftmost part gives the statement. �

Proposition 3.8. Let M be a smooth manifold, and let P : M Ñ BSpin be a

principal spin bundle onM . Then P can be enhanced to a geometric string structure

on M if and only if 1
2
p1pP q “ 0.

Proof. By Lemma 3.6 and Lemma 3.7, a lift of P to a geometric string structure

induces in particular a lift of P to a string bundle, i.e., to a morphism P̃ : M Ñ

BString. By definition of BString this is equivalent to a trivialization of 1
2
p1pP q,

and so implies 1
2
p1pP q “ 0 in H4pM ;Zq. Vice versa, if 1

2
p1pP q “ 0 in H4pM ;Zq then

1
2
p1pP q is homotopically trivial in rM,B3Up1qs. Since every spin bundle admits a

spin connection, we can lift P to a principal string connection pP,∇q : M Ñ BSpin∇.

By Remark 3.4, we have 1
2
p

p0q
1 pP,∇q » 1

2
p1pP q, and so 1

2
p

p0q
1 pP,∇q is homotopically

trivial in rM,B3Up1qs. By Definition 3.1 this means that pP,∇q can be lifted to

a morphism ηp0q : M Ñ BString
p0q
∇
. From the proof of Lemma 3.6 we see that

the obstruction to lifting ηp0q to a morphism ηp1q : M Ñ BString
p1q
∇

is given by an

element in rM,B2Ω1s – H2pM,Ω1q “ 0, where the latter equality follows from

the fact that Ω1 is a fine sheaf on M . Similarly, the obstruction to lifting ηp1q to a

morphism ηp2q : M Ñ BString
p2q
∇

is given by an element in rM,BΩ2s – H1pM,Ω2q “
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0. Therefore we see there is no obstruction to enhancing P to a geometric string

structure. �

Remark 3.9. Since H0pM,Ω3q “ Ω3pMq is nonzero, the argument in the proof of

Proposition 3.8 can’t be used to show that a string bundle on M always admit

a string connection. At the same time, it does not really prevents such a con-

nection to exist: the argument shows that for a particular choice of a geometric

string structure lifting the topological structure of the string bundle there could be

a nonzero obstruction (the canonical 3-form of the geometric string structure) to an

actual string connection, but it is still possible that changing the spin connection

on the underlying spin bundle and its lift to a geometric string structure this ob-

struction may vanish. The question whether a string bundle always admits a string

connection or not7 is, up to our knowledge, undecided at the moment and there

is no consensus on which answer should be expected, see, e.g., the discussion at

https://mathoverflow.net/q/426197.

4. Morphisms of morphisms of abelian groups and homotopy fibers

In Section 2 we have seen how one can associate a rigid symmetric monoidal

category to a morphism of abelian groups. This construction is actually functorial.

To see this, recall that morphisms of abelian groups are the objects of a category

whose morphisms are commutative diagrams. That is, if ϕH : Hmor Ñ Hob and

ϕG : Gmor Ñ Gob are morphisms of abelian groups, then a morphism from ϕH to ϕG

is a commutative diagram of the form

Hmor Hob

Gmor Gob

ϕH

fmor fob

ϕG

The pair pfob, fmorq defines a symmetric monoidal functor f : ϕb
H Ñ ϕb

G, and the

functoriality of the construction is easily checked. We recall the following

Definition 4.1. Given a functor p : D Ñ C and an object c of C, the homotopy fiber

(or essential fiber) of p over c is the category hofib pp; cq with objects the pairs px, bq

with x an object in D and b P homCpc, ppxqq an isomorphism; morphisms from px, bq

to px1, b1q in hofib pp; cq are those morphisms a : x Ñ x1 in D such that the diagram

ppxq ppx1q

c

ppaq

b b1

commutes. By relaxing the condition that b is an isomorphism, and allowing it to

be an arbitrary morphism, we obtain the notion of lax homotopy fiber and denote it

by hofiblax pp; cq.

7Or, more generally, whether a principal G bundle for G a Lie 2-group always admits a G-

connection as it is the case for ordinary Lie groups.

https://mathoverflow.net/q/426197
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When p : D Ñ C is a monoidal functor between monoidal categories, we will

always take c to be the monoidal unit 1C of C, and will simply write hofib ppq and

hofiblax ppq for hofib pp; 1Cq and hofiblax pp; 1Cq, respectively. It is immediate to see

that if p is a monoidal functor, the monoidal structures of C and D induce a natural

monoidal category structure on hofib ppq and on hofiblax ppq.

Remark 4.2. If C is a groupoid, then there is no difference between the homotopy

fiber of p at c and its lax homotopy fiber. This consideration in particular applies

to the categories ϕb.

When p is the monoidal functor f : ϕb
H Ñ ϕb

G associated with a commutative

diagram of abelian groups, we can give a simple explicit description of the homotopy

fiber of p. This is provided by the following easy Lemma.

Lemma 4.3. Let

Hmor Hob

Gmor Gob

ϕH

fmor fob

ϕG

be a commutative diagram of abelian groups, and let f : ϕb
H Ñ ϕb

G be the associated

monoidal functor. Then we have

Obphofib pfqq “ Gmor ˆGob
Hob

Morhofibpfq ppg, hq, pg1, h1qq “
 

x P Hmor s.t.

#

fmorpxq “ g1 ´ g

ϕHpxq “ h1 ´ h

(

.

Proof. By definition, an object in hofib pfq is a pair pg, hq with h an object in ϕH

and g an isomorphism from 1ϕG
to fphq in ϕG. Making this explicit, we see that

h P Hob, and g P Gmor is such that 0Gob
`ϕGpgq “ fobphq, i.e., ϕGpgq “ fobphq. This

gives Obphofib pfqq “ Gmor ˆGob
Hob. As far as concerns the morphisms, we have

Morhofibpfq

`

pg, hq,pg1, h1q
˘

“

$

’

&

’

%

x : h Ñ h1 s.t.
fobphq fobph1q

0Gob

fmorpxq

g g1
commutes

,

/

.

/

-

“ tx P Hmor s.t. fmorpxq ` g “ g1 and h` ϕHpxq “ h1u

“ tx P Hmor s.t. fmorpxq “ g1 ´ g and ϕHpxq “ h1 ´ hu .

�

Lemma 4.4. A commutative diagram of abelian groups of the form

Hmor Hob

Gmor Gob

ϕH

fmor fob
λ

ϕG

induces a symmetric monoidal functor Ξ: hofib pfq Ñ kerpϕGqb acting on the objects

as pg, hq ÞÑ g ´ λphq. Moreover, Ξ is an equivalence iff ϕH is an isomorphism.
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Proof. To begin with, let us check that Ξ does indeed take its values in kerpϕGqb.

For pg, hq an object in hofib pfq, by Lemma 4.3 we have

ϕGpΞpg, hqq “ ϕGpg ´ λphqq “ ϕGpgq ´ fobphq “ 0Gob
.

Since kerpϕGqb is a discrete category, in order to show that Ξ is a functor we only

need to show that a morphism x : pg, hq Ñ pg1, h1q in hofib pfq induces an identity

Ξpg, hq “ Ξpg1, h1q. From Lemma 4.3 we know that x satisfies the two identities

fmorpxq “ g1 ´g and ϕHpxq “ h1 ´h. Since fmor “ λ˝ϕH , the two identities together

give

g1 ´ g “ fmorpxq “ λ pϕHpxqq “ λph1 ´ hq “ λph1q ´ λphq,

i.e., g ´ λphq “ g1 ´ λph1q which is the desired identity. The monoidality of Ξ is

manifest. To prove the second part of the statement, we begin by noticing that since

pg, 0Hob
q is mapped to g, the functor Ξ is always essentially surjective and so it is

an equivalence iff it is fully faithful. If Ξ is fully faithful, then we must have

Morhofibpfq

`

pg, hq, pg, hq
˘

“ t0Hmor
u.

Since

kerpϕHq Ď kerpfmorq Ď Morhofibpfq

`

pg, hq, pg, hq
˘

,

this implies the injectivity of ϕH . Since both p0Gmor
, 0Hob

q and pλphq, hq are mapped

by Ξ to 0Gmor
, fully faithfulness implies the existence of a morphism from p0Gmor

, 0Hob
q

to pλphq, hq in hofib pfq, and by Lemma 4.3 such a morphism is in particular an

element x in Hmor such ϕHpxq “ h. This shows that ϕH is also surjective, and so an

isomorphism. Vice versa, assume ϕH is an isomorphism, and let pg, hq and pg1, h1q

be such that Ξpg, hq “ Ξpg1, h1q. This is equivalent to λph1 ´hq “ g1 ´ g. Since ϕH is

an isomorphism there exists a unique element x in Hmor such that ϕHpxq “ h1 ´ h.

We also have

fmorpxq “ λ pϕHpxqq “ λph1 ´ hq “ g1 ´ g

so that this element x is a morphism (necessarily unique) from pg, hq to pg1, h1q

in hofib pfq. Finally, let pg, hq and pg1, h1q be such that Ξpg, hq ‰ Ξpg1, h1q. If

Morhofibpfq

`

pg, hq, pg1, h1q
˘

is nonempty, then also MorkerpϕGqb pg ´ λphq, g1 ´ λph1qq

has to be nonempty, and so we get g ´ λphq “ g1 ´ λph1q, a contradiction. This

shows that if ϕH is an isomorphism then Ξ is an equivalence. �

5. The Bunke–Naumann–Redden morphism

Since BString
p2q
∇

comes equipped with a morphism of smooth stacks BString
p2q
∇

ω3ÝÑ

Ω3 we have an associated symmetric monoidal functor Bordor
4,3pBString

p2q
∇

q Ñ Bordor
4,3pΩ3q.

Composing this with the idb
R -valued TQFT from Example 2.10, we obtain an idb

R -

valued TQFT

ZString : Bord
or
4,3pBString

p2q
∇

q Ñ idb
R .

It maps a closed oriented 3-manifoldM3 equipped with a geometric string structure

η to
ş

M3
ω3;M , where ω3;M is the 3-form on M3 associated with the geometric string
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structure, and maps an oriented 4-manifold W4 equipped with a geometric string

structure to
ż

W4

dω3;M “
1

2

ż

W4

pCW
1 p∇q,

where the last identity is Remark 3.5.

From Example 2.16 we have an expp2πi´qb-valued TQFT ZSpin : Bord
or
4,3pBSpin∇q Ñ

expp2πi´qb mapping a closed oriented 3-manifold M3 equipped with a spin connec-

tion pP,∇q to holM3

`

1
2
p̂1p∇q

˘

and an oriented 4-manifold W4 (equipped with a

spin connection) to 1
2

ş

W4
pCW
1 p∇q. Moreover, the projection BString

p2q
∇

Ñ BSpin∇

induces a symmetric monoidal functor

Bordor
4,3pBString

p2q
∇

q Ñ Bordor
4,3pBSpin∇q

and the commutative diagram of abelian groups

R R

R Up1q

idR

idR

expp2πi´q

expp2πi´q

induces a symmetric monoidal functor

pidR, expp2πi´qq : idb
R Ñ expp2πi´qb.

Lemma 5.1. The diagram of symmetric monoidal functors

Bordor
4,3pBString

p2q
∇

q idb
R

Bordor
4,3pBSpin∇q expp2πi´qb

ZString

ZSpin

pidR,expp2πi´qq

commutes, with identity 2-cell.

Proof. The commutativity of the diagram at the objects level is the identity

exp

ˆ

2πi

ż

M3

ω3;M

˙

“ holM3

ˆ

1

2
p̂1p∇q

˙

for a closed 3-manifold M3 equipped with a geometric string structure. This is

provided by Remark 2.15. �

By the naturality of the (lax) hofiber construction, and recalling that for a mor-

phism of groupoids there is no distinction between the homotopy fiber and the lax

homotopy fiber, Lemma 5.1 implies we have a distinguished symmetric monoidal

functor

hofiblax

´

Bordor
4,3

´

BString
p2q
∇

¯

Ñ Bordor
4,3 pBSpin∇q

¯

Ñ hofib pidR, expp2πi´qq .
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Since the commutative diagram defining the morphism pidR, expp2πi´qq factors as

R R

R Up1q

idR

idR

expp2πi´q

expp2πi´q
idR ,

from Lemma 4.4 we have a symmetric monoidal equivalence

Ξ: hofib ppidR, expp2πi´qqq Ñ kerpexpp2πi´qb “ Zb,

acting on Obphofib ppidR, expp2πi´qqqq “ R ˆUp1q R as pg, hq ÞÑ g ´ h. Putting

everything together we obtain a symmetric monoidal functor

Z
Spin
String : hofiblax

´

Bordor
4,3pBString

p2q
∇

q Ñ Bordor
4,3pBSpin∇q

¯

Ñ Zb

Proposition 5.2. The symmetric monoidal functor Z
Spin
String is the Bunke–Naumann–

Redden map ψ from the Introduction.

Proof. By definition of lax homotopy fiber, an object in the source of ZSpin
String consists

of an object in Bordor
4,3pBString

p2q
∇

q, i.e., in a closed oriented 3-manifoldM3 equipped

with a geometric string structure, together with a morphism in Bordor
4,3pBSpin∇q

from the unit object (i.e., the empty manifold) to the spin manifold underlying M3.

This is precisely the datum of a spin 4-manifold W4 with BW4 “ M3, equipped

with a spin connection ∇ such that the restriction ∇
ˇ

ˇ

M3
coincides with the spin

connection datum of the geometric string structure η. In other words, the objects of

hofiblax

´

Bordor
4,3pBString

p2q
∇

q Ñ Bordor
4,3pBSpin∇q

¯

are precisely the geometric data

of the Bunke–Naumann–Redden construction. Now, let us compute ZSpin
StringpM3, η,W4,∇q,

where we see the quadruple pM3, η,W4,∇q as a pair consisting of the object pM3, ηq

and of the morphism pW4,∇q. On the object pM3, ηq we act with ZString at the object

level, obtaining the object
ş

M3
ω3;M of idb

R . On the morphism pW4,∇q we act with

ZSpin at the morphisms level, obtaining the morphism 1
2

ş

W4
pCW
1 p∇q of expp2πi´qb.

We thus obtain the object p1
2

ş

W4
pCW
1 p∇q,

ş

M3
ω3;Mq of hofib ppidR, expp2πi´qqq. The

equivalence Ξ finally maps this to

ψpM3, η,W4,∇q “
1

2

ż

W4

pCW
1 p∇q ´

ż

M3

ω3;M .

Notice how by construction ψ takes integral values. �

Remark 5.3 (Further examples). There are other situations where exactly the same

construction as the one we presented here applies. For instance one can replace the

first fractional Pontryagin class 1
2
p1 with the first Chern class c1. In this case one

notices that the classifying space BSU of the special unitary group is the homotopy

fiber of c1 : BU Ñ KpZ, 2q so that SU and U enjoy the same kind of relationship

as String and Spin. Then one verbatim repeats the construction presented in the

article to obtain an integral formula realizing the isomorphism

BordSU
1 – Z{2.
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In this case the relevant vanishing bordism group is BordU
1 “ 0, and the relevant

index theorem is Gauss-Bonnet formula: for a closed oriented 2-manifold W2 the

integer
ş

W2
c1pW2q is even.

Another example is obtained by going one step higher in the Whitehead tower

of the orthogonal group and consider the Fivebrane group instead of the String

group. One has that the classifying space BFivebrane is the homotopy fiber of
1
6
p2 : BString Ñ KpZ, 8q, so Fivebrane is to String as String is to Spin, and one has a

vanishing 7-dimensional bordism group given by BordString
7 “ 0. For a closed oriented

string 8-manifold W8, which is in particular a closed oriented spin 8-manifold with

p1pW8q “ 0 in H8pW8;Qq, the Atiyah–Singer index theorem gives that

ÂpW8q “
1

5760

ż

W8

p´4p2pW8q ` 7p1pW8q
2q “ ´

1

1440

ż

W8

p2pW8q

is an integer. Therefore 1
6

ş

W8
p2pW8q P 240Z, and verbatim repeating the arguments

in the present paper should give an integral formula realizing the isomorphism

BordFivebrane
7 – Z{240Z.

The reader should however be advised that the argument for fivebrane bordism

sketched above is not complete: in order to make it fully work one would need to

know that any principal string bundle admits a string connection and as we noticed

in Remark 3.9 this is presently not clear. The fact that the argument presented

above produces the correct order 240 for the seventh fivebrane bordism group could

be seen as an indication that the answer to whether every principal string bundle

admits a string connection may be affirmative.
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