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Abstract

In this paper we consider the estimation problem for linear stochastic systems affected by multiple known and time-varying
delays on all the output signals. Based on a modification of a previous proposal we prove for the first time the result that a
filter based on simple eigenvalue assignment of the closed-loop error system may achieve uniform performance, with respect
to the delay bound and estimation variance, in presence of both constant and time-varying delays that are differentiable. A
new and simple demonstration technique provides non conservative delay bounds for time-varying delays. A cascaded version
of the filter can cope with arbitrarily large delays.
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1 Introduction

The filtering problem of stochastic linear systems in pres-
ence of delayed measurements is important, for example
in networked digital control [5], and it has been an active
research area for many years starting with the seminal
work [11]. The majority of contributions in this area con-
sider the discrete-time case, for which the optimal filter-
ing problem has been addressed mainly through the so-
called re-organized innovation analysis approach [12,16],
that can be applied in the continuous case [19]. Optimal
filters for the continuous-time case, in the form of modi-
fications of the Kalman-Bucy filter (KBF), are described
in [10,15] (see also [17,18] for multiplicative noise). These
approaches have some important drawbacks, since they
require that un-delayed measurements are also available
and that the delays are constant. Some approaches con-
sider random delays (see for example [7]), that however
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have values in a finite set. Time-varying delays have been
considered mainly in the H∞ framework [4,6,13,14,20],
where the delay knowledge is generally not required. The
resulting filters are designed through LMIs, they are ro-
bust and easier to implement. However, in all the men-
tioned references except [14], that considers constant de-
lays, un-delayed measurements are needed.

Therefore, the problem of filter design in presence of
purely delayed measurements and variable delays for
continuous-time system is still quite open. This case
is challenging because the estimation error obeys a
stochastic equation with delays and it is in general
difficult to ensure that its solution is stable in the ap-
propriate sense when the system is not asymptotically
stable. In the present paper, we improve the design pro-
posed in [1], with the aim of recovering the performance
for constant delays also in the case of time-varying and
piece-wise differentiable measurement delays. The pro-
posed sub-optimal filter has the following features: (i)
the instantaneous value of the delay is assumed to be
available but all the measures can be delayed; (ii) the
filter has computational cost that is comparable to the
original KBF; (iii) the design is simple and constructive
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with non conservative and uniform delay bounds for
both constant and varying delays; (iv) the filter may
compensate multiple and arbitrarily large delays; (v)
the performance of the estimation error tends to the
optimal one when delay vanishes. The main novelty
with respect to [4, 6, 10, 13, 15, 19, 20] is that there is no
need of un-delayed measurements and the delay can be
time-varying. With respect to [1] the new filter adds
features (iii) and (iv), and has less conservative bounds
on the delay and on the variance of the estimation error.
We describe the problem and recall the predictor-based
solution for constant delays in Section 2. The main re-
sult is proved in Section 3, and in Section 4 we extend
it to the case of large and multiple delays as well as to
piece-wise continuous delays.

2 Problem statement and preliminaries

2.1 Notation

R+ denotes non-negative reals. ‖x‖ denotes the Eu-
clidean norm for x ∈ Rn and ‖M‖ the operator norm
when M ∈ Rn×m. In is the identity matrix in Rn. σ(M)
is the spectrum of the matrixM , µ(M) = max<{σ(M)}
is the spectral abscissa and tr(M) its trace. When
µ(M) < 0, M is said to be Hurwitz stable. M > 0 de-
notes a positive definite matrix. coli(M) and rowi(M)
are, respectively, the vertical and horizontal composi-
tion of matrices M . E[·] denotes the expectation. On
a filtered probability space (Ω,F , {Ft}t, P ), L2(Ω;Rn)
denotes the linear space of square integrable random
vectors of Rn endowed with the norm ‖x‖2L2

= E[‖x‖2]

and L2
t0,t([t0, t] × Ω;Rn) is the linear space of Ft-

adapted Rn-valued stochastic processes in [t0, t],such
that x ∈ L2

t0,t([t0, t] × Ω;Rn) if |x|t0,t < ∞ where

|x|2t0,t =
∫ t
t0
‖x(τ)‖2L2

dτ .

Definition 1 A stochastic process {ψ(t)}t≥0 is said

• asymptotically centered if E[ψ(t)]→ 0 as t→∞;
• exponentially centered with rate λ if there exist posi-

tive constants λ and c such that ‖E[ψ(t)]‖ ≤ c exp−λt;
• uniformly second moment bounded if there exist a pos-

itive constant κ such that supt≥0 ‖ψ(t)‖L2
< κ.

2.2 Problem statement

We study the estimation problem of Gaussian linear
time-invariant systems with variable output delay in the
Itô formalism:

dx(t) = (Ax(t) +Bu(t)) dt+ F dWt, (1)

dy(t) = Cx(t− δt)dt+GdVt−δt , (2)

where the state x(t) ∈ Rn, E[x(0)] and ‖x(0)‖L2 are fi-
nite, Wt ∈ Rd and Vt ∈ R` are standard mutually inde-
pendent Ft-adapted Wiener processes independent from

x(0). We make the standard assumption R = GG> > 0
[8]. For simplicity, let us also assume that the measure-
ment process exists only when t−δt > 0, which is equiv-
alent to let yτ = 0 and Vτ = 0 for τ ≤ 0. In addition, we
make the following hypotheses.

Assumption H1. (a) The couple (A,F ) is controllable;
(b) the couple (A,C) is observable.

Assumption H2. The map δ : R+ → [0, δ̄] admits a

derivative for all t ≥ 0 and the values of δt and δ̇t are
known at t ≥ 0.

The standard hypothesis H1 ensures that the optimal
estimator for δt ≡ 0 is the KBF [9] with an estimation
error exponentially centered and uniformly second mo-
ment bounded.H2 requires that the instantaneous delay
is known at the filter, a mild requirement that can be
usually be fulfilled in practice, and that the delay func-
tion is bounded (with known bound) and differentiable.
In particular, H2 implies that δ is continuous, and this
in turn ensures that all the output measurements will
eventually be available to the estimator. We shall con-
sider less restrictive requirements in Section 4.5.

Notice that when δ̇t > 1 the function t−δt moves “back-
ward” in time, and y(t) provides no new information.
In this case it is possible to consider the most recent
measurement by replacing δt with a new delay function
with derivative not larger than 1. This is however not
needed in the design of our filter. Let Fyt be the σ-
algebra generated by process {y(τ)}τ∈[0,t]. {Fyt} is a
family of non-decreasing σ-algebras and the optimal es-
timate is x̂(t) = E[x(t)|Fyt ]. Notice that Fyt contains
information on xτ−δτ , Wτ−δτ , and Vτ−δτ , τ ∈ [0, t]. Our
problem is to seek for suitable sub-optimal estimates.

Problem Given system (1)–(2) with the Assumptions

H1 andH2, compute an estimate ξ̂(t) such that the esti-

mation error ε(t) = x(t)− ξ̂(t) is exponentially centered
and uniformly second moment bounded.

Remark 2 In certain situations, for example commu-
nications delay over a noisy channel that contributes to
the measurement disturbance Vt, it is possible that the
measurements move backward in time but still provide
new information. This would be the case of a packet y(t)
transmitted and received twice due to the communications
protocol. We do not consider this case in the paper.

2.3 Kalman-Bucy optimal predictor for constant delay

When δt = δ (constant delay), the problem of computing
x̂(t) can be solved in two steps: (i) compute x̂(t− δ|t−
δ) := E[x(t−δ)|Fyt ] by means of the ordinary KBF; (ii)
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compute the optimal prediction x̂(t) as (see for example
[8], ch. 7, [10])

x̂(t) = eAδx̂(t− δ|t− δ) +

∫ t

t−δ
eA(t−τ)Bu(τ)dτ. (3)

However, (3) involves distributed terms and is computa-
tionally expensive. The problem is not easily overcome
by transforming (3) in differential form. To see this,
let us consider the asymptotic version of the KBF for
x̂(t− δ|t− δ),

dx̂(t− δ|t− δ) =Ax̂(t− δ|t− δ)dt+Bu(t− δ)dt
+K(dy(t)− Cx̂(t− δ|t− δ)dt), (4)

where K = PC>R−1, with P solution of the Riccati
equation

0 = AP + PA> + FF> − PC>R−1CP. (5)

The differential form of (3) can be obtained by using (4)
and by replacing the distributed term that occurs in it
with x̂(t)− eAδx̂(t− δ|t− δ). We obtain

dx̂(t) =Ax̂(t)dt+Bu(t)dt

+ eAδK (dy(t)− Cx̂(t− δ|t− δ)dt) (6)

which is a differential expression of the optimal predictor
in (3) and contains both x̂(t) and x̂(t− δ|t− δ). Thus, it
may be effectively computed together with (4). However,
when A is not Hurwitz stable, the estimation error of
(6), ε(t) = x(t)− x̂(t) is not asymptotically centered or
uniformly second moment bounded. In fact, let η(t) =
x(t− δ)− x̂(t− δ|t− δ) be the retarded estimation error.
We obtain from (6) that

dε(t) = (Aε(t)− eAδKCη(t))dt+ FdWt,

and ε(t) is not asymptotically centered or uniformly sec-
ond moment bounded when A is not Hurwitz stable.

Thus, we are left with (3) which is computationally ex-
pensive. Moreover, in the case of time-varying delays,
(3) needs x̂(t− δt|t− δt), and there is no obvious way to
compute it through a recursive filter of the kind (4).

Summarizing, it makes sense to look for a sub-optimal
but more easily computable estimate of x(t) that is
exponentially centered and uniformly second moment
bounded. This is particularly important for applications
to output-feedback control where an exponentially cen-
tered estimate is crucial for the efficacy of the controller,
and the bound on the second moment of the estimation
error is linked to the energy cost of the control.

3 Structure and properties of the new filter

Let A = A − KC. When Assumption H1 holds, A is
Hurwitz stable. The proposed filter is, for t ≥ 0,

dξ̂(t) = Aξ̂(t)dt+Bu(t)dt

+ (1− δ̇t)eAδtK
(

dy(t)− Cξ̂(t− δt)dt
)
, (7)

with ξ̂(τ) = ξ̂0(τ) for τ ∈ [0, δ̄], where ξ̂0 ∈ L2
−δ̄,0 is

an arbitrary initial condition. When δ̇t ≡ 0, there is a
certain similarity between (7) and the differential version
of the optimal predictor in (6), where the estimates x̂(t)

and x̂(t − δ|t − δ) are replaced by the estimates ξ̂(t),

ξ̂(t− δ) and eAδ by eAδ.

The implementation of (7) requires a buffer for the values

of ξ̂ in [t− δ̄, t] but it does not contain distributed terms.
When δt ≡ 0, (7) coincides with the KBF. When δt = δ̄
is constant, (7) has the same computational complexity

as a KBF, since it obtained by replacing K with eAδK,
whereas in the variable case the additional complexity is

the computation of eAδtK. Since in a digital implemen-
tation the values of δt are known with good precision the
computation of δ̇t is carried out as (δk+1−δk)/dt, where
dt is the integration step. In a numerical scheme, the de-
nominator disappears when multiplying the derivative
for the integration step dt and the approximation is ro-
bust. Finally, filter (7) is identical to filter (3) of [1] ex-

cept for the fact that it contains term 1 − δ̇t, which is
crucial to obtain less conservative estimates for the de-
lay bound and the variance of the estimation error. Our
main result is the following.

Theorem 3 Consider system (1)–(2) and assume that
H1 and H2 hold. If

α =

∫ δ̄

0

∥∥∥CeAθK∥∥∥ dθ < 1 (8)

then, with ξ̂(t) computed as in (7), the estimation error

ε(t) = x(t)− ξ̂(t) is exponentially centered and uniformly
second moment bounded.

Remark 4 The delay condition (8) is the same as in [1]
for constant delays. This new result shows that the same
bound holds for time-varying delays too. Instead, the
bound for time-varying delays of [1] is obtained by a Razu-
mikhin arguments that leads to a much more conservative
delay bound.
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PROOF. By using (1), (2) and (7), we obtain, for t ≥ 0,

dε(t) = Aε(t)dt− (1− δ̇t)eAδtKCε(t− δt)dt

+ FdWt − (1− δ̇t)eAδtKGdVt−δt , (9)

and, for s ∈ [−δ̄, 0), ε(s) = x(s) − ξ̂(s) = φ(s) . We
prove first uniform second moment boundedness of the
error. Equation (9) admits the following integral form
representation for t ≥ 0:

ε(t) =

∫ t

t−δt
eA(t−τ)KCε(τ) dτ +

∫ t

0

eA(t−τ)F dWτ

−
∫ t−δt

0

eA(t−τ)KGdVτ + κε, (10)

κε = φ(0)−
∫ 0

−δ0
e−AτKCφ(τ)dτ −

∫ 0

−δ0
e−AτKGdVτ .

This can be readily checked by explicitly differentiating
(10) to obtain (9) and by noticing that, with the pre-
scribed choice of κε, ε(0) = φ(0). Since the initial condi-
tion is the same in [−δ̄, 0] the solution of (10) is contin-
uous and coincides with that of (9). Moreover, it follows
from (10) that when Cε(t), that appears in the first inte-
gral over a bounded interval, is mean square stable then
also ε(t) is mean square stable. Left-multiplying by C,
and taking the L2 norm yields

‖Cε(t)‖L2
≤
∫ δ̄

0

∥∥∥CeAθK∥∥∥ dθ · sup
τ∈[t−δ̄,t]

‖Cε(τ)‖L2

+

(∫ t

0

∥∥∥CeAθ (F +KG
)∥∥∥2

dθ

) 1
2

+ ‖Cκε‖L2

≤ α sup
τ∈[t−δ̄,t]

‖Cε(τ)‖L2
+ β, (11)

where α < 1 by hypothesis and

β =

(∫ ∞
0

∥∥∥CeAθ (F +KG
)∥∥∥2

dθ

)1/2

+ ‖Cκε‖L2
<∞

(12)
sinceA = A−KC is Hurwitz stable, withK = PCTR−1

and P solution of (5). Let m(t) = supτ∈[0,t] ‖Cε(τ)‖L2

and m0 = supτ∈[−δ̄,0] ‖Cε(τ)‖L2
. Taking the sup of (11)

in [0, t] we obtain

m(t) ≤ αm(t) + α m0 + β, (13)

that proves uniform second moment boundedness of
Cε(t) with bound (αm0 + β)/(1 − α). To prove that
ε is exponentially centered let p(t) = E[ε(t)]. Taking
expectations in (9) we obtain

ṗ(t) = Ap(t)− (1− δ̇t)eAδtKCp(t− δt) (14)

Since (8) holds, there exists a constant ν̄ such that,for
all 0 < ν ≤ ν̄, it holds∫ δ̄

0

∥∥∥CeAθK∥∥∥dθ < α(ν) =

∫ δ̄

0

∥∥∥CeAθK∥∥∥ eνθdθ < 1

(15)
Let pν(t) = eνtp(t). Clearly, if pν(t) is uniformly
bounded then p(t) is exponentially stable. The dynam-
ics of pν(t) is

ṗν(t) = Aνpν(t)− (1− δ̇t)eAνδtKCpν(t− δt) (16)

where Aν = A+ νI and Aν = A+ νI. pν(t) admits the
following integral representation for t ≥ 0,

pν(t) =

∫ t

t−δt
eAν(t−τ)KCpν(τ) dτ + κp (17)

κp =E[ε(0)]−
∫ 0

−δ0
e−AντKCeντE[ε(τ)],dτ. (18)

It suffices to prove that p̃ν(t) = Cpν(t) is bounded. By
taking the norm in Rn and proceeding similarly to (11),
we get

‖p̃ν(t)‖ ≤
∫ t

t−δ̄
‖CeAν(t−τ)K‖ dτ · sup

τ∈[t−δ̄,t]
‖p̃ν(τ)‖

+ ‖Cκp‖

‖p̃ν(t)‖ ≤
α(ν) supτ∈[−δ̄,0] ‖p̃ν(τ)‖+ ‖Cκp‖

1− α(ν)
< ∞,

(19)

since 1− α(ν) > 0 in view of (15).

4 Additional results

4.1 Multiple Delays

Consider the case when the output process y(t) ∈ Rq
is affected by multiple time-varying delays δit : R+ →
[0, δ̄i]. Each delay function affect the output sub-vector
yi(t) ∈ Rqi , with q =

∑q
i qi. The output map is

dy(t) = coli
(
Cix(t− δit)

)
dt+ coli

(
GidV

i
t−δit

)
(20)

where Ci ∈ Rqi×n, Gi ∈ Rqi×l, and V it is a Ft adapted
Wiener process in Rl. Filter (7) becomes, for t ≥ 0,

dξ̂(t) = Aξ̂(t)dt+Bu(t)dt

+

q∑
i=1

(1− δ̇it)eAδ
i
tKi

(
dyi(t)− Ciξ̂(t− δit)dt

)
(21)
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with A = A −KC, C = coli(Ci), K = PC>R−1, K =
rowi(Ki), and P solution of the Riccati equation (5).

Moreover ξ̂(τ) = ξ̂0(τ) for τ ∈ [0, δ̄], where ξ̂0 ∈ L2
−δ̄,0 is

an arbitrary initial condition and δ̄ = max{δ̄i}.

Theorem 5 Consider system (1)–(20) and assume that
H1 and H2 hold true for all δit : R+ → [0, δ̄i]. If

α =

q∑
i=1

∫ δ̄i

0

∥∥∥CeAθKi

∥∥∥dθ < 1 (22)

then the estimation error ε(t) = x(t) − ξ̂(t) is exponen-
tially centered and uniformly second moment bounded.

PROOF. Process ε(t) = x(t)− ξ̂(t) obeys to

dε(t) = Aε(t)dt−
q∑
i=1

(1− δ̇it)eAδ
i
tKiCiε(t− δit)dt

+ FdWt −
q∑
i=1

(1− δ̇it)eAδ
i
tKiGidV

i
t−δit

, (23)

and admits, for t ≥ 0, the representation

ε(t) =

q∑
i=1

∫ t

t−δit
eA(t−τ)KiCiε(τ) dτ

+

∫ t

0

eA(t−τ)F dWτ −
q∑
i=1

∫ t−δit

0

eA(t−τ)KiGi dV iτ + κε

(24)

where κε is chosen to obtain ε(0) = φ(0). Left-
multiplying by C and taking the L2 norm we obtain

‖Cε(t)‖L2 ≤
q∑
i=1

∫ δ̄i

0

∥∥∥CeAθKi

∥∥∥ dθ

· sup
τ∈[t−δ̄i,t]

‖Ciε(τ)‖L2 + β

≤α sup
τ∈[t−δ̄,t]

‖Cε(τ)‖L2 + β, (25)

whereα < 1 by hypothesis, β is related to the noise terms
and κε, that all have finite norms and hence β <∞, and
we have used ‖Ciε(t)‖L2 ≤ ‖Cε(t)‖L2 . Proceeding as for
Theorem 3, we conclude that ‖Ciε(t)‖L2 ≤ ‖Cε(t)‖L2 <
∞ that implies ‖ε(t)‖L2 is bounded as a consequence of
(24). Always as for Theorem 3, it is easy to prove that
ε(t) is exponentially centered.

4.2 An observer for time-varying delayed measure-
ments

Consider the deterministic version of system (1), (2) with
F = G = 0,

ẋ(t) = Ax(t) +Bu(t) (26)

y(t) = Cx(t− δt) (27)

Our estimator becomes

˙̂
ξ(t) = Aξ̂(t) +Bu(t)

+ (1− δ̇t)eĀδtK
(
y(t)− Cξ̂(t− δt)

)
. (28)

Under H1, it is possible to design K such that A =
A−KC is Hurwitz.

Theorem 6 Consider system (26)–(27) and assume
that H1 and H2 hold. If K is such that A = A −KC is
Hurwitz, c ∈ [0, −µ(A)] and

αc =

∫ δ̄

0

∥∥∥CeAθK∥∥∥ ecθdθ < 1, (29)

then the estimation error ε(t) = x(t) − ξ̂(t) is exponen-
tially stable with rate c < −µ(A).

PROOF. Similarly to Theorem 3, let εc(t) = ectε(t).
We obtain

ε̇c(t) = (A+ cI)εc(t)− (1− δ̇t)eAcδtKCεc(t− δt), (30)

where Ac = A + cI is Hurwitz because c + µ(A) < 0.
From

εc(t) =

∫ t

t−δt
eAc(t−τ)KCεc(τ) dτ + κε (31)

and proceeding as in Theorem 3, we obtain the sufficient
condition (29) for the uniform boundeness of εc that in
turn implies exponential stability of ε with rate c.

4.3 Output feedback control

The results of Section 3 can be immediately applied to
the delayed output feedback control problem of system
(1)–(2) by using the separation principle. For simplic-
ity, we state the result for the case of a single delay,
but clearly the extension to multiple output delays is
straightforward.

5



Theorem 7 Consider system (1)-(2). Suppose that
(A,B) is controllable and Theorem 3 holds, and let Kc be
such that A − BKc is Hurwitz stable. Then, the control

law u(t) = −Kcξ̂(t), where ξ̂(t) is computed as in (7),
makes the closed loop system exponentially centered and
uniformly second moment bounded.

PROOF. In the hypotheses the estimation error
ε(t) is exponentially centered and uniformly sec-
ond moment bounded. The closed-loop system is
dx(t) = (A−BKc)x(t)dt + BKcε(t) + F dWt. Since
A − BKc is Hurwitz stable the theorem thesis follows
from standard arguments.

4.4 Large delays

When δ̄ is large, inequality (8) of Theorem 3 may not be
satisfied. Let

α(δ) =

∫ δ

0

∥∥∥CeAθK∥∥∥dθ (32)

and let δmax be such that α(δmax) = 1, or, if α(δ) < 1 for
any δ > 0, then δmax = +∞. Clearly, δmax exists and is
unique since δ 7→ α(δ) is continuous and monotonically
increasing. Thus, in the case δ̄ > δmax, we shall design
a chain of filters, called modular filter, that allows to
achieve the same results of Theorem 3 at the expenses
of the memory of the filter. Similarly to [2], we propose
the following solution.

Definition 8 Given δ̄, δ∗ > 0, a delay partition Pδ̄,δ∗
is a set of positive reals {δj}, j = 1, . . . ,m, such that
δj ≤ δ∗ and

∑m
j=1 δj = δ̄.

We always assume for simplicity δj = δ̄/m. We also
denote dj = (j − 1) δ̄/m, hence d1 = 0 and dm+1 = δ̄.

Definition 9 Given system (1)–(2) and K such that
A = A−KC is Hurwitz stable we say that the delay par-
tition Pδ̄,δ∗ is feasible if α(δ∗) < 1.

Notice that for any feasible partition, α(δ̄/m) < 1. In
order to find m, δj and dj one can proceed as follows:

• find the gain K such that A = A−KC is Hurwitz;
• choose ε ∈ (0, 1) and find δ∗ such that α(δ∗) = 1− ε;
• compute the number of filters m =

⌈
δ̄/δ∗

⌉
;

• set δj = δ̄/m and dj = (j − 1)δ̄/m.

With the partition Pδ̄,δ∗ described above, the modular

filter consists of a chain of m filters ξ̂j(t), j = 1, . . . ,m

for t ≥ 0 where ξ̂j(t) is an estimate of x(t−dj), thus ξ̂1(t)
is the estimate of x(t). Clearly, δ : R+ → [d0, dm+1].

At any t, let ` be such that δt ∈ [d`, d`+1], for some
` ∈ {1, . . . ,m}. The filter equations are as follows.

For j < `,

dξ̂j(t) =
(
Aξ̂j(t) +Bu(t− dj)

)
dt

+ eAδjKC
(
ξ̂j+1(t)− ξ̂j(t− δj)

)
dt (33)

For j = `,

dξ̂`(t) =
(
Aξ̂`(t) +Bu(t− d`)

)
dt+ (1− δ̇t)eA(δt−d`)

·K
(
dy(t)− Cξ̂`(t− δt + d`)dt

)
(34)

For j > `,

ξ̂j(t) =Aξ̂j(t)dt+Bu(t− dj)dt
+K

(
dȳ(t− dj)− Cξ̂j(t)dt

)
(35)

dȳ(t− dj) =Cx(t− dj)dt+GVt−dj (36)

Remark 10 The value of dȳ(t− dj) is a past measure-
ment, because δ(t) < dj. The implementation of the mod-
ular filter requires to maintain a buffer of the measure-
ments for the interval [t− δ̄, t]. At the same time, no ar-
tificial delay is introduced: the buffered measurements dȳ

are not delayed with respect to ξ̂j, j > `.

Theorem 11 Consider system (1)–(2) with a feasible
delay partition Pδ̄,δ∗ and assume that H1 and H2 hold

true. The estimation error ε(t) = x(t) − ξ̂1(t), where

ξ̂1(t) is defined by (33)–(35), is exponentially centered
and uniformly second moment bounded.

PROOF. The thesis is easily obtained by induction by

noticing that ξ̂m satisfies the conditions of Theorem 3
and its estimation error is exponentially centered and
uniformly second moment bounded. The remaining fil-

ters ξ̂j with j < m satisfy the conditions of Theorem
3 too, and their equation contains an additional distur-
bance term corresponding to the estimation error εj+1,
that is however exponentially centered and uniformly
second moment bounded by inductive hypothesis.

4.5 Piece-wise continuous delays

Theorem 3 can be extended to piece-wise differentiable
delays, that is, delays that in any [0, t] admit a derivative
except in a finite number of points. Let T ∗ = {ti} be the
countable set of such points. Consider first the case of
δ(t) not differentiable but still continuous.

Corollary 12 If H2 is replaced by the requirement that
δ : R+ → [0, δ̄] is continuous in R+ and differentiable
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except in a countable set T ∗ then the results of Theorem
3, Theorem 5 and Theorem 6 continue to hold for the
filter obtained by setting δ̇ti = 0 in (7).

However, when δ(t) is not continuous in the set T ∗ there
is an additional bound on the frequency of discontinu-
ities. We prove the result for deterministic systems by
extending Theorem 6. The proof of the stochastic case
follows in a similar way.

Theorem 13 If H2 is replaced by the requirement that
δ : R+ → [0, δ̄] is differentiable with δ̇t 6= 1 except in a
countable and unbounded set T ∗ and (29) is satisfied then
there is a maximum frequency of jump discontinuities
f̄ = supk{1/(tk+1 − tk)} such that (28) with δ̇tk = 0 is
an exponential observer of (26)–(27).

PROOF. When setting δ̇t∗
i

= 0 the right-hand side of

(7) is not continuous in t∗i but a continuous solution still
exists for x̂(t) and ε(t). Let us denote δ−i = limt→t−

i
δ(t)

and δ+
i = limt→t+

i
δ(t). Clearly, in [0, t∗1) the bound in

(19) holds for ‖εc(t)‖. In [tk, tk+1] we obtain the following
integral representation of the type (31)

εc(t) =

∫ t

t−δt
eAc(t−τ)KCεc(τ) dτ + εc(t

−
k )

−
∫ tk

tk−δ+k
eAc(tk−τ)KCεc(τ) dτ (37)

where εc(t
−
k ) = limt→t−

k
εc(t). Proceeding as before we

obtain

sup
τ∈[0,tk+1]

‖Cεc(τ)‖ ≤
(

1 + αc
1− αc

)
sup

τ∈[0,tk]

‖Cεc(τ)‖

≤
(

1 + αc
1− αc

)k
sup

τ∈[0,t1]

‖Cεc(τ)‖.

(38)

Since k ≤ tkf̄ and εc(t) = ectε(t), denoting λ = 1+αc
1−αc ,

sup
τ∈[0,tk+1]

‖Cε(τ)‖ ≤ e−(c−f̄ log(λ))tk+1 sup
τ∈[0,t1]

‖Cεc(τ)‖

(39)
that implies exponential stability when f̄ ≤ c/ log(λ).

Corollary 14 If δ : R+ → [0, δ̄] is piece-wise continu-
ous and the cardinality of T ∗ is finite, the delay bound
expressed by (29) is sufficient for the conclusions of The-
orem 6 to hold.

5 Examples

We consider a planar tracking problem where system
state variable x = [p1 v1 p2 v2]> is composed by pla-

nar coordinates (p1, p2) and velocities (v1, v2). The state
equation is

dx(t) =


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

x(t)dt+


0 0

σa 0

0 0

0 σa

dWt, (40)

where σa is the acceleration standard deviation. In all
simulations, σa = 0.1. The available measurements are
the planar coordinates, i.e. y = [p1 p2]> = [x1 x3]>,

dy(t) =

[
1 0 0 0

0 0 1 0

]
x(t− δt)dt+

[
σv 0

0 σv

]
dVt−δt , (41)

where σv is the measurement standard deviation. System
(40)–(41) satisfies assumption H1.

Three simulation setups have been analyzed. In the first
one (Setup 1), we aim at showing that a filter with time-
varying delays can outperform the optimal predictor
with a delay fixed to the maximal value. We set σv = 2
and found from (8) the delay bound δ̄ = 4.967. The delay
function used in Setup 1 is shown in Fig. 1 (left) and it
is such that maxt(δt) ≈ δ̄. Setup 2 aims at showing that
the new filter outperforms [1] for large and fast varying
delays. We set σv = 0.1, and found δ̄ = 1.111 from con-
dition (8). In this case the maximal value of δt (shown
in Fig. 1, right) largely exceeds the sufficient bound δ̄.
In Setup 3, the output equation (41) is transformed in
the multiple delays form (20) using the delay functions
δ1
t and δ2

t in Figure 1.

0 50 100

Time [s]

0

2

4

Setup 1

0 50 100

Time [s]

0

1

2

3

Setup 2

Fig. 1. Delay functions and delay bounds computed from
condition (8).

We compared the sampled mean square errors (MSE) of
the new filter across 100 noise realizations with (i) the
Kalman-Bucy filter with no delays (KBFnd), to show
the effects of the delay; (ii) the Kalman-Bucy optimal
predictor (KBOP) in (3) based on the maximal delay
(δ = maxt(δt)); (iii) the filter in [1]. The latter has been
not applied to Setup 3 since it is not designed for the
multiple delay case. Similarly to Setup 2, in Setup 3,
condition (22) is not satisfied (α = 1.748).

Figure 2 shows the MSEs of the filters in the three sim-
ulation setups as a function of time. Table 1 reports the
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Table 1
Average Mean Square Errors.

KBFnd KBOP New Filter [1]

Setup 1 0.723 5.885 1.704 1.722

Setup 2 0.029 0.561 0.818 43.438

Setup 3 0.732 5.885 1.993 -

time averages of the MSE for t > 20s to discard the ini-
tial transient. In Setup 1, where condition (8) is satis-
fied, the new filter has an estimation accuracy compara-
ble to the one of [1], significantly better than the KBOP.
In Setup 2, the MSE of the new filter is bounded even if
condition (8) does not hold true, whereas the filter in [1]
diverges. In Setup 3, with multiple delays, the new filter
is bounded, even if condition (22) is not satisfied, and
it outperforms the KBOP similarly to Setup 1. A sam-
ple trajectory is shown in Fig. 3. This means that (8) is
conservative, and that the estimation error of the new
filter can be uniformly second moment bounded also in
situations when [1] is not.

Fig. 2. Mean Square Errors ‖ε(t)‖L2 obtained with in the
three simulation setups.

Fig. 3. One sample trajectory of Setup 2.

6 Conclusions

We have shown that including the delay derivative in
the filter equations can significantly improve the filter-
ing accuracy and lead to better performance than op-
timal predictors with artificial delays added. Moreover,
the proposed algorithm has a computational complexity
comparable to a plain KBF and it is well suited to appli-
cations with variable communication delays, for exam-
ple sensor networks. Further research topics include the
choice of the optimal gain K as a function of the delay
bound as well as the extensions to time-varying linear
systems [3], linear systems with nonlinear disturbances
and distributed filtering.
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