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Abstract. This study presents a damage identification procedure in beams based on the use of 
beamforming algorithms, which are mostly utilized in inverse problems of source identification 
and image reconstruction. We choose the modal curvatures as observed quantities and compare 
the performance of the Bartlett beamformer, minimum variance distortionless response (MVDR) 
processor, and of a conventional objective function based on the modal curvatures. By means of a 
set of experiments, we show that the MVDR processor can overcome some of the difficulties 
encountered with other estimators, especially in cases of slight damage, or damage located between 
two sensors. 
Introduction 
Numerous studies have proven that the use of modal quantities is a very effective strategy to locate 
damage [1]. Among different modal quantities, modal curvatures stand out for their low sensitivity 
to environmental and operational conditions, and better performance in case of slight damage [2,3]. 
When solving the related inverse problem, it is important to apply a robust estimator (or processor), 
which may improve the quality of the solution, especially in the presence of disturbance due to 
operating conditions, noisy data, and modelling errors. 

The Minimum Variance Distortionless Response (MVDR) data processor [4], also named 
beamformer, is an estimator successfully applied in image-reconstruction techniques based on the 
wave response, for instance, to locate sources in oceans, but also to reconstruct the image of defects 
in plates and solids [5]. It is based on the comparison of modelled responses (replica vector) to 
data received by an array of sensors. Compared to other beamformers, the MVDR has proved its 
effectiveness in minimizing noise, thus providing images of very good quality. The use of the 
MVDR processor can be viewed as an approach to the solution of an inverse problem, with 
potential applications to a broader range of problems in which the forward solutions are 
computable and measurable, especially regarding the field of structural vibrations, where the use 
of such estimator has not received attention in the literature to date. We aim at applying the MVDR 
beamformer to damage identification in beams, using modal curvatures as measured response 
quantities. To this aim, we assess the performance of the MVDR processor in identifying damage 
in pseudo-experimental and experimental cases with different location and intensity. Comparisons 
of the MVDR estimates to those of the Bartlett beamformer, and of a conventional objective 
function based on the modal curvatures are carried out. For the sake of brevity, this paper only 
reports some experimental results, while the full analysis is presented in [7]. 
Numerical Model 
The direct problem is solved by means of a 2D finite element (FE) plane stress analysis. This 
model is used to obtain natural frequencies and mode shapes of a free-free beam of length L, with 
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a notch of small extension bD, located at position SD, measured from left end of the beam (see 
Fig.1). The cross-section of the beam is rectangular with height HU and width b. The notch is 
modelled as a height reduction to the value HD in a stretch bD. We define damage by two non-
dimensional variables, namely, its location sD=SD/L, and the residual height of the cross-section, 
hD=HD/HU, collected in the vector, 𝒙𝒙� = {𝑠𝑠𝐷𝐷 ,ℎ𝐷𝐷}𝑇𝑇.  
 

 
Figure 1. Schematic representation of the beam used in benchmark case 

The numerical model is used for the construction of the replica vectors via sweeping the damage 
location from 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 = 0.04 to 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 = 0.96 in 48 steps, and the residual height from ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 = 0.06 
to ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 = 0.97 in 30 steps. For all the analyses we evaluate the longitudinal modal strains ε at 
m=7 equally spaced points, as numbered in Fig.1, and derive modal curvatures using the kinematic 
relation χ=ε/HU/2 of the Euler-Bernoulli beam theory. 
 
Experimental Study 
The experimental setup is illustrated in Figure 2. The beam was excited by an instrumented 
hammer, at points #8 or #9, and the response was measured using seven strain gauges and two 
accelerometers. The tests were repeated ten times per each point of application of the forcing 
function. The applied impulsive force is capable of exciting frequencies up to 3000 Hz, which 
enables determining the first three natural frequencies. Accelerometers at points #8 and #9 are 
used for modal curvature normalization [6]. 

 
Figure 2. Schematic of the experimental setup 

We consider two cases which we label Case A, and Case B. In the former, damage is located at 
sD = 0.25, that is, under sensor #2, while in the latter damage is between sensors #3 and #4, with 
sD = 0.4375. In both cases we consider two damage severities which correspond to nominal 
residual heights hD = 0.75 (D1) and hD = 0.5 (D2). In all cases the damage extension is fixed, with 
bD = 1 mm. 

The numerical and experimental curvatures of the first three modes for Case A and Case B are 
presented in Fig.3. Overall, a very good agreement is observed in both cases regarding the form of 
the curves. In Case A, the localized effect of damage can be captured by the sensor #2 and the 
curvature exhibits a distinct change, providing a strong hint at the location of damage. In Case B, 
instead, the localized effect cannot be captured, which makes locating the damage more difficult. 
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(c) (f) 
Figure 3. Numerical and experimental modal curvatures for Cases A (a-c) and B (d-f). 

Inverse Problem via MFP Algorithms 
The direct solution of the free-vibration problem provides the replica vectors 𝝌𝝌𝑖𝑖(𝒙𝒙�) ∈ ℝ𝑚𝑚, which 
list the mass-normalized modal curvatures of the ith mode at m sensor points. The beamformers 
evaluate the correlation between the normalized replica vector,  

𝝌𝝌�𝑖𝑖(𝒙𝒙�) = 𝝌𝝌𝑖𝑖(𝒙𝒙�) ‖𝝌𝝌𝑖𝑖(𝒙𝒙�)‖⁄ , (1) 
and the data vector which lists mass-normalized modal curvatures obtained by experimental or 
pseudo-experimental measurements, 𝒅𝒅𝑖𝑖(𝒙𝒙�) ∈ ℝ𝑚𝑚, for the ith mode. Finding the damage parameter 
set which provides the best correlation with the measured data requires collecting the values of 
response data in the parameter space [𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 , 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 ] × [ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 ,ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 ], which is performed by the 2D 
FE procedure described beforehand. 

Bartlett Beamformer The Bartlett beamformer is a basic processor which has been used almost 
in all the studies about matched field processors (MFP) for comparative purposes. Simply, it is the 
average of the projection of the data vector onto the replica vector, and it can be written in terms 
of the cross-spectral density matrix (CSDM) of data, 𝑲𝑲𝑖𝑖 = 𝒅𝒅𝑖𝑖𝒅𝒅𝑖𝑖𝑇𝑇. The expression for the Bartlett 
Beamformer for individual modes and their superposition are given below. 

𝐵𝐵𝐵𝐵𝐵𝐵𝑟𝑟𝑟𝑟,𝑖𝑖(𝒙𝒙�) = 𝝌𝝌�𝑖𝑖𝑇𝑇(𝒙𝒙�)𝑲𝑲𝑖𝑖𝝌𝝌�𝑖𝑖 (𝒙𝒙�),    𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝒙𝒙�) = �𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑖𝑖(𝒙𝒙�)
3

𝑖𝑖=1

. (2) 
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This processor has many side lobes even in case of perfect pseudo-experimental data. This 
drawback is overcome by the adaptive filtering of data, which leads to different processors, one of 
which is the MVDR beamformer. 

Minimum Variance Distortionless Response (MVDR) Beamformer Trying to minimize the 
projection except for the best match, we have [4]: 

𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑖𝑖(𝒙𝒙�) = �𝝌𝝌�𝑖𝑖𝑇𝑇(𝒙𝒙�)𝑲𝑲𝑖𝑖
−1𝝌𝝌�𝑖𝑖 (𝒙𝒙�)�

−1
,     𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝒙𝒙�) = �𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑖𝑖(𝒙𝒙�).

3

𝑖𝑖=1

 (3) 

Here we note that the CSDM is usually ill-conditioned which makes its inversion not a straight-
forward task. We improve its conditioning using a diagonal loading technique, with a magnitude 
of 10−6tr𝑲𝑲𝑖𝑖. 

Objective Function A widely used objective function which measures the difference between 
replica vector and the measurement is: 

𝐻𝐻(𝒙𝒙�) = ��𝝌𝝌�𝑖𝑖(𝒙𝒙�) − 𝒅𝒅�𝑖𝑖(𝒙𝒙�)�
3

𝑖𝑖=1

,   𝒅𝒅�𝑖𝑖(𝒙𝒙�) =
𝒅𝒅𝑖𝑖(𝒙𝒙�)
‖𝒅𝒅𝑖𝑖(𝒙𝒙�)‖. (4) 

   

○ Actual xe = {0.25, 0.753}T ○ Actual xe = {0.25, 0.753}T ○ Actual xe = {0.25, 0.753}T 
× Estimate xe = {0.25, 0.781}T × Estimate xe = {0.25, 0.344}T × Estimate xe = {0.25, 0.781}T 

(a) (b) (c) 
Figure 4. Contour plots and estimates of the objective function a), Bartlett beamformer b) and 

MVDR c) for D1.A. 
Fig.4 shows the contour plots of the different estimators and reports the related estimates of the 

damage parameters. Note also that the reported values of hD slightly differ from the nominal ones 
for they were updated with their experimental measurement with a caliber. The correct value is 
denoted by a circle and the estimate by a cross. Overall, we see that the objective function and 
MVDR are very accurate in determining both location and severity of damage, while the Bartlett 
beamformer overestimates the severity but captures the correct location. Objective function and 
Bartlett beamformer admit many local extrema and side lobes, while MVDR remarkably surpasses 
them especially in terms of damage intensity resolution. 

The estimates in the case of a more severe damage are reported in Fig. 5. We see a pattern very 
similar to the previous case in which the estimates of the objective function and MVDR are 
accurate, but the Bartlett beamformer overestimates damage severity. 

In case of damage in between sensors #3 and #4, the identification is more difficult since the 
local effects of damage cannot be captured by one of the sensors (Fig. 3). This is reflected in Fig. 
6; the objective function has wider flat valleys, many local maxima are apparent in Bartlett 
beamformer, and MVDR has many side lobes even though their order is smaller than the global 
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maxima. When damage is more severe (Fig. 7), the estimate of Bartlett beamformer is improved, 
however, it is still less accurate than those of the objective function and MVDR. 

 

   

○ Actual xe = {0.250, 0.507}T ○ Actual xe = {0.250, 0.507}T ○ Actual xe = {0.250, 0.507}T 
× Estimate xe = {0.250, 0.594}T × Estimate xe = {0.250, 0.281}T × Estimate xe = {0.250, 0.594}T 

(a) (b) (c) 
Figure 5. Contour plots and estimates of the objective function a), Bartlett beamformer b) and 

MVDR c) for D2.A. 

   

○ Actual xe = {0.438, 0.733}T ○ Actual xe = {0.438, 0.733}T ○ Actual xe = {0.438, 0.733}T 
× Estimate xe = {0.462, 0.719}T × Estimate xe = {0.500, 0.539}T × Estimate xe = {0.462, 0.719}T 

(a) (b) (c) 
Figure 6. Contour plot and estimates of the objective function a), Bartlett beamformer b) and 

MVDR c) for D1.B. 
 
The overall estimates of different techniques for all the cases we considered here are 

summarized in Table 1. We see that the minimization of a suitable objective function and the 
MVDR provides identical results in these cases; however, the extrema of the latter are always more 
distinct than the former, which is a strong hint on higher reliability of MVDR. 

Table 1. Absolute errors of damage parameters for all the cases considered. 

 D1.A D2.A D1.B D2.B 
 |𝑠𝑠𝑒𝑒𝐷𝐷 − 𝑠𝑠𝐷𝐷| |ℎ𝑒𝑒𝐷𝐷 − ℎ𝐷𝐷| |𝑠𝑠𝑒𝑒𝐷𝐷 − 𝑠𝑠𝐷𝐷| |ℎ𝑒𝑒𝐷𝐷 − ℎ𝐷𝐷| |𝑠𝑠𝑒𝑒𝐷𝐷 − 𝑠𝑠𝐷𝐷| |ℎ𝑒𝑒𝐷𝐷 − ℎ𝐷𝐷| |𝑠𝑠𝑒𝑒𝐷𝐷 − 𝑠𝑠𝐷𝐷| |ℎ𝑒𝑒𝐷𝐷 − ℎ𝐷𝐷| 

H 0 0.028 0 0.087 0.024 0.014 0.004 0.031 
Bartlett 0 0.409 0 0.226 0.062 0.194 0.023 0.063 
MVDR 0 0.028 0 0.087 0.024 0.014 0.004 0.031 
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○ Actual xe = {0.438, 0.500}T ○ Actual xe = {0.438, 0.500}T ○ Actual xe = {0.438, 0.500}T 
× Estimate xe = {0.442, 0.531}T × Estimate xe = {0.461, 0.563}T × Estimate xe = {0.442, 0.531}T 

(a) (b) (c) 
Figure 7. Contour plots and estimates of the objective function a), Bartlett beamformer b) and 

MVDR c) for D2.B. 
Conclusions 
We examined the possibility of applying to damage identification some beamforming algorithms 
which are widely used in fields such as underwater source identification and image processing. 
The identification of damage using experimental modal curvatures revealed that the use of MVDR 
is reliable and it suppresses local extrema which may lead to erroneous estimates. All the 
processors under investigation have exhibited high sensitivity to damage location, although 
MVDR appeared to be the most sensitive with regard to damage intensity. 
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