The atomic motion controls important properties of materials, such as thermal transport, phase transitions, and vibrational spectra. However, simulating the ionic dynamics is exceptionally challenging when quantum fluctuations are relevant (e.g., at low temperatures or with light atoms) and the energy landscape is anharmonic. In this paper, we present the time-dependent self-consistent harmonic approximation (TDSCHA) [L. Monacelli and F. Mauri, Phys. Rev. B 103, 104305 (2021)] in the Wigner framework, paving the way for the efficient computation of the nuclear motion in systems with sizable quantum and thermal anharmonic fluctuations. Besides the improved numerical efficiency, the Wigner formalism unveils the classical limit of TDSCHA and provides a link with the many-body perturbation theory of Feynman diagrams. We further extend the method to account for the nonlinear couplings between phonons and photons, responsible, e.g., for a nonvanishing Raman signal in high-symmetry Raman inactive crystals, firstly discussed by Rasetti and Fermi. We benchmark the method in phase III of high-pressure hydrogen ab initio. The nonlinear photon-phonon coupling reshapes the IR spectra and explains the high-frequency shoulder of the H2 vibron observed in experiments. The Wigner TDSCHA is computationally cheap and derived from first principles. It is unbiased by assumptions on the phonon-phonon and phonon-photon scattering and does not depend on empirical parameters. Therefore, the method can be adopted in unsupervised high-throughput calculations.

Wigner Gaussian dynamics. Simulating the anharmonic and quantum ionic motion / Siciliano, Antonio; Monacelli, Lorenzo; Caldarelli, Giovanni; Mauri, Francesco. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 107:17(2023), pp. 1-29. [10.1103/PhysRevB.107.174307]

Wigner Gaussian dynamics. Simulating the anharmonic and quantum ionic motion

Lorenzo Monacelli
Secondo
;
Giovanni Caldarelli
Penultimo
;
Francesco Mauri
Ultimo
2023

Abstract

The atomic motion controls important properties of materials, such as thermal transport, phase transitions, and vibrational spectra. However, simulating the ionic dynamics is exceptionally challenging when quantum fluctuations are relevant (e.g., at low temperatures or with light atoms) and the energy landscape is anharmonic. In this paper, we present the time-dependent self-consistent harmonic approximation (TDSCHA) [L. Monacelli and F. Mauri, Phys. Rev. B 103, 104305 (2021)] in the Wigner framework, paving the way for the efficient computation of the nuclear motion in systems with sizable quantum and thermal anharmonic fluctuations. Besides the improved numerical efficiency, the Wigner formalism unveils the classical limit of TDSCHA and provides a link with the many-body perturbation theory of Feynman diagrams. We further extend the method to account for the nonlinear couplings between phonons and photons, responsible, e.g., for a nonvanishing Raman signal in high-symmetry Raman inactive crystals, firstly discussed by Rasetti and Fermi. We benchmark the method in phase III of high-pressure hydrogen ab initio. The nonlinear photon-phonon coupling reshapes the IR spectra and explains the high-frequency shoulder of the H2 vibron observed in experiments. The Wigner TDSCHA is computationally cheap and derived from first principles. It is unbiased by assumptions on the phonon-phonon and phonon-photon scattering and does not depend on empirical parameters. Therefore, the method can be adopted in unsupervised high-throughput calculations.
2023
physics materials science; photons; Gaussians; phonons; perturbation techniques
01 Pubblicazione su rivista::01a Articolo in rivista
Wigner Gaussian dynamics. Simulating the anharmonic and quantum ionic motion / Siciliano, Antonio; Monacelli, Lorenzo; Caldarelli, Giovanni; Mauri, Francesco. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 107:17(2023), pp. 1-29. [10.1103/PhysRevB.107.174307]
File allegati a questo prodotto
File Dimensione Formato  
Siciliano_Wigner-Gaussian-dynamics_2023.pdf

accesso aperto

Note: Articolo su rivista
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 2.09 MB
Formato Adobe PDF
2.09 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1683018
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 2
social impact