Carbon dots (CDs) samples were synthesized from orange peel waste (OPW) via a simple and eco-friendly hydrothermal carbonization (HTC) and electrochemical (EC) bottom-up synthesis integrated approach. The comprehensive chemical-physical characterization of CDs samples, carried out by various techniques such as TEM, EDX, XRD, FT-IR, underlined their morphological and microstructural features. The CDs exhibited attractive electrochemical properties, and thus an electrochemical sensor by modifying a screen printed carbon electrode (CDs/SPCE) for the detection of nitrobenzene (NB) in water was developed. Electroanalytical performances of CDs/SPCE sensor using differential pulse voltammetry (DPV) demonstrated its high sensitivity (9.36 μAμM^(-1)cm(^-2)) towards NB in a wide linear dynamic range (0.1–2000 μM) and a low limit of detection (LOD=13 nM). The electrochemical sensor also shown high selectivity, long-term stability, and repeatability. This paper might open the way to a new synergistic HTC-EC approach for the synthesis of CDs from waste biomass material and their advanced application in highly efficient electrochemical sensors.
Voltammetric Sensor Based on Waste-Derived Carbon Nanodots for Enhanced Detection of Nitrobenzene / Bressi, Viviana; Chiarotto, Isabella; Ferlazzo, Angelo; Celesti, Consuelo; Michenzi, Cinzia; Len, Thomas; Iannazzo, Daniela; Neri, Giovanni; Espro, Claudia. - In: CHEMELECTROCHEM. - ISSN 2196-0216. - 2023:(2023), pp. 1-9. [10.1002/celc.202300004]
Voltammetric Sensor Based on Waste-Derived Carbon Nanodots for Enhanced Detection of Nitrobenzene
Isabella Chiarotto
Secondo
Writing – Original Draft Preparation
;Cinzia MichenziInvestigation
;
2023
Abstract
Carbon dots (CDs) samples were synthesized from orange peel waste (OPW) via a simple and eco-friendly hydrothermal carbonization (HTC) and electrochemical (EC) bottom-up synthesis integrated approach. The comprehensive chemical-physical characterization of CDs samples, carried out by various techniques such as TEM, EDX, XRD, FT-IR, underlined their morphological and microstructural features. The CDs exhibited attractive electrochemical properties, and thus an electrochemical sensor by modifying a screen printed carbon electrode (CDs/SPCE) for the detection of nitrobenzene (NB) in water was developed. Electroanalytical performances of CDs/SPCE sensor using differential pulse voltammetry (DPV) demonstrated its high sensitivity (9.36 μAμM^(-1)cm(^-2)) towards NB in a wide linear dynamic range (0.1–2000 μM) and a low limit of detection (LOD=13 nM). The electrochemical sensor also shown high selectivity, long-term stability, and repeatability. This paper might open the way to a new synergistic HTC-EC approach for the synthesis of CDs from waste biomass material and their advanced application in highly efficient electrochemical sensors.File | Dimensione | Formato | |
---|---|---|---|
Bressi_Voltammetric_2023.pdf
accesso aperto
Note: Articolo su rivista
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
1.79 MB
Formato
Adobe PDF
|
1.79 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.