The aim of this in vitro study was to evaluate thermal effects on implant surfaces using a 445 nm diode laser (Eltech K-Laser Srl, Treviso, Italy) with different power settings and irradiation modalities. Fifteen new implants (Straumann, Basel, Switzerland) were irradiated to evaluate surface alteration. Each implant was divided into two zones: the anterior and posterior areas. The anterior coronal areas were irradiated with a distance of 1 mm between the optical fiber and the implant; the anterior apical ones were irradiated with the fiber in contact with the implant. Instead, the posterior surfaces of all of the implants were not irradiated and used as control surfaces. The protocol comprised two cycles of laser irradiation, lasting 30 s each, with a one-minute pause between them. Different power settings were tested: a 0.5 W pulsed beam (T-on 25 ms; T-off 25 ms), a 2 W continuous beam and a 3 W continuous beam. Lastly, through a scanning electron microscopy (SEM) analysis, dental implants' surfaces were evaluated to investigate surface alterations. No surface alterations were detected using a 0.5 W laser beam with a pulsed mode at a distance of 1 mm. Using powers of irradiation of 2 W and 3 W with a continuous mode at 1 mm from the implant caused damage on the titanium surfaces. After the irradiation protocol was changed to using the fiber in contact with the implant, the surface alterations increased highly compared to the non-contact irradiation modality. The SEM results suggest that a power of irradiation of 0.5 W with a pulsed laser light emission mode, using an inactivated optical fiber placed 1 mm away from the implant, could be used in the treatment of peri-implantitis, since no implant surface alterations were detected.

SEM evaluation of thermal effects produced by a 445 nm laser on implant surfaces / Pergolini, D; Palaia, G; De Angelis, R; Rocchetti, F; Podda, Gm; Tenore, G; Del Vecchio, A; Relucenti, M; Romeo, U. - In: DENTISTRY JOURNAL. - ISSN 2304-6767. - 11:6(2023). [10.3390/dj11060148]

SEM evaluation of thermal effects produced by a 445 nm laser on implant surfaces

Palaia, G
;
Rocchetti, F;Podda, GM;Relucenti, M;Romeo, U
2023

Abstract

The aim of this in vitro study was to evaluate thermal effects on implant surfaces using a 445 nm diode laser (Eltech K-Laser Srl, Treviso, Italy) with different power settings and irradiation modalities. Fifteen new implants (Straumann, Basel, Switzerland) were irradiated to evaluate surface alteration. Each implant was divided into two zones: the anterior and posterior areas. The anterior coronal areas were irradiated with a distance of 1 mm between the optical fiber and the implant; the anterior apical ones were irradiated with the fiber in contact with the implant. Instead, the posterior surfaces of all of the implants were not irradiated and used as control surfaces. The protocol comprised two cycles of laser irradiation, lasting 30 s each, with a one-minute pause between them. Different power settings were tested: a 0.5 W pulsed beam (T-on 25 ms; T-off 25 ms), a 2 W continuous beam and a 3 W continuous beam. Lastly, through a scanning electron microscopy (SEM) analysis, dental implants' surfaces were evaluated to investigate surface alterations. No surface alterations were detected using a 0.5 W laser beam with a pulsed mode at a distance of 1 mm. Using powers of irradiation of 2 W and 3 W with a continuous mode at 1 mm from the implant caused damage on the titanium surfaces. After the irradiation protocol was changed to using the fiber in contact with the implant, the surface alterations increased highly compared to the non-contact irradiation modality. The SEM results suggest that a power of irradiation of 0.5 W with a pulsed laser light emission mode, using an inactivated optical fiber placed 1 mm away from the implant, could be used in the treatment of peri-implantitis, since no implant surface alterations were detected.
2023
laser; dental implants; thermal damage; peri-implantitis
01 Pubblicazione su rivista::01a Articolo in rivista
SEM evaluation of thermal effects produced by a 445 nm laser on implant surfaces / Pergolini, D; Palaia, G; De Angelis, R; Rocchetti, F; Podda, Gm; Tenore, G; Del Vecchio, A; Relucenti, M; Romeo, U. - In: DENTISTRY JOURNAL. - ISSN 2304-6767. - 11:6(2023). [10.3390/dj11060148]
File allegati a questo prodotto
File Dimensione Formato  
Pergolini_SEM-Evaluation_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 3.07 MB
Formato Adobe PDF
3.07 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1684903
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact