Although quantile regression to calculate risk measures is widely established in the financial literature, when considering data observed at mixed-frequency, an extension is needed. In this paper, a model is built on a mixed-frequency quantile regressions to directly estimate the Value-at-Risk (VaR) and the Expected Shortfall (ES) measures. In particular, the lowfrequency component incorporates information coming from variables observed at, typically, monthly or lower frequencies, while the high-frequency component can include a variety of daily variables, like market indices or realized volatility measures. The conditions for the weak stationarity of the daily return process are derived and the finite sample properties are investigated in an extensive Monte Carlo exercise. The validity of the proposed model is then explored through a real data application using two energy commodities, namely, Crude Oil and Gasoline futures. Results show that our model outperforms other competing specifications, on the basis of some popular VaR and ES backtesting test procedures.

Mixed-frequency quantile regressions to forecast value-at-risk and expected shortfall / Candila, Vincenzo; Gallo, Giampiero M.; Petrella, Lea. - In: ANNALS OF OPERATIONS RESEARCH. - ISSN 1572-9338. - (2023). [10.1007/s10479-023-05370-x]

Mixed-frequency quantile regressions to forecast value-at-risk and expected shortfall

Lea Petrella
2023

Abstract

Although quantile regression to calculate risk measures is widely established in the financial literature, when considering data observed at mixed-frequency, an extension is needed. In this paper, a model is built on a mixed-frequency quantile regressions to directly estimate the Value-at-Risk (VaR) and the Expected Shortfall (ES) measures. In particular, the lowfrequency component incorporates information coming from variables observed at, typically, monthly or lower frequencies, while the high-frequency component can include a variety of daily variables, like market indices or realized volatility measures. The conditions for the weak stationarity of the daily return process are derived and the finite sample properties are investigated in an extensive Monte Carlo exercise. The validity of the proposed model is then explored through a real data application using two energy commodities, namely, Crude Oil and Gasoline futures. Results show that our model outperforms other competing specifications, on the basis of some popular VaR and ES backtesting test procedures.
2023
Value-at-risk; Expected shortfall; Quantile regression; Mixed-frequency variables; Volatility
01 Pubblicazione su rivista::01a Articolo in rivista
Mixed-frequency quantile regressions to forecast value-at-risk and expected shortfall / Candila, Vincenzo; Gallo, Giampiero M.; Petrella, Lea. - In: ANNALS OF OPERATIONS RESEARCH. - ISSN 1572-9338. - (2023). [10.1007/s10479-023-05370-x]
File allegati a questo prodotto
File Dimensione Formato  
Candila_Mixed-frequency-quantile_2023.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 749.46 kB
Formato Adobe PDF
749.46 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1682190
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact