This thesis is concerned with non-crossing shortest paths in planar graphs with applications to st-max flow vitality and path graphs. In the first part we deal with non-crossing shortest paths in a plane graph G, i.e., a planar graph with a fixed planar embedding, whose extremal vertices lie on the same face of G. The first two results are the computation of the lengths of the non-crossing shortest paths knowing their union, and the computation of the union in the unweighted case. Both results require linear time and we use them to describe an efficient algorithm able to give an additive guaranteed approximation of edge and vertex vitalities with respect to the st-max flow in undirected planar graphs, that is the max flow decrease when the edge/vertex is removed from the graph. Indeed, it is well-known that the st-max flow in an undirected planar graph can be reduced to a problem of non-crossing shortest paths in the dual graph. We conclude this part by showing that the union of non-crossing shortest paths in a plane graph can be covered with four forests so that each path is contained in at least one forest. In the second part of the thesis we deal with path graphs and directed path graphs, where a (directed) path graph is the intersection graph of paths in a (directed) tree. We introduce a new characterization of path graphs that simplifies the existing ones in the literature. This characterization leads to a new list of local forbidden subgraphs of path graphs and to a new algorithm able to recognize path graphs and directed path graphs. This algorithm is more intuitive than the existing ones and does not require sophisticated data structures.
Non-crossing shortest paths in planar graphs with applications to max flow, and path graphs / Balzotti, Lorenzo. - (2023 Jan 23).
Non-crossing shortest paths in planar graphs with applications to max flow, and path graphs
Balzotti, Lorenzo
23/01/2023
Abstract
This thesis is concerned with non-crossing shortest paths in planar graphs with applications to st-max flow vitality and path graphs. In the first part we deal with non-crossing shortest paths in a plane graph G, i.e., a planar graph with a fixed planar embedding, whose extremal vertices lie on the same face of G. The first two results are the computation of the lengths of the non-crossing shortest paths knowing their union, and the computation of the union in the unweighted case. Both results require linear time and we use them to describe an efficient algorithm able to give an additive guaranteed approximation of edge and vertex vitalities with respect to the st-max flow in undirected planar graphs, that is the max flow decrease when the edge/vertex is removed from the graph. Indeed, it is well-known that the st-max flow in an undirected planar graph can be reduced to a problem of non-crossing shortest paths in the dual graph. We conclude this part by showing that the union of non-crossing shortest paths in a plane graph can be covered with four forests so that each path is contained in at least one forest. In the second part of the thesis we deal with path graphs and directed path graphs, where a (directed) path graph is the intersection graph of paths in a (directed) tree. We introduce a new characterization of path graphs that simplifies the existing ones in the literature. This characterization leads to a new list of local forbidden subgraphs of path graphs and to a new algorithm able to recognize path graphs and directed path graphs. This algorithm is more intuitive than the existing ones and does not require sophisticated data structures.File | Dimensione | Formato | |
---|---|---|---|
Tesi_dottorato_Balzotti.pdf
accesso aperto
Note: Tesi completa
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
1.45 MB
Formato
Adobe PDF
|
1.45 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.