In this paper we consider the estimation problem for linear stochastic systems affected by multiple known and time-varying delays on all the output signals. Based on a modification of a previous proposal we prove for the first time the result that a filter based on simple eigenvalue assignment of the closed-loop error system may achieve uniform performance, with respect to the delay bound and estimation variance, in presence of both constant and time-varying delays that are differentiable. A new and simple demonstration technique provides non conservative delay bounds for time-varying delays. A cascaded version of the filter can cope with arbitrarily large delays. (C) 2021 Elsevier Ltd. All rights reserved.

Filtering linear systems with large time-varying measurement delays / Cacace, F; Conte, F; D'Angelo, M; Germani, A; Palombo, G. - In: AUTOMATICA. - ISSN 0005-1098. - 136:(2022). [10.1016/j.automatica.2021.110084]

Filtering linear systems with large time-varying measurement delays

d'Angelo, M;
2022

Abstract

In this paper we consider the estimation problem for linear stochastic systems affected by multiple known and time-varying delays on all the output signals. Based on a modification of a previous proposal we prove for the first time the result that a filter based on simple eigenvalue assignment of the closed-loop error system may achieve uniform performance, with respect to the delay bound and estimation variance, in presence of both constant and time-varying delays that are differentiable. A new and simple demonstration technique provides non conservative delay bounds for time-varying delays. A cascaded version of the filter can cope with arbitrarily large delays. (C) 2021 Elsevier Ltd. All rights reserved.
2022
Time-varying delay; Filtering; Linear systems
01 Pubblicazione su rivista::01a Articolo in rivista
Filtering linear systems with large time-varying measurement delays / Cacace, F; Conte, F; D'Angelo, M; Germani, A; Palombo, G. - In: AUTOMATICA. - ISSN 0005-1098. - 136:(2022). [10.1016/j.automatica.2021.110084]
File allegati a questo prodotto
File Dimensione Formato  
Cacace_preprint_Filtering_2021.pdf

accesso aperto

Note: https://doi.org/10.1016/j.automatica.2021.110084
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.87 MB
Formato Adobe PDF
2.87 MB Adobe PDF
Cacace_Filtering_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1681909
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact