This study presents a damage identification procedure in beams based on the use of beamforming algorithms, which are mostly utilized in inverse problems of source identification and image reconstruction. We choose the modal curvatures as observed quantities and compare the performance of the Bartlett beamformer, minimum variance distortionless response (MVDR) processor, and of a conventional objective function based on the modal curvatures. By means of a set of experiments, we show that the MVDR processor can overcome some of the difficulties encountered with other estimators, especially in cases of slight damage, or damage located between two sensors.

The minimum variance distortionless response beamformer for damage identification using modal curvatures / Pau, A.; Eroglu, U.. - 26:(2023), pp. 455-460. (Intervento presentato al convegno AIMETA tenutosi a Palermo) [10.21741/9781644902431-74].

The minimum variance distortionless response beamformer for damage identification using modal curvatures

Pau A.;
2023

Abstract

This study presents a damage identification procedure in beams based on the use of beamforming algorithms, which are mostly utilized in inverse problems of source identification and image reconstruction. We choose the modal curvatures as observed quantities and compare the performance of the Bartlett beamformer, minimum variance distortionless response (MVDR) processor, and of a conventional objective function based on the modal curvatures. By means of a set of experiments, we show that the MVDR processor can overcome some of the difficulties encountered with other estimators, especially in cases of slight damage, or damage located between two sensors.
2023
AIMETA
Damage Identification, Modal Curvatures, Inverse Problems
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
The minimum variance distortionless response beamformer for damage identification using modal curvatures / Pau, A.; Eroglu, U.. - 26:(2023), pp. 455-460. (Intervento presentato al convegno AIMETA tenutosi a Palermo) [10.21741/9781644902431-74].
File allegati a questo prodotto
File Dimensione Formato  
Pau_Minimum_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 669.59 kB
Formato Adobe PDF
669.59 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1678590
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact