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Abstract
Although quantile regression to calculate risk measures is widely established in the financial
literature, when considering data observed at mixed-frequency, an extension is needed. In
this paper, a model is built on a mixed-frequency quantile regressions to directly estimate
the Value-at-Risk (VaR) and the Expected Shortfall (ES) measures. In particular, the low-
frequency component incorporates information coming from variables observed at, typically,
monthly or lower frequencies, while the high-frequency component can include a variety of
daily variables, like market indices or realized volatility measures. The conditions for the
weak stationarity of the daily return process are derived and the finite sample properties
are investigated in an extensive Monte Carlo exercise. The validity of the proposed model
is then explored through a real data application using two energy commodities, namely,
Crude Oil and Gasoline futures. Results show that our model outperforms other competing
specifications, on the basis of some popular VaR and ES backtesting test procedures.

Keywords Value-at-risk · Expected shortfall · Quantile regression · Mixed-frequency
variables · Volatility

JEL Classification C22 · C52 · C53 · C58

B Vincenzo Candila
vcandila@unisa.it

Giampiero M. Gallo
giampiero.gallo@nyu.edu

Lea Petrella
lea.petrella@uniroma1.it

1 Department of Economics and Statistics, University of Salerno, Fisciano, Italy

2 Italian Court of Audits (Corte dei conti) and NYU in Florence, Florence, Italy

3 Department of Methods and Models for Economics, Territory and Finance, Sapienza University of
Rome, Rome, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-023-05370-x&domain=pdf
http://orcid.org/0000-0002-3215-793X
http://orcid.org/0000-0003-3556-0238
http://orcid.org/0000-0002-1653-5443


Annals of Operations Research

1 Introduction

Riskmanagement has spurred a vast literature infinancial econometrics tomeet the challenges
imposed by the Basel-II and Basel-III agreements and develop model-based approaches to
calculate regulatory capital requirements (Kinateder, 2016) in a forecasting perspective. For
tail market risk, special attention was devoted to the Value-at-Risk (VaR) measure at a given
confidence level τ , VaR(τ ), defined as the worst portfolio value movement (return) to be
expected at 1 − τ probability over a specific horizon (Jorion, 1997). The VaR measure
is complemented by another tail risk measure called Expected Shortfall (ES), defined as
the conditional expectation of returns in excess of the VaR (see Acerbi & Tasche, 2002a,
Rockafellar & Uryasev, 2002, among others). Unlike VaR, ES is a coherent risk measure
(Artzner et al., 1999; Acerbi & Tasche, 2002b) and provides deeper information on the shape
and the heaviness of the tail in the loss distribution. Together, such measures represent the
most popular benchmark in the riskmanagement practice (Christoffersen&Gonçalves, 2005;
Sarykalin et al., 2008).

Being the τ -quantile of a portfolio return distribution, the VaR(τ ) can be predicted as the
product of the portfolio volatility forecast times the quantile of the hypothesized distribu-
tion. For the first component, volatility clustering, modeled by conditionally autoregressive
models (such as the ARCH/GARCH - Engle, 1982; Bollerslev, 1986), produces good fore-
casts capable of reproducing well known stylized facts of financial time series, including
skewed behavior and fat tails (Cont, 2001, Engle & Patton, 2001, among others). Further
improvements were made possible by the direct predictability of realized measures of finan-
cial volatility (Andersen et al., 2006b). While a choice of a specific parametric distribution
for the innovation term may be uninfluential for model parameter estimation (Bollerslev &
Wooldridge, 1992), unless a few extreme events (e.g. the Flash Crash of May 2005 or the
presence of outliers, Carnero et al., 2012) occur, a wrong choice of distribution for the inno-
vation term delivers inaccurate quantiles and hence an inadequate VaR(τ ) forecasting: see
for example Manganelli and Engle (2001) and El Ghourabi et al. (2016).

As an alternative, the VaR(τ ) can be directly derived through quantile regression methods
(Koenker & Bassett, 1978; Engle &Manganelli, 2004) where no distributional hypothesis is
required. A first suggestion in this direction comes from Koenker and Zhao (1996) who use
quantile regression for a particular class of ARCH models, i.e., the Linear ARCH models
(Taylor, 1986), chosen for its ease of tractability in deriving theoretical properties. Subsequent
refinements are, for instance, Xiao and Koenker (2009), Lee and Noh (2013), Zheng et al.
(2018) for GARCHmodels, Noh and Lee (2016) who consider asymmetry, Chen et al. (2012)
who consider nonlinear regression quantile approach with intra-day price, Bayer (2018) who
combines VaR forecasts via penalized quantile regressions, Taylor (2019) who considers
the Asymmetric Laplace distribution to jointly estimate VaR and ES and the multivariate
generalization of Merlo et al. (2021).

A relatively recent stream of literature investigates the value of information provided
by data available at both high- and low-frequency incorporated into the same model in
assessing the dynamics of financial market activity: this is the case of the GARCH-MIDAS
model proposed by Engle et al. (2013) (building on the MI(xed)-DA(ta) Sampling approach
by Ghysels et al., 2007), the regime switching GARCH-MIDAS of Pan et al. (2017), the
recent paper by Xu et al. (2021) who consider a MIDAS component in the Conditional
Autoregressive Value-at-Risk (CAViaR) of Engle and Manganelli (2004), the work of Pan
et al. (2021) where the parameters of the GARCH-MIDAS models for jointly calculating
VaR and ES are obtained through the loss function of Fissler and Ziegel (2016), and the
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contribution of Xu et al. (2022) who calculate the weekly tail risks of three market indices
using information from daily variables.

The main contribution of this paper is a novel Mixed-Frequency Quantile Regression
model (MF-QR, extending Koenker & Zhao, 1996): we show how the constant term in
the quantile regression can be written as a function of data sampled at lower frequencies
(and hence becomes a low-frequency component), while the high-frequency component is
regulated by the daily data. As a result, with the aim of capturing dependence on the business
cycle, we benefit from the information contained in low-frequency variables (cf. Mo et al.,
2018, Conrad & Loch, 2015, among others), and we achieve a rather flexible representation
of volatility dynamics. Since both components enter additively, our model can be seen as a
quantile model version of the Component GARCH by Engle and Lee (1999).

In the proposed model, we also include a predetermined variable observed daily, typically
a realized measure: this adds the “–X” component in the resulting MF-QR-X model. This
variable can capture extra information useful in modeling and forecasting future volatility
and may improve the accuracy of tail risk forecasts. Such a use in the quantile regression
framework is not new in itself: the paper by Gerlach and Wang (2020) jointly forecasts VaR
and ES and Zhu et al. (2021) predict VaR by adopting a GARCH-X model for the volatility
term. Also the work of Žikeš and Baruník (2016) uses the realized measures in the context of
quantile regressions to investigate the features of conditional quantiles of realized volatility
and asset returns.

The proposedMF-QR-X specification and its nested alternatives (including theQRversion
of Koenker and Zhao 1996) belong to the class of semi-parametric models, without resorting
to restrictive assumptions about the error term distribution and are able to calculate the VaR
directly. Such a model can also jointly forecast the VaR and ES via the Asymmetric Laplace
distribution as proposed by Taylor (2019).

From a theoretical point of view, we provide the conditions for the weak stationarity of
the daily return process suggested. The finite sample properties are investigated through an
extensive Monte Carlo exercise. The empirical application is carried out on the VaR and
ES predictive capability for two energy commodities, the West Texas Intermediate (WTI)
Crude Oil1 and the Reformulated Blendstock for Oxygenate Blending (RBOB) Gasoline
futures, both observed daily. The period under investigation starts on January 2010 and ends
on July 2022, covering both the Covid-19 pandemic and some consequences of the Russian
aggression of Ukraine. The competing models consist of many common parametric, semi-
parametric and non-parametric choices. Some parametric models like the GARCH-MIDAS
use the same low-frequency variable employed in the proposed MF-QR-X specification.
Given our empirical interest in evaluating risks related to energy commodities, a relevant
choice for such a variable is the geopolitical risk (GPR) index proposed by Caldara and
Iacoviello (2022), observed monthly.2 The resulting VaR and ES predictions are evaluated
in- and out-of-sample, according to the customary backtesting procedures: our out-of-sample
period starts on January 2017 and ends on July 2022, and the VaR and ES forecasts are
obtained using a rolling window that updates the parameter estimates every five, ten and
twenty days. The results show that ourMF-QR-Xoutperforms all the other competingmodels
considered, proving the merits of resorting to a mixed-frequency source of information. The
useful contribution of a low-frequency variable in a risk management perspective thus lies in

1 The VaR and ES of this commodity have been recently investigated by Kuang (2022)
2 The monthly GPR index we use is built through an automated text-search on the articles of ten newspapers
in relationship to eight risk categories. Such an index has been extensively used in many recent contributions
concerning oil volatility (see, for instance, Liu et al., 2019, Mei et al., 2020, Qin et al., 2020, among others).
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its capability of capturing secular movements in the conditional distributions related to risk
factors slowly shifting through time.

The rest of the paper is organized as follows. In Sect. 2 we introduce the notation and
the basis for a dynamic model for the VaR and ES and we provide details of the conditional
quantile regression approach. Section3 presents ourMF-QR-Xmodel. Section4 is devoted to
theMonteCarlo experiment. Section5 details the backtesting procedures. Section6 illustrates
the empirical application. Conclusions follow.

2 Approaches to VaR and ES estimation

For the purposes of this paper we will adopt a double time index, i, t , where t = 1, . . . , T
scans a low frequency time scale (i.e., monthly) and i = 1, . . . , Nt identifies the day of the
month, with a varying number of days Nt in the month t , and an overall number N of daily
observations N = ∑T

t=1 Nt . Let the daily returns ri,t be, as customarily defined, the log-first
differences of prices of an asset or a market index, and let the information available at time
i, t be Fi,t . In what follows, we are interested in the conditional distribution of returns, with
the assumption:

ri,t = σi,t zi,t with t = 1, . . . , T , i = 1, . . . , Nt , (1)

where zi,t
i id∼ (0, 1) have a cumulative distribution function denoted by F(·). The zero con-

ditional mean assumption in Eq. (1) is not restrictive; in fact, when explicitly modeled, such
a conditional mean is very close to zero, consistently with the market efficiency hypothesis.

Based on this setup, the conditional (one-step-ahead)VaR for day i, t at τ level (VaRi,t (τ ))
for ri,t is defined as

Pr(ri,t < VaRi,t (τ )|Fi−1,t ) = τ,

i.e., the τ -th conditional quantile of the series ri,t , given Fi−1,t ; consequently, we can write

VaRi,t (τ ) ≡ Qri,t

(
τ |Fi−1,t

) = σi,t F
−1(τ ), (2)

where F−1(τ ) = inf
{
zi,t : F(zi,t ) ≥ τ

}
. For a given τ , the traditional volatility–quantile

approach to estimate the VaRi,t (τ ) is thus based on modeling σi,t from a dynamic model
of either the conditional variance of returns (following Engle, 1982, Bollerslev, 1986) or as
a conditional expectation of a realized measure (Andersen et al., 2006a) and retrieving the
constant F−1(τ ) either parametrically or nonparametrically. In either case, from an empirical
point of view, it turns out that distribution tests mostly reject specific parametric choices, and
that using the empirical distributions is prone to bias/variance problems and lack of stability
through time.

Alternatively, we can estimate Qri,t

(
τ |Fi−1,t

)
directly using a quantile regression

approach (Koenker & Bassett, 1978; Engle &Manganelli, 2004) which has become a widely
used technique in many theoretical problems and empirical applications. While classical
regression aims at estimating the mean of a variable of interest conditioned to regressors,
quantile regression provides a way to model the conditional quantiles of a response variable
with respect to a set of covariates in order to have a more robust and complete picture of
the entire conditional distribution. This approach is quite suitable to be used in all the sit-
uations where specific features, like skewness, fat-tails, outliers, truncation, censoring and
heteroskedasticity are present. The basic idea behind the quantile regression approach, as
shown by Koenker and Bassett (1978), is that the τ -th quantile of a variable of interest (in
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our case ri,t ), conditional on the information set Fi−1,t , can be directly expressed as a linear
combination of a q+1 vector of variables xi−1,t (including a constant term), with parameters
�τ , that is:

Qri,t

(
τ |Fi−1,t

) = x ′
i−1,t�τ . (3)

An estimator for the (q + 1) vector of coefficients �τ is obtained minimizing a suitable loss
function (also known as check function):

�̂τ = argmin
�

∑
ρτ

(
ri,t − x ′

i−1,t�τ

)
, (4)

with ρτ (u) = u (τ − 1 (u < 0)), where 1 (·) denotes an indicator function. In our context,
the advantage of such an approach is to avoid the need to specify the distribution of zi,t in
Eq. (1), either parametrically or nonparametrically.

Following the approach by Koenker and Zhao (1996), we assume a dependence of σi,t on
past absolute values of returns:

σi,t = β0 + β1|ri−1,t | + · · · + βq |ri−q,t |, with t = 1, . . . , T , i = 1, . . . , Nt , (5)

with 0 < β0 < ∞, β1, . . . , βq ≥ 0. Thus, substituting the generic term xi−1,t in Eq. (3) with
the specific vector in Eq. (5), we have

σi,t = (
1, |ri−1,t |, . . . , |ri−q,t |

)′ (
β0, β1, . . . , βq

) = x ′
i−1,t�. (6)

Such an approach turns out to be convenient, since it allows for a direct comparability of the
two setups to estimate the VaR(τ ) in Eq. (2):

VaRi,t (τ ) =
{
x ′
i−1,t� F−1(τ ) volatility–quantile
x ′
i−1,t�τ conditional quantile regression,

(7)

which establishes the equivalence � F−1(τ ) = �τ which will prove useful later in our
Monte Carlo simulations. Moreover, as also pointed out by Koenker and Zhao (1996), what
we estimate in the conditional quantile regression framework are the parameters in�τ , which
are different from the parameters included in � of the volatility–quantile context. While the
parameters in � are constrained to be non-negative, the parameters in �τ may be negative
depending on the value of τ . The volatility–quantile and conditional quantile regression
options in Eq. (7) give rise to the so-called parametric and semi-parametric models for the
VaR, respectively.Alternatively, themost prominent example of a non-parametric approach to
derive the VaR is the Historical Simulation (HS - Hendricks, 1996). The HSmodel calculates
this risk measure as the empirical quantile over a window of returns with length w, that is:

VaRi,t (τ ) = Q rw
i,t

(τ ), (8)

where rw
i,t = (ri−w,t , ri−w+1,t , . . . , ri−1,t ).

The linear representation in (5) can be further justified by noting that the term σi,t defining
the volatility of returns can also be seen as the conditional expectation of absolute returns in
the Multiplicative Error Model representation used by Engle and Gallo (2006):

|ri,t | = σi,tηi,t . (9)

The term ηi,t is an i.i.d. innovation with non-negative support and unit expectation, and the
Eq. (9) can be used to derive an estimate of the VaR. The representation in (5) can also be seen
as a simple and convenient nonlinear autoregressivemodel for |ri,t |withmultiplicative errors,
which we hold as the maintained base specification to explore the merits of our proposal.
Moreover, this lays the grounds for extending the approach, using other specifications for
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σi,t in Eq. (5) as functions of past volatility-related observable variables. For example, as an
alternative, we can consider:

σi,t = ω + α1rvi−1,t + · · · + αqrvi−q,t , with t = 1, . . . , T , i = 1, . . . , Nt ,

with rvi,t the daily realized volatility.
A similar framework can be adopted to calculate the ES, following, again, the same para-

metric, non-parametric and semi-parametric approaches as before. The parametric models
with Gaussian error distribution calculate the ES through:

ESi,t (τ ) = −h1/2i,t
φ(�−1(τ ))

τ
, (10)

where hi,t is the conditional variance, φ(·) and �−1(τ ) are the probability density func-
tion (PDF) and quantile function of the standard Gaussian distribution, respectively. The
parametric models with Student’s t error distribution calculate the ES via:

ESi,t (τ ) = −h1/2i,t

(
gν(G−1

ν (τ ))

τ

)(
ν + (G−1

ν (τ ))2

ν − 1

)√
ν − 2

ν
, (11)

where gν and G−1
ν (τ ) are the PDF and quantile function of the Student’s t with ν degrees of

freedom, respectively.
The HS calculates the ES as follows:

ESi,t (τ ) =
∑w

i=1 rt−w−1+i1(rt−w−1+i≤VaRi,t (τ ))
∑w

i=1 1(rt−w−1+i≤VaRi,t (τ ))

, (12)

where VaRi,t (τ ) is the VaR obtained through Eq. (8).
Following Taylor (2019), the quantile regression framework allows to jointly estimate the

VaR and ES by maximizing the following Asymmetric Laplace density (ALD), that is:

f (ri,t | VaRi,t (τ ), τ ) = τ − 1

ESi,t (τ )
exp

((
ri,t − VaRi,t (τ )

) (
τ − 1(ri,t≤VaRi,t (τ ))

)

τ ESi,t (τ )

)

,

(13)
where the ES in (13) is calculated as:

ESi,t (τ ) = (1 + exp (γES)) VaRi,t (τ ). (14)

We nowmove to the introduction of ourMIDAS extension to the model in (5) in a quantile
regression framework, taking advantage of thewell-knownpredictive power of low-frequency
variables for the volatility observed at a daily frequency (e.g. Conrad & Kleen, 2020). We
also add an “–X” term to the proposed specification. This additional high-frequency variable
could be a lagged realized measure of volatility (see also Gerlach & Wang, 2020, within a
CAViAR context), in order to add the informational content of a more accurate measure to
the volatility dynamics, or a volatility index, like the VIX, or even accommodate asymmetric
effects associated to negative returns.

3 TheMF-QR-Xmodel

3.1 Model specification and properties

In order to take advantage of the information coming from variable(s) observed at different
frequency, we introduce a low-frequency component in model (5). This low-frequency term
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represents a one-sided filter of K lagged realizations of a given variable MVt (any low-
frequency variable), through a weighting function δ(ω), where ω = (ω1, ω2). Our resulting
Mixed-Frequency Quantile Regression (MF-QR) model becomes:

ri,t =
[(

β0 + θ

∣
∣
∣

K∑

k=1

δk(ω)MVt−k

∣
∣
∣

)

+ (
β1|ri−1,t | + · · · + βq |ri−q,t |

)
]

zi,t (15)

≡ [
(β0 + θ |WSt−1|) + (β1|ri−1,t | + · · · + βq |ri−q,t |)

]
zi,t , (16)

where the parameter θ represents the impact of the weighted summation of the K past
realizations of MVt , observed at each period t , that is, WSt−1 = ∑K

k=1 δk(ω)MVt−k . The
importance of each lagged realization of MVt depends on δ(ω), which can be assumed as a
Beta or Exponential Almon lag function (see, for instance, Ghysels & Qian, 2019). Here we
use the former function, that is:

δk(ω) = (k/K )ω1−1(1 − k/K )ω2−1

∑K
j=1( j/K )ω1−1(1 − j/K )ω2−1

. (17)

Equation (17) is a rather flexible function able to accommodate various weighting schemes.
Here we follow the literature and give a larger weight to the most recent observations,
that is, we set ω1 = 1 and ω2 ≥ 1. The resulting weights δk(ω) are at least zero and at
most one, and their sum equals one, so that

∑K
k=1 δk(ω)MVt−k is an affine combination of

(MVt−1, · · · , MVt−K ).
In order to refine theVaRdynamics in ourmodel,we include a predetermined variable Xi,t ,

so that we can explore the empirical merits of such an extended specification, already present
in the GARCH and MEM literature (Han & Kristensen, 2015; Engle & Gallo, 2006). Such a
variable may be the realized volatility of the asset or a market volatility index (see the use of
the VIX in Amendola et al., 2021, among others). The resulting eXtended Mixed-Frequency
Quantile Regression model, labelled MF-QR-X, becomes:

ri,t = [
(β0 + θ |WSt−1|) + (β1|ri−1,t | + · · · + βq |ri−q,t | + βX |Xi−1,t |)

]
zi,t . (18)

In either Eqs. (16) or (18), the first component (including the constant) depends only
on the low-frequency term (changing at every t , according to the term WSt−1), while the
second comprises variables changing daily (i.e., every i, t) and include lagged returns and
the high-frequency term. In such a representation, the two components enter additively, in
the spirit of the component model of Engle and Lee (1999):

ri,t =
[
σ LF
t + σ HF

i,t

]
zi,t , (19)

which, for the MF-QR-X model, becomes

ri,t =

⎡

⎢
⎢
⎣(β0 + θ |WSt−1|)︸ ︷︷ ︸

σ LF
t

+ (β1|ri−1,t | + . . . + βq |ri−q,t | + βX |Xi−1,t |)
︸ ︷︷ ︸

σ HF
i,t

⎤

⎥
⎥
⎦ zi,t . (20)

In the following theorem we show that, under mild conditions, the process in (20) is weakly
stationary:

Theorem 1 Let MVt and Xi,t be weakly stationary processes. Assume that β0 > 0,

β1, · · · , βq , βx ≥ 0 and θ ≥ 0. Let z∗ ≡ (
E |zi,t |p

)1/p
< ∞, for p = {1, 2} and the

polynomial
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φ(λ) = z∗
(
β1λ

q+1 + β2λ
q + · · · + βqλ

q−2) − λq+2 (21)

has all roots λ inside the unit circle. Then the process ri,t in (20) is weakly stationary.

Proof: see “Appendix A”.

3.2 Inference on theMF-QR-XModel

In order to make inference on the MF-QR-X model, we need to solve Eq. (4) where

xi−1,t = (
1, |WSt−1|, |ri−1,t |, . . . , |ri−q,t |, |Xi−t,t |

)′ (22)

�τ = (
β0,τ , θτ , β1,τ , . . . , βq,τ , βX ,τ

)
. (23)

The estimation of the vector �τ is encumbered by the fact that the mixed-frequency term
WSt−1 is not observable, as it depends on the unknownω2 parameter of theweighting function
δk(ω), also to be estimated. Tomake estimation feasible,we resort to the expedient of profiling
out3 the parameter ω2, through a two-step procedure: we first fix ω2 at an initial arbitrary
value, say ω

(b)
2 , which turns the vector xi−1,t into a completely observable counterpart, in

short x (b)
i−1,t . This gives a solution to theminimization of the loss function, which is dependent

on ω
(b)
2 , that is,

�̂τ (ω
(b)
2 ) ≡ �̂(b)

τ = argmin
�τ

∑
ρτ

(

ri,t −
(
x (b)
i−1,t

)′
�τ

)

. (24)

This procedure is repeated over a grid of B values for ω2, so that we have
{
�̂

(b)
τ

}B

b=1
, and

the chosen overall estimator is
(
ω̂∗
2, �̂

(∗)
τ

)
, corresponding to the smallest overall value of the

loss function.
Accordingly, the MF-QR-X estimator of the VaR is

Q̂ri,t

(
τ |Fi−1,t

) =
(
x (∗)
i−1,t

)′
�̂(∗)

τ . (25)

Summarizing, the proposed MF-QR-X is thus a flexible VaR model not requiring any
distributional assumptions for the error term and accommodating both low-frequency and
high-frequency additional variables. In Sect. 6, we will elaborate on its capability to jointly
estimate the VaR and ES, adopting the approach proposed by Taylor (2019).

To obtain reliable VaR and ES estimates in our model (25), an important issue is the
choice of the optimal number of lags q for the daily absolute returns in Eq. (5). To that end,
we select the lag order suggested by a sequential likelihood ratio (LR) test on individual
lagged coefficients (see also Koenker &Machado, 1999). In particular, for a given τ , at each
step j of the testing sequence over a range of J values, we compare the unrestricted model
where the number of lags is set equal to j (labelled U, with an associated loss function V ( j)

U ,τ ),
against a restricted model where the number of lags is j − 1 (labelled R, with an associated
loss function V ( j−1)

R,τ ). In this setup, the null hypothesis of interest is

H0 : β j = 0, (26)

i.e., the coefficient on the most remote lag is zero. The procedure starts contrasting a lag-1
model against a model with just a constant, then a lag-2 against a lag-1, and so on.

3 A profiling out strategy was used by Engle et al. (2013) for the parameter K in the GARCH-MIDAS model.
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Table 1 Percentage of rejection of the LR test for the null β j = 0

N VaR coverage

τ = 0.01 τ = 0.05 τ = 0.1

1250 2500 5000 1250 2500 5000 1250 2500 5000

β1 = 0 99.56 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

β2 = 0 97.66 100.00 100.00 99.88 100.00 100.00 99.82 100.00 100.00

β3 = 0 85.76 99.14 100.00 95.60 99.94 100.00 94.34 99.86 100.00

β4 = 0 52.88 82.84 98.44 69.36 93.16 99.70 65.78 90.70 99.58

β5 = 0 4.46 4.98 4.90 5.38 6.30 6.56 6.40 6.34 6.56

β6 = 0 4.86 5.24 5.00 5.14 5.56 5.80 5.16 5.58 5.92

The table presents the percentage of rejection for the null in the first column, across all the Monte Carlo
replicates, for three different configurations of N and τ

For a given τ , at each step j , we calculate the test statistic

LR( j)
τ =

2
(
V ( j−1)
R,τ − V ( j)

U ,τ

)

τ (1 − τ) s(τ )
, (27)

where s(τ ) is the so-called sparsity function estimated accordingly to Siddiqui (1960) and
Koenker and Zhao (1996). Under the adopted configuration, LR( j)

τ is asymptotically dis-
tributed as a χ2

1 , so that we select q to be the last value of j in the sequence, for which we
reject the null hypothesis.

4 Monte Carlo simulation

The finite sample properties of the sequential test and of the estimator of the MF-QR model4

can be investigated by means of a Monte Carlo experiment. In what follows we consider
R = 5000 replications of the data generating process (DGP):

ri,t = (
β0 + θ |WSt−1| + β1|ri−1,t | + β2|ri−2,t | + β3|ri−3,t | + β4|ri−4,t |

)
zi,t ,

where we assume a N (0, 1) distribution for zi,t and we set to zero the relevant initial values
for ri,t . Moreover, the stationary variable MVt entering the weighted sumWSt−1 is assumed
to be drawn from an autoregressive AR(1) process MVt = ϕMVt−1 + et , with ϕ = 0.7 and
the error term et following a Skewed t-distribution (Hansen, 1994), with degrees of freedom
d f = 7 and skewing parameter sp = −6. The frequency of MVt is monthly and K = 24.
The values of the parameters (collected in a vector �) are detailed in the first column of
the Tables 2, 3 and 4. For the simulation exercise we consider N = 1250, N = 2500 and
N = 5000 observations, to mimic realistic daily samples. Having fixed K = 24 (that is, two
years of monthly data), the number of daily observations should be large enough to allows
for model estimation. In our case, we set this limit to 1250 daily observations. Finally, three
different levels of the VaR coverage level τ are chosen: 0.01, 0.05, and 0.10.

In the Monte Carlo experiment, we start by evaluating the features of the LR test for
the lag selection in Eq. (27). To that end, we test sequentially H0 : β j = 0 over J steps at

4 For simplicity, we have focused here on the case without the “–X” component.

123



Annals of Operations Research

Table 2 Monte Carlo estimates,
τ = 0.01 True � �̂ MSE �̂ MSE �̂ MSE

N = 1250 N = 2500 N = 5000

β0 0.050 0.079 0.040 0.064 0.019 0.058 0.009

θ 0.125 0.124 0.013 0.126 0.007 0.125 0.003

β1 0.300 0.286 0.009 0.292 0.005 0.296 0.002

β2 0.250 0.236 0.008 0.242 0.004 0.246 0.002

β3 0.200 0.187 0.008 0.194 0.004 0.196 0.002

β4 0.150 0.143 0.007 0.146 0.004 0.149 0.002

ω2 2.000 1.993 0.010 1.991 0.010 1.984 0.010

The first column shows the true values of the � coefficients in the DGP.
Simulations were replicated 5000 times, according to three different
window lengths: N = 1250, N = 2500, and N = 5000. Columns

�̂ report the averages of the estimated parameters across replications.
Columns labeled MSE refer to the Mean Square Error of the estimated
coefficients relative to the true values

Table 3 Monte Carlo estimates,
τ = 0.05 True � �̂ MSE �̂ MSE �̂ MSE

N = 1250 N = 2500 N = 5000

β0 0.050 0.066 0.025 0.057 0.012 0.053 0.006

θ 0.125 0.123 0.008 0.125 0.004 0.125 0.002

β1 0.300 0.294 0.006 0.297 0.003 0.299 0.002

β2 0.250 0.242 0.006 0.246 0.003 0.248 0.001

β3 0.200 0.195 0.005 0.196 0.003 0.198 0.001

β4 0.150 0.146 0.005 0.148 0.002 0.149 0.001

ω2 2.000 1.991 0.010 1.985 0.010 1.977 0.009

The first column shows the true values of the � coefficients in the DGP.
Simulations were replicated 5000 times, according to three different
window lengths: N = 1250, N = 2500, and N = 5000. Columns

�̂ report the averages of the estimated parameters across replications.
Columns labeled MSE refer to the Mean Square Error of the estimated
coefficients relative to the true values

a significance level α. Since the DGP is a fourth-order process, we expect to have a high
rejection rate when the null involves a zero restriction on coefficients β j , j = 1, . . . , 4. In
order to confirm the expected low rate of rejections, we extend the sequence of testing of
further β j ’s, up to J = 6.

Looking at the Table 1, where we report the percentages of rejections for different VaR
coverage levels τ = 0.01, 0.05, 0.1 at the nominal significance level of α = 5% across
replications, we validate the good behavior of the test. Overall, the sequential test procedure
satisfactorily identifies the number of lags to be included in the MF-QR model, with the
performance improving with the number of observations, especially for H0 : β4 = 0; for the
latter case, the percentage of rejections of the null increases considerably across coverage
levels when N = 5000.

Turning to the small sample properties of our estimator, the evaluation is done in terms of
the original coefficients in the DGP, collected in the vector � = (

β0, θ, β1, . . . , βq
)
, using
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Table 4 Monte Carlo estimates,
τ = 0.1 True � �̂ MSE �̂ MSE �̂ MSE

N = 1250 N = 2500 N = 5000

β0 0.050 0.063 0.026 0.057 0.013 0.053 0.006

θ 0.125 0.124 0.009 0.124 0.004 0.125 0.002

β1 0.300 0.296 0.006 0.297 0.003 0.299 0.002

β2 0.250 0.244 0.006 0.246 0.003 0.248 0.002

β3 0.200 0.196 0.006 0.198 0.003 0.199 0.002

β4 0.150 0.145 0.005 0.148 0.003 0.149 0.001

ω2 2.000 1.992 0.010 1.986 0.010 1.979 0.009

The first column shows the true values of the � coefficients in the DGP.
Simulations were replicated 5000 times, according to three different
window lengths: N = 1250, N = 2500, and N = 5000. Columns

�̂ report the averages of the estimated parameters across replications.
Columns labeled MSE refer to the Mean Square Error of the estimated
coefficients relative to the true values

the relationshipwith the quantile regression parameters�τ , i.e.,� = �τ/F−1(τ ).5 In Tables
2, 3 and 4 we report the Monte Carlo averages of the parameters (�̂) across replications for
three levels of τ , and the estimated Mean Squared Errors relative to the true values.

Overall, the proposed model presents good finite sample properties: independently of
the τ level chosen, for small sample sizes, the estimates appear, in general, slightly biased,
although, reassuringly, the MSE of the estimates relative to the true values always decreases
as the sample period increases.

5 Model evaluation

In order to evaluate the quality of the tail risk estimates we can resort to a set of tests suitable
to the needs of risk management. Above all, the backtesting procedure is very popular in
evaluating risk measure performance (see the reviews of Campbell, 2006, Nieto & Ruiz,
2016, among others). For our model we use the Actual over Expected (AE) exceedance
ratio and five other tests in this class: the Unconditional Coverage (UC, Kupiec, 1995), the
Conditional Coverage (CC, Christoffersen, 1998), and the Dynamic Quantile (DQ, Engle &
Manganelli, 2004) tests for the VaR and the UC and CC tests for the ES (Acerbi & Szekely,
2014).

The AE exceedance ratio is the number of times that the VaRmeasures have been violated
over the expectedVaR violations. The closer to one the ratio, the better is themodel to forecast
VaRs. The UC test is a LR-based test, where the null hypothesis assesses whether the actual
frequency of VaR violations is equal to the chosen τ level. Formally, the null hypothesis of
the UC test is

H0 : π = τ,

where π = E[Li,t (τ )], with Li,t (τ ) = 1(ri,t<VaRi,t (τ )) representing the series of VaR vio-

lations. The UC test statistic is asymptotically χ2 distributed, with one degree of freedom,
assuming independence of the Li,t (τ ) series.

5 As per the parameter ω2, the grid search is done over 100 values and the applied rescaling factor is equal to
1, as its value is unaffected by τ .
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Another critical aspect to test for is the independence ofVaRviolations over time. Themain
idea is to discard models whose VaR forecasts are violated in subsequent days. Moreover, if
the assumption of independence is not satisfied by the violations, the asymptotic results on
the distribution of the UC test can fail to hold. The independence test used in this context is
that of Christoffersen (1998), where the null hypothesis consists of independence of Li,t (τ ),
while the alternative hypothesis is that Li,t (τ ) follows a first-order Markov Chain. Under
H0, the LR-based test is asymptotically χ2 distributed, with one degree of freedom.

An overall assessment of the VaRmeasures is given by the CC test conducted on both null
hypotheses of the UC and of the independence tests jointly (asymptotically the test statistic
is χ2 distributed, with two degrees of freedom).

The DQ test also applies to the independence of the VaR violations jointly with the
correctness of the number of violations as the CC test, but it was shown (Berkowitz et al.,
2011) to have more power over it. In particular, the DQ test consists of running a linear
regression where the dependent variable is the sequence of VaR violations and the covariates
are the past violations and possibly any other explanatory variables. More in detail, let
Hiti,t (τ ) = Li,t (τ ) − τ be the so-called series of the hit variable. This series, under correct
specification, should have zero mean, be serially uncorrelated and, moreover, uncorrelated
with any other past observed variables. The DQ test can be carried via the following OLS
regression:

Hiti,t (τ ) = β0 +
K1∑

k=1

βk Hiti−k,t (τ ) +
K2∑

k=1

γk Zi−k,t (τ ) + ui,t , (28)

where ui,t is the error term and Zi,t (τ )’s include potentially relevant variables belonging to
the available information set, like, for instance, previous Hits, lagged VaR or past returns.
In matrix notation, the OLS regression in (28) becomes:

Hi t = Zψ + u, (29)

where the vector Hi t has dimension N (with N indicating the total number of obser-
vations), the matrix of predictors Z has dimension N × (K1 + K2 + 1), the vector
ψ = (

β0, β1, . . . , βK1 , γ1, . . . , γK2

)
has dimension (K1 + K2 + 1), and the error vector

u has dimension N . Under correct specification we test the null ψ = 0 with a test statistic:

DQCC = ψ̂
′
Z

′
Zψ̂

τ(1 − τ)

d→ χ2
K1+K2+1,

where ψ̂ is the estimated vector of coefficients obtained from the OLS regression in (29).
For the expected shortfall ES, the UC test of Acerbi and Szekely (2014) is based on the

following statistic:

ZUC = 1

N (1 − τ)

Nt∑

i=1

T∑

t=1

ri,t Li,t (τ )

ESi,t (τ )
+ 1. (30)

If the distributional assumptions are correct, the expected value of ZUC is zero, that is
E (ZUC ) = 0. The CC test of Acerbi and Szekely (2014) has the following statistic:

ZCC = 1

NumFail

Nt∑

i=1

T∑

t=1

ri,t Li,t (τ )

ESi,t (τ )
+ 1, (31)

where NumFail = ∑Nt
i=1

∑T
t=1 Li,t (τ ). If the distributional assumptions are correct,

the expected value of ZCC , given that there is at least one VaR violation, is zero, i.e.
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Table 5 Summary statistics

Obs. Min. Max. Mean SD Skew. Kurt.

Full sample: 2010/2022-07

Crude Oil 3160 −0.602 0.320 0.006 0.029 −2.840 80.150

Gasoline 3159 −0.385 0.224 0.016 0.027 −1.603 30.230

VIX 3159 0.006 0.052 1.165 0.005 2.359 10.367

GPR 151 −0.451 0.863 2.250 0.219 1.093 2.045

In-sample: 2010/2016

Crude Oil 1760 −0.108 0.116 −0.022 0.021 0.131 2.877

Gasoline 1759 −0.162 0.217 −0.012 0.022 0.131 9.388

VIX 1759 0.007 0.030 1.129 0.004 1.760 3.506

GPR 84 −0.364 0.737 1.851 0.197 1.099 1.956

Out-of-sample: 2017/2022-07

Crude Oil 1400 −0.602 0.320 0.042 0.036 −3.334 73.037

Gasoline 1400 −0.385 0.224 0.050 0.031 −2.268 31.855

VIX 1400 0.006 0.052 1.210 0.006 2.300 9.368

GPR 67 −0.451 0.863 2.750 0.244 1.020 1.621

The table reports the number of observations (Obs.), the minimum (Min.) and maximum (Max.), the mean
(multiplied by 100), the standard deviation (SD), the Skewness (Skew.) and the excess kurtosis (Kurt.). The
variables are: the daily close-to-close log-returns of WTI Crude Oil and RBOB Gasoline, the daily VIX and
the first difference of the monthly GPR index divided by its lagged realization

E (ZCC |NumFail > 0) = 0. The UC and CC tests are one-sided and reject the null when
the model underestimates the risk (significantly negative test statistic).

6 Empirical analysis

In this section, we apply the MF-QR-X model to estimate6 VaR and ES for the daily log-
returns of two energy commodities: the WTI Crude Oil and the RBOB Gasoline futures.7

The low-frequency variable is the monthly GPR index, which enters our mixed-frequency
models as the first difference divided by one lagged realization. The “–X” variable is the VIX
index.8 The period of investigation covers almost 13 years, from January 2010 to July 2022
on a daily basis, split between in- (from January 2010 to December 2016) and out-of-sample
periods (from January 2017 to July 2022). The data are summarized in Table 5, and plotted
in Fig. 1.

We compare the estimated VaR and ES with several well-known competitive specifi-
cations belonging to the class of parametric (GARCH, GJR (Glosten et al., 1993), and
GARCH-MIDAS, with Gaussian and Student’s t error distributions), non-parametric (HS)

6 In terms of computational efforts, it is worth noting that the proposed MF-QR-X model is not excessively
demanding. For instance, VaR and ES (via maximization of the ALD) are obtained in 4 s, considering five
years of data, with the –X variable, on the following PC: HP EliteDesk 800 G8 Desktop, Intel i7-11700, 32
GB of RAM.
7 Both the WTI and RBOB futures have been downloaded from the Yahoo Finance site (with, respectively,
ticks “CL=F” and “RBOB=F”).
8 Taken from the Yahoo finance site and transformed by dividing it by

√
252 · 100, in order to express it as

daily volatility.
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Fig. 1 Crude Oil, Gasoline, VIX and GPR

and semi-parametric models (the Symmetric Absolute Value (SAV), Asymmetric Slope (AS)
and Indirect GARCH (IG) specifications of the CAViaR (Engle &Manganelli, 2004)). As per
the mixed-frequency specifications, the same low-frequency variable (GPR index) is inserted
as the low-frequency variable in the GARCH-MIDAS specifications as well as our proposed
MF-QR and MF-QR-X models. All the functional forms of these models are reported in
Table 6.

In-sample analysis

Tables 7 reports the p-values of the LR test (Eq. (27)) using τ = 0.05, on the period from
2010 to 2016, for the two commodities under investigation, which suggests the inclusion
of up to six, respectively, five lagged daily log-returns in the models for the Crude Oil and
Gasoline futures.

As regards the number of lagged realizations entering the low-frequency component, we
choose K = 36, for all mixed frequency models. The in-sample estimated parameters for the
parametric (with Quasi Maximum Likelihood standard errors, cf. Bollerslev & Wooldridge,
1992) and semi-parametric models (with bootstrap-based standard errors, as done also by
Xu et al., 2021) are reported in Tables 8 (Crude Oil) and 9 (Gasoline). The algorithm used to
obtain the bootstrap standard errors is sketched in “Appendix B”. Note that for the proposed
MF-QR-X model, the low-frequency parameters as well as the parameters associated to the
“–X” variable are generally significant.

The in-sample backtesting evaluations are reported in Tables 10 (Crude Oil) and 11 (Gaso-
line). All models pass the chosen backtesting procedures (p-values in columns 3–7), with a
strong preference for the longer windows in the HS non-parametric model.
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Table 7 LR test, p-values of the null β j = 0

Index β1 = 0 β2 = 0 β3 = 0 β4 = 0 β5 = 0 β6 = 0 β7 = 0 β8 = 0 β9 = 0

Crude Oil 0.000 0.000 0.037 0.017 0.146 0.002 0.059 0.464 0.514

Gasoline 0.000 0.022 0.063 0.820 0.012 0.370 0.242 0.139 0.984

The table reports the p-values of LR test according to the procedure highlighted in Sect. 3.2, for the null in
column. Sample period: from January 2010 to December 2016

Fig. 2 MF-QR-X VaR and ES forecasts. Notes: Plot of the Crude Oil (top) and Gasoline (bottom) daily
log-returns (black lines) and of the VaR (red lines) and ES (blue lines) forecasts obtained from the MF-QR-X
model. Sample period: from January 2017 to July 2022

Out-of-sample evaluation

The empirical analysis is completed by the out-of-sample analysis. In line with Lazar and
Xue (2020), the one-step-ahead VaR and ES forecasts of the parametric and semi-parametric
models are obtainedwith parameters estimated every five days, using a rollingwindow of size
1500 observations. For our main MF-QR-X model, the VaR and ES forecasts are graphically
reported in Fig. 2.

The results of the out-of-sample evaluations are synthesized in Tables 12 (Crude Oil) and
13 (Gasoline), respectively. While the AE ratios closest to one are seen for model GM-N for
Crude Oil in Table 12, and for model QR for Gasoline (Table 13), a more formal statistical
evaluation of the VaR and ES performances by different models is given by backtesting pro-
cedures. Contrary to the in-sample period where almost all the models passed the backtesting
procedures, going out-of-sample, the proposed MF-QR-X is the only one that fails to reject
the null for all the VaR and ES tests for both the Crude Oil and the Gasoline log-returns (while
the QR model passes all tests only for the latter), with more scattered and less systematic
evidence for the other models, but with a consistent failure of all the tests by GM-t, short
window HS and SAV, AS and IG. In “Appendix C”, we also report the results of the backtest-
ing evaluations using a slower frequency (ten/twenty days) of parameter updates. The results
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Table 10 In-sample backtesting
for Crude Oil

VaR ES

AE UC CC DQ UC CC

GARCH-N 1.080 0.449 0.695 0.198 0.058 0.449

GARCH-t 1.159 0.135 0.327 0.118 0.051 0.135

GJR-N 1.068 0.516 0.733 0.296 0.084 0.516

GJR-t 1.125 0.238 0.489 0.142 0.093 0.238

GM-N 1.068 0.516 0.733 0.408 0.06 0.516

GM-t 1.136 0.199 0.433 0.254 0.069 0.199

HS (w=25) 1.716 0.000 0.000 0.000 0.000 0.000

HS (w=50) 1.398 0.000 0.001 0.000 0.000 0.000

HS (w=100) 1.318 0.003 0.014 0.001 0.002 0.003

HS (w=250) 1.023 0.827 0.688 0.000 0.22 0.827

HS (w=500) 1.045 0.664 0.84 0.000 0.127 0.664

SAV 1.000 1.000 0.979 0.779 0.458 1.000

AS 0.989 0.913 0.936 0.054 0.488 0.913

IG 1.000 1.000 0.958 0.488 0.439 1.000

QR 1.000 1.000 0.759 0.926 0.463 1.000

QR-X 1.000 1.000 0.979 0.983 0.479 1.000

MF-QR 0.989 0.913 0.712 0.925 0.500 0.913

MF-QR-X 1.000 1.000 0.958 0.811 0.477 1.000

The table reports the Actual over Expected exceedance ratio (AE), the p-
values of the Unconditional Coverage (UC, Kupiec, 1995), Conditional
Coverage (CC, Christoffersen, 1998), Dynamic Quantile (DQ, Engle
& Manganelli, 2004) tests for the VaR, and the UC and CC tests for
ES (Acerbi & Szekely, 2014) tests. Bold indicates that the model in row
passes the test at the 5% significance level. The sample covers the period
from4 January 2010 to 30December 2016 (1760 observations). TheVaR
and ES are calculated at the level τ = 0.05

are quite robust to different frequency updating schemes, as it can be seen in Tables from
14, 15, 16 and 17.

7 Concluding remarks

This paper suggested the inclusion ofmixed-frequency (MF) components in a quantile regres-
sion (QR) approach to VaR and ES estimations, within a dynamic model of volatility with the
original introduction of a low- and a high-frequency (“–X”) components: the outcome was
labelled MF-QR-Xmodel. Given its nature of quantile regression, no explicit distribution for
the returns is necessary and robustness to outliers in the data is guaranteed.

Starting from the assessment of the weak stationarity conditions of our semi-parametric
MF-QR-X process, we suggested an estimation procedure the performance of which was
investigated through an extensive Monte Carlo exercise in finite samples. Overall, we have
satisfactory properties of the estimates and the resulting VaR forecasts are robust to some
misspecification in the weighting parameter entering the mixed-frequency component.

Energy commodities—Crude Oil and Gasoline futures—take the center stage in the illus-
tration of the empirical performance, both in- and out-of-sample, of the proposed MF-QR-X
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Table 11 In-sample backtesting
for Gasoline

VaR ES

AE UC CC DQ UC CC

GARCH-N 0.955 0.663 0.78 0.994 0.136 0.663

GARCH-t 1.114 0.28 0.542 0.533 0.088 0.28

GJR-N 0.921 0.441 0.736 0.929 0.198 0.441

GJR-t 0.989 0.917 0.937 0.778 0.28 0.917

GM-N 0.966 0.746 0.792 0.995 0.189 0.746

GM-t 1.069 0.513 0.73 0.593 0.167 0.513

HS (w=25) 1.58 0.000 0.000 0.000 0.000 0.000

HS (w=50) 1.239 0.026 0.057 0.016 0.000 0.026

HS (w=100) 1.035 0.74 0.889 0.059 0.091 0.74

HS (w=250) 1.046 0.66 0.837 0.106 0.149 0.66

HS (w=500) 1.001 0.996 0.408 0.001 0.272 0.996

SAV 1.001 0.996 0.758 0.925 0.477 0.996

AS 1.001 0.996 0.958 0.993 0.476 0.996

IG 1.001 0.996 0.979 0.959 0.478 0.996

QR 1.001 0.996 0.958 0.971 0.485 0.996

QR-X 0.989 0.917 0.982 0.926 0.5 0.917

MF-QR 1.001 0.996 0.758 0.982 0.478 0.996

MF-QR-X 1.001 0.996 0.408 0.817 0.491 0.996

The table reports the Actual over Expected exceedance ratio (AE), the
p-values of the Unconditional Coverage (UC, Kupiec, 1995), Condi-
tional Coverage (CC, Christoffersen, 1998), Dynamic Quantile (DQ,
Engle & Manganelli, 2004) tests for the VaR, and the UC and CC tests
for ES (Acerbi & Szekely, 2014) tests. Bold indicates that the model in
row passes the test at the 5% significance level. The sample covers the
period from 4 January 2010 to 30 December 2016 (1759 observations).
The VaR and ES are calculated at the level τ = 0.05

model, contrasting it against several popular parametric, non-parametric and semi-parametric
alternatives. The results are encouraging since our model is the only model consistently pass-
ing all the VaR and ES backtesting procedures out-of-sample for the Crude Oil log-returns
(together with the QR model for the Gasoline log-returns). The empirical results support the
use of MF-QR-Xmodels to exploit the information content of mixed-frequency data in a risk
management framework.

Further research may focus on the multivariate extension of the tail risk forecasts, as done
by Torres et al. (2015), Di Bernardino et al. (2015), Bernardi et al. (2017), and Petrella and
Raponi (2019), among others. Another interesting point would be the investigation of the
performance of the MF-QR-X with an asymmetric term, both for what concerns the daily
returns and the low-frequency component, as done by Amendola et al. (2019), for instance.
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Table 12 Out-of-sample
backtesting for Crude Oil

VaR ES

AE UC CC DQ UC CC

GARCH-N 1.171 0.151 0.356 0.018 0.000 0.151

GARCH-t 1.357 0.004 0.014 0.001 0.000 0.004

GJR-N 1.200 0.096 0.249 0.019 0.000 0.096

GJR-t 1.314 0.01 0.032 0.001 0.000 0.01

GM-N 1.014 0.903 0.757 0.001 0.000 0.903

GM-t 1.486 0.000 0.000 0.000 0.000 0.000

HS (w=25) 1.671 0.000 0.000 0.000 0.000 0.000

HS (w=50) 1.400 0.001 0.004 0.000 0.000 0.001

HS (w=100) 1.300 0.014 0.021 0.000 0.000 0.014

HS (w=250) 1.229 0.058 0.047 0.000 0.000 0.058

HS (w=500) 1.157 0.188 0.011 0.000 0.006 0.188

SAV 2.543 0.000 0.000 0.000 0.000 0.000

AS 3.314 0.000 0.000 0.000 0.000 0.000

IG 2.414 0.000 0.000 0.000 0.000 0.000

QR 1.086 0.468 0.646 0.844 0.006 0.468

QR-X 0.900 0.383 0.529 0.029 0.001 0.317

MF-QR 1.229 0.058 0.136 0.128 0.000 0.058

MF-QR-X 0.957 0.711 0.701 0.804 0.128 0.711

The table reports the Actual over Expected exceedance ratio (AE), the p-
values of the Unconditional Coverage (UC, Kupiec, 1995), Conditional
Coverage (CC, Christoffersen, 1998), Dynamic Quantile (DQ, Engle &
Manganelli, 2004) tests for the VaR, and the UC and CC tests for the ES
(Acerbi&Szekely, 2014). Bold indicates that themodel in rowpasses the
test in column at the 5% significance level.Models’ labels and functional
forms are in Table 6. The sample covers the period from 3 January 2017
to 27 July 2022 (1400 observations). Every model has been refitted once
every 5 days. The rolling window used is of 1500 observations. The VaR
and ES are calculated at the level τ = 0.05

Table 13 Out-of-sample
backtesting for Gasoline

VaR ES

AE UC CC DQ UC CC

GARCH-N 1.057 0.627 0.76 0.958 0.018 0.627

GARCH-t 1.243 0.044 0.13 0.133 0.009 0.044

GJR-N 1.071 0.544 0.735 0.943 0.009 0.544

GJR-t 1.157 0.188 0.415 0.657 0.016 0.188

GM-N 0.800 0.076 0.182 0.000 0.348 0.076

GM-t 1.571 0.000 0.000 0.000 0.000 0.000

HS (w=25) 1.714 0.000 0.000 0.000 0.000 0.000

HS (w=50) 1.371 0.002 0.002 0.001 0.000 0.002

HS (w=100) 1.200 0.096 0.058 0.000 0.003 0.096

HS (w=250) 1.171 0.151 0.066 0.000 0.004 0.151

HS (w=500) 1.114 0.335 0.027 0.000 0.037 0.335
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Table 13 continued VaR ES

AE UC CC DQ UC CC

SAV 2.186 0.000 0.000 0.000 0.000 0.000

AS 2.271 0.000 0.000 0.000 0.000 0.000

IG 1.771 0.000 0.000 0.000 0.000 0.000

QR 1.000 1.000 0.436 0.801 0.168 1.000

QR-X 0.843 0.166 0.017 0.000 0.000 0.041

MF-QR 1.071 0.544 0.515 0.207 0.017 0.544

MF-QR-X 0.971 0.805 0.899 0.596 0.416 0.805

The table reports the Actual over Expected exceedance ratio (AE), the p-
values of the Unconditional Coverage (UC, Kupiec, 1995), Conditional
Coverage (CC, Christoffersen, 1998), Dynamic Quantile (DQ, Engle &
Manganelli, 2004) tests for the VaR, and the UC and CC tests for the ES
(Acerbi&Szekely, 2014). Bold indicates that themodel in rowpasses the
test in column at the 5% significance level.Models’ labels and functional
forms are in Table 6. The sample covers the period from 3 January 2017
to 27 July 2022 (1400 observations). Every model has been refitted once
every 5 days. The rolling window used is of 1500 observations. The VaR
and ES are calculated at the level τ = 0.05
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Appendix A

Proof of Theorem 1

Proof Let ‖x‖p = (E |x |p)1/p , and recall that MVt and Xi,t are assumed to be weakly
stationary processes. Let s be the compact time notation in lieu of i, t , that is,

s ≡
t−1∑

j=1

N j + i .

Moreover, let σs = (β0 + β1|rs−1| + · · · + βq |rs−q | + θ |WSs−1| + βX |Xs−1|). Note that
WSt , obtained as an affine combination of (MVt−1, · · · , MVt−K ), is weakly stationary.

From the model in (20), we can write:

‖rs‖p = ‖σs zs‖p

= ‖σs‖p · ‖zs‖p, (A.1)

given the independence between σs and zs . For p = 1, the right hand side (RHS) of (A.1) is

zero, because zs
i .i .d.∼ (0, 1).

Let us now focus on p = 2; let us replace the second term of the RHS of (A.1), having
assumed that ‖zs‖2 = z∗ < ∞:

‖rs‖r = z∗
(
E(β0 + β1|rs−1| + · · · + βq |rs−q | + θ |WSs−1| + βX |Xs−1|)2

)1/2
(A.2)

≤ z∗(β0 + β1‖rs−1‖2 + · · · + βq‖rs−q‖2 + θ‖WSs−1‖2 + βX‖Xs−1‖2). (A.3)
Let us now translate this expression in matrix notation. Therefore, let us collect terms in

a vector indexed by s, that is,

ξs = (‖rs‖2, · · · , ‖rs−q+1‖2, ‖WSs‖2, ‖Xs‖2
)′

,

and let the (q + 2) × (q + 2) dimensional companion matrix A, the vectors b and c

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z∗β1 z∗β2 · · · z∗βq−1 z∗βq z∗θ z∗βx

1 0 · · · 0 0 0 0
0 1 · · · 0 0 0 0
...

...
...

...
...

...
...

0 0 · · · 1 0 0 0
0 0 · · · 0 0 0 0
0 0 · · · 0 0 0 0
0 0 · · · 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, b =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

z∗β0

0
0
...

0
0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and c =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
...

0
0

‖WSs‖2
‖Xs‖2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where we have made us of the fact that, because of the stationarity ofWSs and Xs , the vector
c does not depend on time. Thus, we have:

ξs ≤ Aξs−1 + b + c. (A.4)

Substituting recursively ξs−1 backwards, and letting Iq+2 be the identity matrix of size
(q + 2),

ξs ≤ A (Aξs−2 + b + c) + b + c (A.5)

≤ A2ξs−2 + Ab + b + Ac + c
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≤ A2ξs−2 + (
Iq+2 + A

)
b + (

Iq+2 + A
)
c (A.6)

≤ A3ξs−3 + (
Iq+2 + A + A2) b + (

Iq+2 + A + A2) c (A.7)

...

≤ Amξs−m + (
Iq+2 + A + A2 + · · · + Am−1) b + (

Iq+2 + A + A2 + · · · + Am−1) c.
(A.8)

Recall the characteristic polynomial of A is φ(λ), defined by Eq. (21), namely,

φ(λ) = z∗
(
β1λ

q+1 + β2λ
q + · · · + βqλ

q−2) − λq+2, (A.9)

which has all eigenvalues λ lie inside the unit circle. When m → ∞, for the eigen-
decomposition theorem, this implies that

lim
m→∞ Am = 0, (A.10)

and that
lim

m→∞(Iq+2 + A + A2 + · · · + Am−1) = (Iq+2 − A)−1. (A.11)

Putting terms together, therefore, as m → ∞ we can say that

ξs ≤ (
Iq+2 − A

)−1
b + (

Iq+2 − A
)−1

c < ∞, (A.12)

that is the RHS converges to a finite expression not depending on time, establishing the result.
�


Appendix B

In what follows, we illustrate the bootstrap procedure used to calculate the standard errors.
For simplicity, we focus on the QR model with just only one lag, being the procedure easily

extensible to the other semi-parametric models. Let �̂τ =
(
β̂0,τ , β̂1,τ

)
be the estimated

vector of parameters for the QR model. The resulting VaR is then Q̂ri,t (τ ). Letting r (boot)
i,t

be the bootstrap returns, we assume that r (boot)
1,1 = r1,1. The step-by-step procedure to obtain

the bootstrap standard errors is as follows:

1. Obtain the standardized residuals as ẑi,t = ri,t/|Q̂ri,t (τ ) |, for all i and t .
2. Sample with replacement from ẑi,t , obtaining the bootstrap residuals ẑ(boot)i,t .

3. Obtain the bootstrap series of VaR as Q̂
r (boot)
i,t

= β̂0,τ + β̂1,τ r
(boot)
i−1,t .

4. Obtain the bootstrap series of returns as r (boot)
i,t = |Q̂

r (boot)
i,t

|ẑ(boot)i,t .

5. Repeat 2–4 for all i and t to get one complete bootstrap series of r (boot)
i,t .

6. Estimate the VaR using r (boot)
i,t , obtaining β̂

(boot)
0,τ and β̂

(boot)
1,τ .

7. Repeat steps 2-6 BOOT number of times, obtaining the bootstrap series
{
β̂0,τ

}BOOT

boot=1

and
{
β̂1,τ

}BOOT

boot=1
.

The bootstrap standard errors for β̂0,τ and β̂1,τ are then obtained as sample standard deviations

of the series
{
β̂0,τ

}BOOT

boot=1
and

{
β̂1,τ

}BOOT

boot=1
, respectively. It is worth noting that the previous
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procedure can be naturally extended to the models dedicated to the joint estimation of VaR
and ES measures.

Appendix C

See Tables 14, 15, 16 and 17.

Table 14 Out-of-sample
backtesting for Crude Oil.
Re-fitting period: 10 days

VaR ES

AE UC CC DQ UC CC

GARCH-N 1.157 0.188 0.415 0.017 0.000 0.188

GARCH-t 1.357 0.004 0.014 0.001 0.000 0.004

GJR-N 1.200 0.096 0.249 0.019 0.000 0.096

GJR-t 1.314 0.01 0.032 0.001 0.000 0.010

GM-N 1.014 0.903 0.97 0.020 0.004 0.903

GM-t 1.329 0.007 0.027 0.000 0.000 0.007

HS (w=25) 1.671 0.000 0.000 0.000 0.000 0.000

HS (w=50) 1.400 0.001 0.004 0.000 0.000 0.001

HS (w=100) 1.300 0.014 0.021 0.000 0.000 0.014

HS (w=250) 1.229 0.058 0.047 0.000 0.000 0.058

HS (w=500) 1.157 0.188 0.011 0.000 0.006 0.188

SAV 1.286 0.019 0.01 0.004 0.01 0.019

AS 1.886 0.000 0.000 0.000 0.000 0.000

IG 1.429 0.001 0.000 0.000 0.002 0.001

QR 1.071 0.544 0.722 0.915 0.012 0.544

QR-X 0.971 0.805 0.154 0.000 0.000 0.621

MF-QR 1.200 0.096 0.219 0.581 0.000 0.096

MF-QR-X 0.986 0.902 0.685 0.563 0.085 0.902

The table reports the Actual over Expected exceedance ratio (AE), the p-
values of the Unconditional Coverage (UC, Kupiec, 1995), Conditional
Coverage (CC, Christoffersen, 1998), Dynamic Quantile (DQ, Engle &
Manganelli, 2004) tests for the VaR, and the UC and CC tests for ES
(Acerbi & Szekely, 2014). Bold indicates that the model in row passes
the test at the 5% significance level. Models’ labels and functional forms
are in Table 6. The sample covers the period from 3 January 2017 to 27
July 2022 (1400 observations). Everymodel has been refitted once every
10 days. The rolling window used is of 1500 observations. The VaR and
ES are calculated at the level τ = 0.05
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Table 15 Out-of-sample
backtesting for Crude Oil.
Re-fitting period: 20 days

VaR ES

AE UC CC DQ UC CC

GARCH-N 1.143 0.23 0.476 0.015 0.000 0.230

GARCH-t 1.329 0.007 0.027 0.001 0.000 0.007

GJR-N 1.186 0.121 0.300 0.016 0.000 0.121

GJR-t 1.314 0.010 0.032 0.001 0.000 0.010

GM-N 1.057 0.627 0.517 0.058 0.001 0.627

GM-t 1.257 0.033 0.101 0.073 0.000 0.033

HS (w=25) 1.671 0.000 0.000 0.000 0.000 0.000

HS (w=50) 1.400 0.001 0.004 0.000 0.000 0.001

HS (w=100) 1.300 0.014 0.021 0.000 0.000 0.014

HS (w=250) 1.229 0.058 0.047 0.000 0.000 0.058

HS (w=500) 1.157 0.188 0.011 0.000 0.006 0.188

SAV 1.114 0.335 0.263 0.149 0.126 0.335

AS 1.543 0.000 0.000 0.000 0.000 0.000

IG 1.114 0.335 0.263 0.582 0.084 0.335

QR 1.086 0.468 0.646 0.853 0.007 0.468

QR-X 1.043 0.715 0.001 0.000 0.000 0.535

MF-QR 1.200 0.096 0.219 0.509 0.000 0.096

MF-QR-X 0.971 0.805 0.699 0.521 0.091 0.805

The table reports the Actual over Expected exceedance ratio (AE), the p-
values of the Unconditional Coverage (UC, Kupiec, 1995), Conditional
Coverage (CC, Christoffersen, 1998), Dynamic Quantile (DQ, Engle &
Manganelli, 2004) tests for the VaR, and the UC and CC tests for ES
(Acerbi & Szekely, 2014). Bold indicates that the model in row passes
the test at the 5% significance level. Models’ labels and functional forms
are in Table 6. The sample covers the period from 3 January 2017 to 27
July 2022 (1400 observations). Everymodel has been refitted once every
20 days. The rolling window used is of 1500 observations. The VaR and
ES are calculated at the level τ = 0.05
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Table 16 Out-of-sample
backtesting for Gasoline.
Re-fitting period: 10 days

VaR ES

AE UC CC DQ UC CC

GARCH-N 1.057 0.627 0.76 0.958 0.018 0.627

GARCH-t 1.257 0.033 0.102 0.088 0.007 0.033

GJR-N 1.071 0.544 0.735 0.943 0.009 0.544

GJR-t 1.157 0.188 0.415 0.655 0.016 0.188

GM-N 0.914 0.456 0.385 0.01 0.098 0.456

GM-t 1.357 0.004 0.001 0.000 0.000 0.004

HS (w=25) 1.714 0.000 0.000 0.000 0.000 0.000

HS (w=50) 1.371 0.002 0.002 0.001 0.000 0.002

HS (w=100) 1.2 0.096 0.058 0.000 0.003 0.096

HS (w=250) 1.171 0.151 0.066 0.000 0.004 0.151

HS (w=500) 1.114 0.335 0.027 0.000 0.037 0.335

SAV 1.343 0.005 0.002 0.008 0.010 0.005

AS 1.343 0.005 0.002 0.001 0.016 0.005

IG 1.214 0.075 0.174 0.129 0.088 0.075

QR 1.029 0.807 0.493 0.706 0.108 0.807

QR-X 0.886 0.317 0.000 0.000 0.000 0.100

MF-QR 1.043 0.715 0.510 0.237 0.022 0.715

MF-QR-X 0.986 0.902 0.939 0.421 0.380 0.902

The table reports the Actual over Expected exceedance ratio (AE), the p-
values of the Unconditional Coverage (UC, Kupiec, 1995), Conditional
Coverage (CC, Christoffersen, 1998), Dynamic Quantile (DQ, Engle &
Manganelli, 2004) tests for the VaR, and the UC and CC tests for ES
(Acerbi & Szekely, 2014). Bold indicates that the model in row passes
the test at the 5% significance level. Models’ labels and functional forms
are in Table 6. The sample covers the period from 3 January 2017 to 27
July 2022 (1400 observations). Everymodel has been refitted once every
10 days. The rolling window used is of 1500 observations. The VaR and
ES are calculated at the level τ = 0.05
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Table 17 Out-of-sample
backtesting for Gasoline.
Re-fitting period: 20 days

VaR ES

AE UC CC DQ UC CC

GARCH-N 1.057 0.627 0.76 0.958 0.018 0.627

GARCH-t 1.243 0.044 0.128 0.101 0.009 0.044

GJR-N 1.071 0.544 0.735 0.943 0.009 0.544

GJR-t 1.157 0.188 0.415 0.652 0.015 0.188

GM-N 1.043 0.715 0.51 0.357 0.01 0.715

GM-t 1.429 0.001 0.000 0.000 0.000 0.001

HS (w=25) 1.714 0.000 0.000 0.000 0.000 0.000

HS (w=50) 1.371 0.002 0.002 0.001 0.000 0.002

HS (w=100) 1.200 0.096 0.058 0.000 0.003 0.096

HS (w=250) 1.171 0.151 0.066 0.000 0.004 0.151

HS (w=500) 1.114 0.335 0.027 0.000 0.037 0.335

SAV 1.329 0.007 0.009 0.000 0.011 0.23

AS 1.171 0.151 0.231 0.349 0.068 0.151

IG 1.086 0.468 0.697 0.854 0.162 0.468

QR 1.014 0.903 0.468 0.659 0.128 0.903

QR-X 1.057 0.627 0.000 0.000 0.000 0.456

MF-QR 1.057 0.627 0.517 0.023 0.017 0.627

MF-QR-X 0.957 0.711 0.844 0.544 0.428 0.711

The table reports the Actual over Expected exceedance ratio (AE), the p-
values of the Unconditional Coverage (UC, Kupiec, 1995), Conditional
Coverage (CC, Christoffersen, 1998), Dynamic Quantile (DQ, Engle &
Manganelli, 2004) tests for the VaR, and the UC and CC tests for ES
(Acerbi & Szekely, 2014). Bold indicates that the model in row passes
the test at the 5% significance level. Models’ labels and functional forms
are in Table 6. The sample covers the period from 3 January 2017 to 27
July 2022 (1400 observations). Everymodel has been refitted once every
20 days. The rolling window used is of 1500 observations. The VaR and
ES are calculated at the level τ = 0.05
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