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Abstract

This thesis is concerned with non-crossing shortest paths in planar graphs with applications to
st-max flow vitality and path graphs.

In the first part we deal with non-crossing shortest paths in a plane graph G, i.e., a planar
graph with a fixed planar embedding, whose extremal vertices lie on the same face of G. The first
two results are the computation of the lengths of the non-crossing shortest paths knowing their
union, and the computation of the union in the unweighted case. Both results require linear
time and we use them to describe an efficient algorithm able to give an additive guaranteed
approximation of edge and vertex vitalities with respect to the st-max flow in undirected planar
graphs, that is the max flow decrease when the edge/vertex is removed from the graph. Indeed,
it is well-known that the st-max flow in an undirected planar graph can be reduced to a problem
of non-crossing shortest paths in the dual graph. We conclude this part by showing that the
union of non-crossing shortest paths in a plane graph can be covered with four forests so that
each path is contained in at least one forest.

In the second part of the thesis we deal with path graphs and directed path graphs, where
a (directed) path graph is the intersection graph of paths in a (directed) tree. We introduce
a new characterization of path graphs that simplifies the existing ones in the literature. This
characterization leads to a new list of local forbidden subgraphs of path graphs and to a new
algorithm able to recognize path graphs and directed path graphs. This algorithm is more
intuitive than the existing ones and does not require sophisticated data structures.
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Chapter 1

Introduction

This thesis gives theoretical and algorithmic results on non-crossing shortest paths in plane
graphs, with applications to st-max flow vitality. Moreover, we investigate paths graphs and
directed path graphs.

The main algorithmic result, described in Chapter 6, is about vitality of edges and vertices
with respect to the st-max flow in undirected planar graphs, that is the max flow decrease when
the edge/vertex is removed from the graph. We give efficient algorithms to compute an additive
guaranteed approximation of the vitality of edges and vertices in undirected planar graphs. We
show that in the general case high vitality values are well approximated in time close to the time
currently required to compute the st-max flow.

To reach this, we study the non-crossing shortest paths (NCSP) problem on a plane graph,
i.e., a planar graph with a fixed planar embedding. Indeed, thanks to Reif [123], the st-max flow
in undirected planar graphs can be reduced to a NCSP problem on the dual graphs. The NCSP
problem can be formalized as follows: given an undirected plane graph G with positive edge
lengths and k terminal pairs that lie on a specified face boundary, find k non-crossing shortest
paths in G, each one connecting a terminal pair. It is assumed that terminal pairs appear on the
infinite face so that non-crossing paths exist, where two paths in a plane graph G are non-crossing
if the curves they describe in G’s planar embedding do not cross each other.

We give efficient algorithms for st-max flow vitality in planar graphs by a divide and conquer
approach, where a plane graph derived from the dual graph is split into regions by non-crossing
shortest paths. More efficient (and in some case optimal) algorithms for the st-max flow vitality
are given on planar graphs with unit capacity.

The NCSP problem was studied by Takahashi et al. [131] and solved in O(n log n) time, then
Steiger [130] improved this result to O(n log log k) time, where n is the number of the vertices of
the input graph. Both algorithms work for graphs with positive edge weights, and maintain the
same time complexity also in the unweighted case. In Chapter 5 we solve the NCSP problem on
undirected unweighted plane graph in linear time. We use the result by Eisenstat and Klein [48],
that gives an implicit representation of a sequence of shortest path trees rooted at the vertices
in the infinite face of an undirected unweighted plane graph in linear time.

All algorithms solving the NCSP problem compute the union of the non-crossing shortest
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paths and then their distances. In [131] it is claimed that their union is a forest, and the length
of each path is computed by using the result by Gabow and Tarjan [54] about lowest common
ancestor queries on trees. Actually, in the general case their union may contain cycles, and thus
the result in [54] cannot be applied. In Chapter 4 we present an algorithm that, given the union
of the non-crossing shortest paths, computes the length of each path in total linear time. This
result is obtained by introducing shortcuts, that are portions of the boundary of a face that allow
us to modify a path without increasing (and possibly decreasing) its length. We show that in this
scenario it is possible to establish whether a path is a shortest path by looking at the presence of
shortcuts. Thus we reduce, in this particular case, the global property of being a shortest path
to a local property, which is the presence of shortcuts.

Since in general the union of shortest paths is not a forest, we asked ourselves how many
forests are needed to cover it. Thus, for a set of paths P we define the Path Covering with Forests
Number of P (PCFN(P )) as the minimum size of a set F of forests such that each path in P is
contained in at least one forest in F . In Chapter 7 we prove that if P is a set of non-crossing
shortest paths in an undirected plane graph G, whose extremal vertices lie on the same face of
G, then PCFN(P ) ≤ 4, and this bound is tight. We also describe a linear algorithm able to list
these four covering forests.

The second part of the thesis is concerned with path graphs and directed path graphs, where
a (directed) path graph is the intersection graph of paths in a (directed) tree. In Chapter 8 we
describe two new characterizations of path graphs starting from Monma and Wei’s characteriza-
tion [102]. Our first characterization is the only one, to the best of our knowledge, that directly
implies a polynomial recognition algorithm. This algorithm is explained in Chapter 9 and spe-
cializes also for directed path graphs. We do not decrease the time complexity for recognition
algorithm for path graphs and directed path graphs, but we unify and strictly simplify the study
of path graphs and directed path graphs from the algorithmic point of view.

Organization. In Chapter 2 we describe the state of the art about non-crossing shortest paths,
max flow in planar graphs, topics related to Path Covering with Forests Number and theoretical
and algorithmic results concerning path graphs and directed path graphs. In Chapter 3 we report
notation and definition that will be used in the whole thesis and we also summarize the existing
characterizations of path graphs and directed path graphs. Central chapters are organized as
follows:

• Chapter 4, Chapter 5 and Chapter 7 deal with non-crossing shortest paths in a plane graph:
in Chapter 4 we compute the lengths of non-crossing shortest paths in linear time given
their union; in Chapter 5 we solve the NCSP problem in linear time in the unweighted case;
in Chapter 7 we give a tight bound of PCFN(P ) when P is a set of non-crossing shortest
paths. These chapters are based on [17, 20, 18].

• in Chapter 6 we give efficient algorithms to compute an additive guaranteed approximation
of the st-max flow vitality of edges and vertices in undirected planar graphs. We use a
divide and conquer strategy based on non-crossing shortest paths and results in Chapter 4
and Chapter 5, see [19].

2



Chapter 1. Introduction

• in Chapter 8 we show two new characterizations of path graphs, and we use them to
describe, in Chapter 9, an original recognition algorithm for path graphs and directed path
graphs, see [11, 16].
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Chapter 2

State of the art

In this chapter we describe the state of the art about treated topics and we compare them with
respect to our results. In Section 2.1 we deal with non-crossing shortest paths in plane graphs.
In Section 2.2 we report classical results on max flow and we focus the attention on max flow in
planar graphs, showing the correlation with the NCSP problem. Section 2.3 is concerned with
Path Covering with Forests Number and arboricity. Finally in Section 2.4 we resume theoretical
and algorithmic results about path graphs and directed path graphs.

2.1 Non-crossing shortest paths in plane graphs

The problem of computing shortest paths in planar graphs arises in application fields such as
intelligent transportation system (ITS) and geographic information system (GIS) [81, 141], route
planning [22, 59, 120], logistic [100], traffic simulations [15] and robotics [85]. In particular, non-
crossing shortest paths in a plane graph are studied to optimize VLSI layout [26, 95, 96], where
two non-crossing paths may share edges and vertices, but they do not cross each other in the
plane.

The non-crossing shortest paths (NCSP) problem on a plane graph can be formalized as
follows: given an undirected plane graph G with positive edge lengths and k terminal pairs that
lie on a specified face boundary, find k non-crossing shortest paths in G, each one connecting a
terminal pair. It is assumed that terminal pairs appear in the infinite face so that non-crossing
paths exist; this property can be easily verified in linear time.

Takahashi et al. [131] proposed an algorithm for computing k non-crossing shortest paths
that requires O(n log n) time, where n is the size of G. In the same article it is also analyzed
the case where the terminal pairs lie on two different face boundaries, and this case is reduced
to the previous one within the same computational complexity. The complexity of their solution
can be reduced to O(n log k) by plugging in the linear time algorithm by Henzinger et al. [75]
for computing a shortest path tree in a planar graph. Their result was improved by Steiger to
O(n log log k) time [130], exploiting the algorithm by Italiano et al. [80]. In the unweighted case
we exhibit in Chapter 5 a linear time algorithm; we stress that algorithms in [130, 131] maintain
their same time complexity also in this case.
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2.1. Non-crossing shortest paths in plane graphs

The algorithm proposed in [131] first computes the union of the k non-crossing shortest paths,
which is claimed to be a forest. Then they obtain distances between the terminal pairs in O(n)

time by using a data structure due to Gabow and Tarjan [54] for efficiently solving least common
ancestor (LCA) queries in a forest.

Actually, the union of the k non-crossing shortest paths may in general contain cycles. An
instance is shown in Figure 2.1, in which the unique set of shortest paths contains a cycle, hence
the distances between terminal pairs cannot always be computed by solving LCA queries in a
forest. This limitation was noted first by Polishchuk and Mitchell [119], and it is overcome in
Chapter 4, where a linear time algorithm for computing the lengths of non-crossing shortest
paths is presented.

x1 y1

x2

y2x3

y3

3 3

3

33

3

3

33

10

10

10

10

10

10

Figure 2.1: in this example the union of shortest paths from xi to yi, for i = 1, 2, 3, contains a
cycle (the union is highlighted with bold edges).

Ericksonn and Nayyeri [49] stated that the union of non-crossing shortest paths can always
be covered with two (possibly non edge-disjoint) forests so that each path is contained in at least
one forest. They do not describe how to obtain such a covering. This is contradicted by the
example in Figure 2.2, where we report the union of 15 non-crossing shortest paths that cannot
be covered with two forests so that each path is contained in at least one forest (this is proved
by a simple enumeration). This observation led us to introduce the Path Covering with Forests
Number treated in Chapter 7.

Figure 2.2: union of 15 non-crossing shortest paths that cannot be covered with two forests so
that each path is contained in at least one forest (parallel adjacent segments represent overlapping
paths).

2.1.1 Related work

The non-crossing shortest paths problem fits into a wider context of computing many distances
in planar graphs. In the positive weighted case, the all pairs shortest paths (APSP) problem was
solved by Frederickson in O(n2) time [53], while the single source shortest paths (SSSP) problem
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Chapter 2. State of the art

was solved in linear time by Henzinger et al. [75]. The best-known algorithm for computing
many distances in planar graphs is due to Gawrychowski et al. [58] and allows us to compute
the distance between any two vertices in O(log n) time after a preprocessing requiring O(n3/2)

time. In the plane unweighted case, SSSP trees rooted at vertices in the infinite face can be
computed in linear time as in [48]. More results on many distances problems can be found
in [32, 38, 46, 51, 105, 109].

If we are interested in distances from any vertex in a fixed face f to any other vertex, then
we can use Klein’s algorithm [87], that, with a preprocessing of O(n log n) time, answers to each
distance query in O(log n) time; this result was recently improved by Das et al. [42] to O(n log |f |)
preprocessing time and O(log |f |) query time.

Kowalik and Kurowski [92] dealt with the problem of deciding whether any two query vertices
of an unweighted planar graph are closer than a fixed constant r. After a preprocessing of O(n)

time, their algorithm answers in O(1) time, and, if so, a shortest path between them is returned.
Wagner and Weihe [136] presented a O(n) time algorithm for finding edge-disjoint (not nec-

essarily shortest) paths in an undirected plane graph such that each path connects two specified
vertices on the infinite face of the graph.

In a geometrical setting Papadopoulou [114] found the set of k non-crossing shortest paths
between k terminal pairs of points on the boundary of a simple polygon with n vertices in
O(n+ k) time. Eriksson-Bique et al. [50] studied the problem of computing shortest paths in a
two-dimensional environment with polygonal obstacles.

More results on disjoint shortest paths for general graphs can be found in [24, 25, 47, 99] and
in [43, 89, 128] for the planar case.

2.2 Max flow in planar graphs

Max flow problems have been intensively studied in the last 60 years, we refer to [2, 3] for a
comprehensive bibliography. For general graphs, the currently best-known algorithms [86, 111]
compute the max flow between two vertices in O(mn) time, where m is the number of edges and
n is the number of vertices.

Thanks to the fundamental work by Ford and Fulkerson [52], fixed two vertices s and t—the
source and the sink—the st-max flow value is equal to the capacity of a minimum st-cut. For
undirected planar graphs the first algorithm is due to Itai and Shiloach [79] and consists of two
phases, each one requires O(n2 log n). In the first phase a minimum st-cut is found, in the second
a flow with value equal of the capacity of this cut is constructed. Johnson and Venkatesan [82]
reached a O(n3/2 log n) time algorithm for both directed and undirected planar graphs by a divide
and conquer strategy that operates on recursively subdivided regions. Reif [123] improved the
method in [79] leading to a O(n log2 n) time algorithm for st-min cut. Hassin and Johnson [73]
extended the result in [123] giving a O(n log2 n) time algorithm also for the st-max flow. Thanks
to a new planar graph decomposition, called r-division, Frederickson [53] presented improved
algorithms for shortest path and related problems as single source problem, all pairs problem,
minimum cut and multicommodity flow. In particular he gave a O(n log n) time algorithm
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2.2. Max flow in planar graphs

for st-min cut and st-max flow. Italiano et al. [80] solved the st-max flow and st-min cut in
O(n log logn) time.

For directed st-planar graphs (i.e., graphs allowing a planar embedding with s and t on the
same face) finding a max flow was reduced by Hassin [72] to the single source shortest path
(SSSP) problem, that can be solved in O(n) time by the algorithm in [75]. For the planar
directed case, Borradaile and Klein [31] presented a O(n log n) time algorithm. In the special
case of directed unweighted planar graphs, a linear time algorithm was proposed by Eisenstat
and Klein [48].

2.2.1 Vitality

The effect of arcs deletion on the max flow value has been studied since 1963, only a few years
after the seminal article by Ford and Fulkerson [52] in 1956. Wollmer [138] presented a method
for determining the most vital link (i.e., the arc whose deletion causes the largest decrease of the
max flow value) in a railway network. A more general problem was studied by Ratliff et al. [121],
where an enumerative approach is proposed for finding the k arcs whose simultaneous removal
causes the largest decrease in max flow. Wood [139] showed that this problem is NP-hard in the
strong sense, while its approximability was studied in [10, 116]. A survey on network interdiction
problems can be found in [6].

The vitality of an edge e (resp., of a vertex v) measures the max flow decrease observed after
the removal of edge e (resp., all edges incident on v) from the graph. A survey on vitality with
respect to max flow problems can be found in [12]. In the same article, it is shown that:

• the vitality of all edges in a general undirected graph can be computed by solving O(n)

max flow instances, thus giving an overall O(n2m) time algorithm by applying the O(mn)

max flow algorithms in [86, 111];

• for st-planar graphs (both directed or undirected) the vitality of all edges can be found in
optimal O(n) time. The same result holds for determining the vitality of all vertices;

• the problem of determining the max flow vitality of a single edge is at least as hard as the
max flow problem, both for general graphs and for the restricted class of st-planar graphs.

Ausiello et al. [13] proposed a recursive algorithm that computes the vitality of all edges in
an undirected unweighted planar graph in O(n log n) time.

The above-cited article by Italiano et al. [80] also gives a dynamic algorithm that allows the
operations described in the following theorem.

Theorem 1 ([80]). Let G be a planar graph with positive edge capacities. There exists a data
structure that after O(n log r + n√

r
log n) preprocessing time supports: edge insertions and edge

deletions in O((r + n√
r
) log2 n) time; s to t distance queries in O((r + n√

r
) log2 n) time; max

st-flow queries in O((r + n√
r
) log3 n) time, where r ∈ [1, . . . , n].

The dynamic structure given in Theorem 1 can be used to compute edge and vertex vitality.
Thus by properly choosing r, as implicitly shown in Łącki and Sankowski’s article [94], the
following corollary holds.
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Chapter 2. State of the art

Corollary 2 ([80, 94]). Let G be a planar graph with positive edge capacities. Then it is possible to
compute the vitality of h single edges or the vitality of a set of h edges in O(min{ hn

logn+n log logn,

hn2/3 log8/3 n+ n log n}).

In Chapter 6 we give efficient algorithms to compute an additive approximation of the vitality
of edges and vertices in undirected planar graphs.

2.3 Graph covering problem

In Chapter 7 we introduce the Path Covering with Forests Number focusing on non-crossing
shortest paths in a plane graph. This result gives a structure of a particular set of shortest
paths. There is a very restricted literature dealing with this problem for general graph, a first
recent result by Bodwin [27] in 2019 develops a structural theory of unique shortest paths in real
weighted graphs: the author characterizes exactly which sets of node sequences can be realized
as unique shortest paths in a graph with arbitrary real edge weights. The characterizations
are based on a new connection between shortest paths and topology; in particular, the new
forbidden patterns are in natural correspondence with two-colored topological 2-manifolds, which
are visualized as polyhedra.

2.3.1 Arboricity

The Path Covering with Forests Number is strictly linked to the concept of arboricity. The
arboricity of an undirected graph G is the minimum number of forests γf (G) into which its edges
can be partitioned. It measures how a graph is dense; indeed, graphs with many edges have
high arboricity, and graphs with high arboricity must have a dense subgraph. By the well-known
Nash-Williams Theorem [107] (proved also independently by Tutte [134])

γf (G) = max
X⊆V (G)

⌈
|E(G[X])|
|X| − 1

⌉
where G[X] denotes the subgraph of G induced by X. The fractional arboricity was introduced
by Payan in [115], see also [35, 60]. Arboricity has been studied for general graphs and was
specialized for planar graph and subclasses of planar graphs. By the above-cited Nash-Williams
Theorem [107], every planar graph has arboricity 3, i.e., every planar graph can be covered with
at most 3 forests, and if it has girth greater or equal to 4, then it decomposes into two forests.
In [62, 74] planar graphs with girth larger than some constant are decomposed into a forest and
a graph with bounded degree. Decomposition of planar graphs into a forest and a matching has
been studied in [21, 29, 30, 74, 103, 137].

Arboricity is one of the many faces of graphs covering [23, 70, 71, 110] which is a classical
problem in graph theory. A recent and complete overview about covering problems can be found
in [129]. The classical covering problem asks for covering an input graph H with graphs from
a fixed covering class G. Some variants of the problems are in [88]. In the arboricity problem
the family G consists of forests. Other kinds of arboricity have been introduced in literature, as
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star arboricity [5, 7, 9], caterpillar arboricity [61, 63], linear arboricity [4, 8, 122, 140], pseudo
arboricity [69, 117] in which graphs are covered with star forests, caterpillar forests, linear forests,
and pseudoforests (undirected graphs in which every connected component has at most one cycle),
respectively.

If the covering class is the class of planar graphs, outerplanar graphs, or interval graphs, then
we deal with planar thickness [23], outerplanar thickness [106] or track number [67], respectively.

2.4 Path graphs and directed path graphs

A path graph is the intersection graph of paths in a tree. A directed path graph is the intersection
graph of paths in a directed tree. Note that a directed path graph is an undirected graph.

Path graphs were introduced by Renz [124], who also gave a combinatorial, non-algorithmic
characterization. A second characterization is due to Gavril [57] and consists in a specialization
of his characterization of chordal graphs in [55]. A graph is a chordal graph if it does not contain
a hole as an induced subgraph, where a hole is a chordless cycle of length at least four. In [57]
it is given a first recognition algorithm for path graphs having O(n4) time complexity. A more
general approach is due to Monma and Wei [102], that, inspired by the work by Tarjan [132],
characterized several classes of intersection graphs of paths in a tree, varying some variants of
trees. In Chapter 8 we simplify the characterization in [102] by reducing it to some 2-coloring
subproblems, obtaining the first characterization that directly leads to a polynomial recognition
algorithm; we stress that the characterizations in [55, 102, 124] do not give rise to a polynomial
recognition algorithm. The characterization in [102] was used by Schäffer to build a faster
recognition algorithm [127], that has O(p(m + n)) time complexity (where p is the number of
cliques, i.e., maximal induced complete subgraphs). Later, Chaplick [36] gave a recognition
algorithm with the same time complexity that uses PQR-trees. Lévêque et al. [98] presented
the first characterization by forbidden subgraphs, and in Chapter 8 we show a new smaller
characterization by local forbidden subgraphs. A generalization of the asteroidal triples (where
an asteroidal triple is a stable set of three vertices such that each pair is connected by a path
avoiding the neighborhood of the third vertex) was introduced by Mouatadid and Robere [104],
where path graphs are characterized by forbidding sun systems. Another algorithm is proposed
by Dahlhaus and Bailey [41] and claimed to run in O(m+ n) time, but it has only appeared as
an extended abstract (see comments in [[36], Section 2.1.4]).

Directed path graphs were characterized first by Panda [113] by a list of forbidden induced
subgraphs and then by Cameron et al. [33, 34] by extending the concept of asteroidal triples.
Another characterization is due to Gavril [56], and in the same article he also gave the first
recognition algorithms that has O(n4) time complexity. In the above-cited article, Monma and
Wei [102] gave a characterization of directed path graphs that yielded to a recognition algorithm
with O(n2m) time complexity. Chaplick et al. [37] presented a linear time algorithm able to
establish whether a path graph is a directed path graph (actually, their algorithm requires the
clique path tree of the input graph, we refer to Section 3.5 for further details). This implies that
algorithms in [36, 127] can be used to obtain a recognition algorithm for directed path graphs
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with the same time complexity. At the state of art, this technique leads to the fastest algorithms.
In Chapter 9, by using the characterization of path graphs in Chapter 8, we present the first
recognition algorithm that specializes for path graphs and directed path graphs. It does not
require complex data structures and has an easy and intuitive implementation.

Path graphs and directed path graphs are graphs’ classes between interval graphs and chordal
graphs. Gavril [55] proved that a graph is chordal if and only if it is the intersection graph of
subtrees of a tree. Chordal graphs can be recognized in O(m+n) time [125, 133]. A graph is an
interval graph if it is the intersection graph of a family of intervals on the real line; or, equivalently,
the intersection graph of a family of subpaths of a path. Interval graphs were characterized by
Lekkerkerker and Boland [97] as chordal graphs with no asteroidal triples. Interval graphs can
be recognized in linear time by several algorithms [28, 40, 68, 77, 78, 90, 101].

We introduce a last class of intersection graphs. A rooted path graph is the intersection
graph of directed paths in a rooted tree. Rooted path graphs can be recognized in linear time
by using the algorithm by Dietz [45]. To the best of our knowledge, there does not exist any
characterization of rooted path graphs by forbidden subgraphs or by concepts similar to asteroidal
triples. The characterizations of these graphs’ classes in [102] also describe directly polynomial
recognition algorithms for chordal graphs and directed path graphs but not for rooted path
graphs and path graphs. All inclusions between introduced graphs’ classes are resumed in the
following:

interval graphs ⊂ rooted path graphs ⊂ directed path graphs ⊂ path graphs ⊂ chordal graphs.
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Chapter 3

Preliminaries

General definitions and notations used in the whole thesis are given. In Section 3.1 we delineate
standard notations about graphs. In Section 3.2 we deal with paths and non-crossing paths.
Then in Section 3.3 we define a partial order on a set of terminal pairs lying on the same face
of a plane graph, the genealogy tree. In Section 3.4 we report some results concerning the max
flow problem, focusing on planar graphs. Finally, we describe existing characterizations of path
graphs and directed path graphs in Section 3.2.

3.1 General definitions

An undirected graph is a pair G = (V,E), where V , |V | = n, is a set of vertices, and E, |E| = m,
is a collection of pairs of vertices called edges. A directed graph is a pair G = (V,D), where V is
a set of vertices and D is a collection of ordered pairs of vertices called darts.

We recall standard union and intersection operators on graphs.

Definition 3. Given two undirected (or directed) graphs G = (V (G), E(G)) and H = (V (H),

E(H)), we define the following operations and relations:

• G ∪H = (V (G) ∪ V (H), E(G) ∪ E(H));

• G ∩H = (V (G) ∩ V (H), E(G) ∩ E(H));

• H ⊆ G⇐⇒ V (H) ⊆ V (G) and E(H) ⊆ E(G);

• G \H = (V (G), E(G) \ E(H)).

Given an undirected (resp., directed) graph G = (V (G), E(G)), given an edge (resp., dart) e
and a vertex v we write, for short, e ∈ G in place of e ∈ E(G) and v ∈ G in place of v ∈ V (G).

We denote by uv the edge whose endpoints are u and v and we denote by −→uv the dart from
u to v. For each dart −→uv we define rev[−→uv] = −→vu, head[−→uv] = v and tail[−→uv] = u. For each vertex
v ∈ V (G) we define the degree of v as deg(v) = |{e ∈ E(G) | v is an endpoint of e}|.

We use round brackets to denote ordered sets. For example, {a, b, c} = {c, a, b} and (a, b, c) 6=
(c, a, b). Moreover, for each ` ∈ N we denote by [`] the set {1, . . . , `}.
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3.2. Paths and non-crossing paths

We define distG(u, v) as the length of a shortest path in G joining vertices u and v. Moreover,
for two sets of vertices S, T ⊆ V (G), we define distG(S, T ) = minu∈S,v∈T distG(u, v).

Let ω : E(G) → R+ be a weight function on edges. The weight function is extended to a
subgraph H of G so that ω(H) =

∑
e∈E(H) ω(e). If G is unweighted, then we denote the weight

of a subgraph H as |H|, that is the number of edges. When we deal with flow problems we assign
to edges a capacity function c : E(G)→ R+.

3.2 Paths and non-crossing paths

A path is a graph p = (V (p), E(p)) where V (p) = {v1, v2, . . . , vk} and E(p) = {v1v2, v2v3, . . . ,

vk−1vk}. A directed path is a directed graph q = (V (q), D(q)) where V (q) = {u1, u2, . . . , u`} and
D(q) = {−−→u1u2,

−−→u2u3, . . . ,
−−−−→u`−1u`}. We say that a path (resp. directed path) p is simple if there

do not exist three edges (resp., darts) in p sharing an extremal vertex. We define a path p as an
ab path if its extremal vertices are a and b; clearly, if p is a directed path, then p starts in a and
ends in b.

Given a directed path p we denote by p its undirected version, in which each dart −→uv is
replaced by edge uv; moreover, we denote by rev[p] its reverse version, in which each dart −→uv is
replaced by dart −→vu.

Given an ab path p and a bc path q, we define p ◦ q as the (possibly not simple) ac path
obtained by the union of p and q.

Let p be a simple path and let x, y ∈ V (p). We denote by p[x, y] the subpath of p with
extremal vertices x and y.

If G is a plane graph, then we denote by f∞G (or simply f∞) its unique infinite face. Given
a face f of G we denote by ∂f its boundary cycle. Topological and combinatorial definitions of
planar graph, embedding and face can be found in [64].

We say that two paths in a plane graph G are non-crossing if the curves they describe in
the graph embedding do not cross each other; a combinatorial definition of non-crossing paths
can be based on the Heffter-Edmonds-Ringel rotation principle [118]. We stress that this is a
property of the graph embedding, not of the graph itself. Non-crossing paths may share vertices
and/or edges.

Definition 4. Two paths p and q are single-touch if p ∩ q is a (possibly empty) path.

Examples of non-crossing paths and single-touch paths are given in Figure 3.1.
Given a (possibly not simple) cycle C in a plane graph G, we define the region bounded by

C, denoted by RC , as the maximal subgraph of G whose infinite face has C as boundary. If R
is a subgraph of G, then we denote by ∂R the infinite face of R. Finally, we define R̊ = R \ ∂R.

3.3 Genealogy tree of terminal pairs

Given a set {(xi, yi)}i∈[k] of distinct terminal pairs on the infinite face f∞ of a plane graph G, we
define γi the path in f∞ that goes clockwise from xi to yi, for i ∈ [k]. We deal with non-crossing
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(a) (b) (c) (d) (e)

Figure 3.1: paths in (a) and (b) are crossing, while paths in (c), (d), (e) are non-crossing.
Moreover, paths in (a), (c) and (d) are not single-touch, while paths in (b) and (e) are single-
touch.

path, thus we assume that terminal pairs {(xi, yi)}i∈[k] are well-formed, i.e., for all j, ` ∈ [k]

either γj ⊆ γ` or γj ⊇ γ` or γj and γ` share no edges. Indeed, if terminal pairs are well-formed,
then there exists a set of pairwise non-crossing shortest xiyi paths. The reverse is not true if
some paths are subpaths of the infinite face of G; this case is not interesting in the applications
and has never been studied in literature, where the terminal pairs are always assumed to be
well-formed. The well-formed property can be easily verified in linear time, since it corresponds
to checking that a string of parentheses is balanced, and it can be done by a sequential scan of
the string. We also assume that the terminal pairs are distinct, i.e., there does not exist any pair
i, j ∈ [k] such that {xi, yi} = {xj , yj}.

We define here a partial ordering as in [131] that represents the inclusion relation between
γi’s. This relation intuitively corresponds to an adjacency relation between non-crossing shortest
paths joining each pair. Choose an arbitrary i∗ such that there are neither xj nor yj , with j 6= i∗,
walking on f∞ from xi∗ to yi∗ (either clockwise or counterclockwise), and let e∗ be an arbitrary
edge on that walk. For each j ∈ [k], we can assume that e∗ 6∈ γj , indeed, if it is not true, then it
suffices to switch xj and yj ; in this way γj ⊆ γi∗ for every j ∈ [k]. We say that i � j if γi ⊆ γj .
We define the genealogy tree Tg of a set of well-formed terminal pairs as the transitive reduction
of poset ([k],�). By the above choice, i∗ is the root of the genealogy tree, and there are as many
possible genealogy trees as many leaves of each genealogy tree. W.l.o.g., we assume that i∗ = 1.

If i � j, then we say that i is a descendant of j and j is an ancestor of i. Moreover, we say
that j is the parent of i, and we write p(i) = j, if i � j and there does not exist r such that
i � r and r � j. Figure 3.2 shows a set of well-formed terminal pairs and the corresponding
genealogy tree. From now on, in all figures we draw f∞ by a solid light grey line. W.l.o.g., we
assume that the infinite face is a simple cycle and that G is a biconnected graph. Indeed, if
there is an articulation point z in G, then the solution to a NCSP problem is the union of the
solutions of the NCSP problems on the two components; note that if xi and yi are in two distinct
components, then every xiyi path passes through z.

Given i ∈ [k], we denote by i-path an xiyi path. We extend � also to i-paths in the following
way: given an i-path p and a j-path q, we write p � q if i � j. Moreover, if p is an i-path, for
any i ∈ [k], then xp and yp denote xi and yi, respectively.

For an i-path p, we define Intp as the internal portion of G with respect to p, i.e., the finite
region bounded by the cycle formed by p and γi; similarly, we define Extp as the external portion
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Figure 3.2: on the left a set of well-formed terminal pairs. If we choose i∗ = 1, then we obtain
the genealogy tree on the right.

of G with respect to p, i.e., the finite region bounded by the cycle formed by p and f∞ \ γi.
It is always useful to see each i-path as oriented from xi to yi, for i ∈ [k], even if the path

is undirected. For an i-path p and a j-path q, we say that q is to the right of p if q ⊆ Extp,
similarly, we say that q is to the left of p if q ⊆ Intp. Given R ⊆ G and an i-path p ⊆ R, for
some i ∈ [k], we say that p is the leftmost i-path in R if p is to the left of q for each i-path q ⊆ R.
Similarly, we say that p is the rightmost i-path in R if p is to the right of q for each i-path q ⊆ R.

3.4 Max flow in planar graphs

In this section we report some well-known results about max flow, focusing on planar graphs.
Let G be a graph and let s and t be two distinct fixed vertices in G. A feasible flow in G

assigns to each edge e = uv ∈ G two real values zuv and zvu such that:

• (Capacity constraint) zuv ∈ [0, c(e)] and zvu ∈ [0, c(e)];

• (Conservation of flows)
∑

v:uv∈E(G) zuv =
∑

v:uv∈E(G) zvu, for each u ∈ V (G) \ {s, t};

where we recall that c : E(G) → R+ is the capacity function. The flow from s to t under a
feasible flow assignment x is defined as

F (x) =
∑

v:sv∈E(G)

zsv −
∑

v:sv∈E(G)

zvs.

The maximum flow from s to t, denoted by MF, is the maximum value of F (x) over all feasible
flow assignments x.

An st-cut is a partition of V (G) into two subsets S and T such that s ∈ S and t ∈ T . The
capacity of an st-cut is the sum of the capacities of the edges uv ∈ E(G) such that |S∩{u, v}| = 1

and |T ∩ {u, v}| = 1. The well known Min-Cut Max-Flow Theorem by Ford and Fulkerson [52]
states that the maximum flow from s to t is equal to the capacity of a minimum st-cut for any
weighted graph G.

We denote by G− e the graph G after the removal of edge e. Similarly, we denote by G− v
the graph G after the removal of vertex v and all edges adjacent to v.
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Definition 5. The vitality vit(e) (resp., vit(v)) of an edge e (resp., vertex v) with respect to the
maximum flow from s to t, according to the general concept of vitality in [91], is defined as the
difference between the maximum flow in G and the maximum flow in G− e (resp., G− v).

Now we deal with the max flow in a planar graph. The dual of an undirected plane graph G
is an undirected plane multigraph G∗ whose vertices correspond to faces of G and such that for
each edge e in G there is an edge e∗ = {u∗, v∗} in G∗, where u∗ and v∗ are the vertices in G∗

that correspond to faces f and g adjacent to e in G. Length ω(e∗) of e∗ equals the capacity of e.
We fix a planar embedding of the planar graph G, and we work on the dual graph G∗ defined

by this embedding. A vertex v in G generates a face in G∗ denoted by f∗v . We choose in G∗ a
vertex v∗s in f∗s and a vertex v∗t in f∗t . A cycle in the dual graph G∗ that separates vertex v∗s from
vertex v∗t is called an st-separating cycle. Moreover, we choose a shortest path π in G∗ from v∗s
to v∗t .

Proposition 6 ([79, 123]). A (minimum) st-cut in G corresponds to a (shortest) cycle in G∗

that separates vertex v∗s from vertex v∗t .

3.4.1 From max flow to non-crossing shortest paths

According to the approach by Itai and Shiloach in [79] used to find a min-cut by searching for
minimum st-separating cycles, graph G∗ is “cut” along the fixed shortest path π from v∗s to v∗t ,
obtaining graph DG, in which each vertex v∗i in π is split into two vertices xi and yi; when
no confusion arises we omit the subscript G. In Figure 3.3 there is a plane graph G in black
continuous lines and in Figure 3.4 on the right graph D. Now we explain the construction of the
latter.

Let us assume that π = {v∗1, v∗2, . . . , v∗k}, with v∗1 = v∗s and v∗k = v∗t . For convenience, let πx
be the duplicate of π in D whose vertices are {x1, . . . , xk} and let πy be the duplicate of π in D
whose vertices are {y1, . . . , yk}. For any i ∈ [k] edges in G∗ incident on each v∗i from below π are
moved to yi and edges incident on v∗i from above π are moved to xi. Edges incident on v∗s and
v∗t are considered above or below π on the basis of two dummy edges: the first joining v∗s to a
dummy vertex α inside face f∗s and the second joining v∗t to a dummy vertex β inside face f∗t . In
Figure 3.3 there is a graph G in black continuous line, G∗ in red dashed lines and shortest path
π from v∗1 to v∗k. In Figure 3.4, on the left there are the graph G and G∗ of Figure 3.3 where
path π is doubled.

For each e∗ ∈ π, we denote by e∗x the copy of e∗ in πx and e∗y the copy of e∗ in πy. Note
that each v ∈ V (G) \ {s, t} generates a face fDv in D. There are not faces fDs and fDt because
the dummy vertices α and β are inside faces f∗s and f∗t , respectively. Both faces f∗s and f∗t
“correspond” in D to the leftmost x1y1 path and to the rightmost xkyk path, respectively. Since
we are not interested in removing vertices s and t, then faces fDs and fDt are not needed in D.
In Figure 3.4, on the right there is graph D built on G in Figure 3.3.

If e∗ 6∈ π, then we denote the corresponding edge in D by eD. Similarly, if v∗i 6∈ π (that is,
i > k), then we denote the corresponding vertex in D by vDi .
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Figure 3.3: graph G in black continuous line, G∗ in red dashed lines, shortest path π from v∗s
(v∗1) to v∗t (v∗k) in green, α and β are dummy vertices.

Itai and Shiloach [79] considered only shortest st-separating cycles that cross π exactly once,
that correspond in D to paths from xi to yi, for some i ∈ [k]. Reif [123] noticed that these
paths can be chosen as non-crossing paths, thus he reduced the computation of the max flow in
a planar graph G to a problem of non-crossing shortest paths in D.
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Figure 3.4: on the left green path π is doubled into paths πx and πy, and edges incident on
x1, y1, x4, y4 in G∗ are moved according to the dummy vertices α and β in Figure 3.3. On the
right graph D.

3.5 Existing characterizations of path graphs and directed path
graphs

In this section we report the characterizations of path graphs and directed path graphs described
by Monma and Wei [102]. We start with a formal definition of these classes of graphs.

Let P be a finite family of nonempty sets. The intersection graph of P is obtained by
associating each set in P with a vertex and by connecting two vertices with an edge exactly
when their corresponding sets have a nonempty intersection. The intersection graph of a family
of paths in a tree is called path graph. The intersection graph of a family of directed paths in
a directed tree is called directed path graph. We consider that two directed or undirected paths
intersect each other if and only if they share at least one vertex.
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The first characterization of path graphs and directed path graphs is due to Gavril [56, 57].
We let C denote the set of cliques of a graph G (we recall that a clique is a maximal induced
complete subgraph) and for each v ∈ V (G) let Cv = {C ∈ C | v ∈ C}. Moreover, for a graph G
and for a subset A of V (G), we denote the graph induced by A in G by G[A].

Theorem 7 ([56, 57]). A graph G = (V,E) is a path graph (resp. directed path graph) if and
only if there exists a tree T (resp. directed tree T ) with vertex set C, such that for each v ∈ V ,
T [Cv] is a path (resp., directed path) in T .

The tree T of the previous theorem is called the clique path tree of G if G is a path graph or
the directed clique path tree of G if G is a directed path graph. In Figure 3.5, the left part shows
a path graph G, and on the right there is a clique path tree of G. Simmetrically, in Figure 3.6,
the left part shows a directed path graph G, and on the right there is a directed clique path tree
of G.

G
1

2

3
4

5
6

7
8

9

10
11

12

13

14

15

{1, 2, 3, 4, 5}

{1, 2, 4, 5, 10} {2, 3, 4, 5, 8}

{1, 2, 6} {4, 5, 9} {2, 3, 4, 7}

{6, 11, 12} {9, 15} {7, 13} {7, 14}

Figure 3.5: on the left a path graph G, and on the right a clique path tree of G.

G
1 2

34

5

6

7

8 {1, 2, 3, 4}

{3, 4, 5}

{1, 2, 7}

{1, 3, 8} {2, 4, 6}

Figure 3.6: on the left a directed path graph G, and on the right a directed clique path tree of
G.

Theorem 7 specializes the characterization of chordal graphs, still due to Gavril [55], as those
graphs possessing a clique tree as stated below.

Theorem 8 ([55]). A graph G is a chordal graph if and only if it there exists a tree T , called
clique tree, with vertex set C such that, for each v ∈ V , T [Cv] is a tree in T .

Note that since a clique path tree or a directed clique path tree is a particular clique tree,
Theorem 8 also implies that path graphs and directed path graphs are chordal.
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As we said, Monma and Wei [102] characterized several class of intersection families, two of
these families are path graphs and directed path graph. Now we report some their theorems and
lemmas that are concerned with path graphs and directed path graphs.

A clique is a clique separator if its removal disconnects the graph in at least two connected
components. A graph with no clique separators is called atom, (for example, every cycle has no
clique separators). In [102] it is proved that an atom is a path graph and/or a directed path
graph if and only if it is a chordal graph; moreover, every chordal graph that is an atom has at
most two cliques.

Given a clique separator C of a graph G let G−C have s connected components, s ≥ 2 with
vertex-sets V1, . . . , Vs, respectively. We define γi = G[Vi∪C], i = 1, . . . , s and ΓC = {γ1, . . . , γs}.
A clique K of a subgraph γ of ΓC is called a relevant clique, if K ∩ C 6= ∅ and K 6= C. A
neighboring subgraph of a vertex v ∈ V (G) is a member γ ∈ ΓC such that v belongs to some
relevant clique K of γ. For instance, in Figure 3.7 referring to the graph on the left, all the γi’s
but γ1 are neighboring subgraphs of vertex 4 belonging to clique separator C, while all the γi’s
but γ4 and γ5 are neighboring subgraphs of vertex 3. We say that two subgraphs γ and γ′ are
neighbouring if they are neighbouring subgraphs of some vertex v ∈ C; a subset W ⊆ ΓC whose
elements are neighbouring subgraphs will be referred to as a neighbouring set (e.g, neighbouring
pairs, neighbouring triples etc). In [102] the following binary relations on ΓC are defined.

• Attachedness, denoted by on and defined by γ on γ′ if and only if there is a relevant clique
K of γ and a relevant clique K ′ of γ′ such that K ∩K ′ ∩ C 6= ∅. In particular, γ and γ′

are neighboring subgraphs of each vertex v ∈ K ∩K ′ ∩ C.

• Dominance, denoted by ≤ and defined by γ ≤ γ′ if and only if γ on γ′ and for each relevant
clique K ′ of γ′ either K ∩ C ⊆ K ′ ∩ C for each relevant clique K of γ or K ∩K ′ ∩ C = ∅
for each relevant clique K of γ. In Figure 3.7, graph on the right, pairs of ≤-comparable
subgraphs of the graph on the left are joined by a dotted edge.

• Antipodality, denoted by ↔ and defined by γ ↔ γ′ if and only if there are relevant cliques
K of γ and K ′ of γ′ such that K ∩K ′ ∩ C 6= ∅ and K ∩ C and K ′ ∩ C are inclusion-wise
incomparable. In Figure 3.7, graph on the right, pairs of antipodal subgraphs of the graph
on the left are joined by a continuous edge.

Antipodality and dominance relations are disjoint binary relations on ΓC whose union is the
relation on. Therefore (γ ≤ γ′, γ′ ≤ γ or γ ↔ γ′) if and only if (γ on γ′). Both on and ↔ are
symmetric and only ≤ is irreflexive. Hence, after neglecting reflexive pairs, (ΓC ,↔), (ΓC ,on)

are simple undirected graphs on ΓC referred to as, respectively, the C-antipodality, and the C-
attachedness graph of G. The edges of the C-antipodality graph of G are called antipodal edges
while those edges of the C-attachedness graph of G which are not antipodal edges, are called
dominance edges. The C-dominance of G is the graph on ΓC having as edges the dominance
edges (i.e., the complement of (ΓC ,↔) in (ΓC ,on)). Hence the edge-sets of the C-antipodality
and the C-dominance graphs of G partition the edge-set of the C-attachedness graph of G and
the latter is naturally 2-edge colored by the antipodality edges and by the dominance edges. We
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Chapter 3. Preliminaries

adopt the pictorial convention to represent antipodality edges by continuous lines and dominance
edges by dotted lines.

To better understand these relations we use Figure 3.7, that shows a clique separator C
of G of Figure 3.5 and its connected components. We stress that C = {1, 2, 3, 4, 5}, ΓC =

{γ1, γ2, γ3, γ4, γ5}, where γ1 = {1, 2, 6, 11, 12}, γ2 = {2, 3, 4, 7, 13, 14}, γ3 = {2, 3, 4, 5, 8}, γ4 =

{4, 5, 9, 15} and γ5 = {1, 2, 4, 5, 10}. Clearly, γ1, . . . , γ5 are path graphs. It holds that γ5 ≥ γ1,
γ5 ≥ γ4, γ3 ≥ γ2, γ3 ≥ γ4, γ1 ↔ γ2, γ1 ↔ γ3, γ3 ↔ γ5, γ2 ↔ γ5, γ2 ↔ γ4, and the relation ./
follows from above. These relations are depicted in Figure 3.7 on the right.

γ1

γ2

γ3

γ4

γ5

C

G 1

2

3
4

5
6

7
8

9

10
11

12

13

14

15

γ1

γ2

γ3

γ4

γ5

Figure 3.7: on the left a clique separator C of G in Figure 3.5, the connected components
γ1, . . . , γ5 are highlighted by different colors and hatchings. On the right relations ≤ and ↔ on
connected components γ1, . . . , γ5 are depicted with dotted and continuous lines, respectively.

Now we can report the main result in [102] about path graphs.

Theorem 9 ([102]). A chordal graph G is a path graph if and only if G is an atom or for a
clique separator C each graph γ ∈ ΓC is a path graph and there exists f : ΓC → [s] such that:

• if γ ↔ γ′, then f(γ) 6= f(γ′);

• if γ, γ′ and γ′′ are neighboring subgraphs of v, for some vertex v ∈ C, then |f({γ, γ′, γ′′})| ≤
2.

Let us explain the conditions of Theorem 9 in few words. Let T be a clique path tree ofG. The
removal of clique separator C from G disconnects G in more connected components, but it also
disconnects tree T in more subtrees. In a way, the coloring f associates a connected components
to the subtrees. The first condition implies that two antipodal connected components γ and
γ′ need to be in two distinct subtrees, indeed, if not, then for some v ∈ (V (γ) ∩ C) \ V (γ′) or
v ∈ (V (γ′) ∩C) \ V (γ) the set of cliques of G that contains v does not induce a connected path
in T . The second condition says that all connected components that contain v need to be in at
most two distinct subtrees, indeed, if not, the set of clique of G that contains v does not induce
a path in T .

The following theorem also proved in [102] characterizes directed path graphs.

Theorem 10 ([102]). A chordal graph G is a directed path graph if and only if G is an atom or
for a clique separator C each graph γ ∈ ΓC is a path graph and the γi’s can be 2-colored such
that no antipodal pairs have the same color.
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3.5. Existing characterizations of path graphs and directed path graphs

As before, let us comment briefly Theorem 10. Let C be a clique separator, let v ∈ C, and
let f be a 2-coloring of ΓC . Then all the connected components containing v having the same
color through f can be totally ordered by ≤. Hence it is possible to create a directed path that
starts with all the connected components containing v having the first color through f and ends
with all the connected components containing v having the second color through f . The directed
clique path tree is build by using such paths.

From an algorithmic point of view, recognition algorithms for path graphs and directed path
graphs are joined by the result by Chaplick et al. [37]. In this article the authors gave an
algorithm that, by starting from the clique path tree of a path graph, build the directed clique
path tree, if it exists, in linear time. This result is resumed in the following theorem.

Theorem 11 ([37]). If there exists a polynomial algorithm that tests if a graph G is a path graph
and returns a clique path tree of G when the answer is “yes”, then there exists an algorithm with
the same complexity to test if a graph is a directed path graph.

Theorem 11 implies that algorithms in [36, 127] can be extended to algorithms able to rec-
ognize directed path graph with the same time complexity.
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Chapter 4

Computing lengths of non-crossing
shortest paths

We deal with the union of non-crossing shortest paths in undirected plane graphs. We
introduce the concept of shortcuts that allows us to establish whether a path is a shortest
path by checking local properties on faces of the graph. By using shortcuts we can compute
the length of each shortest path given their union in total linear time, and we can list each
shortest path p in O(max{`, ` log log k

` }), where ` is the number of edges in p and k the
number of shortest paths.

4.1 Introduction

The input of our problem is an undirected plane graph U composed by the union of k non-
crossing shortest paths in a plane graph G whose extremal vertices lie on the same face of G.
Thus U =

⋃
i∈[k] pi, where, for each i ∈ [k], pi is a shortest xiyi path in G, xi and yi are on

the infinite face f∞ of G, pi and pj are non-crossing for every i, j ∈ [k]; hence, we assume that
the terminal pairs {(xi, yi)}i∈[k] are well-formed because of the discussion in Section 3.3. We
stress that we know U but we ignore the pi’s, indeed, algorithms solving the NCSP problem
in [130, 131] (and also our algorithm for the unweighted case in Chapter 5) compute the union
of the non-crossing shortest paths without listing every single path.

We want to compute the lengths of the pi’s shortest paths in linear time, i.e., in time pro-
portional to |E(U)|. We also explain an efficient way to list each path. This method will be
strictly used in Chapter 7 in the proof of time complexity. We stress that the covering problem
solved in Chapter 7 allows us to compute all paths’ lengths in total linear time, but it is more
complex than the approach shown in this chapter and it requires the results about LCA queries
by Gabow and Tarjan in [54].

In this way we prove that if there exists an algorithm able to compute the union of non-
crossing shortest paths whose extremal vertices lie on the same face of an undirected plane
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4.2. Shortcuts

graph, then we can compute the lengths of these paths in the same time complexity.
The algorithm we propose can be easily implemented and does not require sophisticated data

structures. We follow the same approach by Polishchuck and Mitchell [119], that was inspired by
Papadopoulou’s work [114]. Their article solves the problem of finding k non-crossing shortest
paths in a polygon with n vertices, where distances are defined according to the Euclidean metric.

Our algorithm builds a set of single-touch paths even if the shortest pi’s paths in G composing
the input graph U =

⋃
i∈[k] pi are not pairwise single-touch. This may happen if there are more

shortest paths in G joining the same pair of vertices. Uniqueness of shortest paths can be easily
ensured by introducing small perturbations in the weight function of G. We wish to point out
that the technique we describe in this chapter does not rely on perturbation, but we break ties
by choosing rightmost or leftmost paths. This implies that our results can also be used in the
unweighted case, as done in Chapter 5. Note that the single-touch property does not depend
on the embedding, and if the terminal-pairs are well-formed, then it implies the non-crossing
property. This is explained in the following remark, and, for this reason, we can say that the
solution found by our algorithm holds for any feasible planar embedding of the graph.

Remark 12. If {πi}i∈[k] is a set of simple single-touch paths, where πi is an i-path, for i ∈ [k],
then {πi}i∈[k] is a set of pairwise non-crossing paths for all the embeddings of U such that the
terminal pairs {(xi, yi)}i∈[k] are well-formed.

Our approach. We exploit the novel concept of shortcuts, that are portions of the boundary
of a face that allow us to modify a path without increasing (and possibly decreasing) its length.
We show that it is possible to establish whether a path is a shortest path by looking at the
presence of shortcuts. Hence while being a shortest path is a global property, we can check it
locally by checking a single face at a time for the presence of shortcuts adjacent to the path,
ignoring the rest of the graph. Note that this is only possible when the input graph is the union
of non-crossing shortest paths, not for general plane graphs. Without this property, finding one
distance is as difficult as finding a shortest path in U .

Using shortcuts, we can introduce algorithm ImplicitPaths that computes an implicit rep-
resentation of non-crossing shortest paths. This implicit representation is necessary to compute
all distances between terminal pairs in linear time and to solve the problem of listing the edges
of a single shortest path. This problem was already discussed in the geometrical case [114, 119]
with Euclidean distances, but it is new in non-crossing paths in a weighted plane graph which
have a more general structure.

4.2 Shortcuts

Roughly speaking, a shortcut appears if there exists a face f adjacent to a path p so that we can
modify p going around f without increasing its length. We show that we can decide whether
a path is a shortest path by looking at the existence of shortcuts: in this way, we can check a
global property of a path p—i.e., being a shortest path—by checking a local property—i.e., the
presence of shortcuts in faces adjacent to p. This result is not true for general plane graphs, but
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Chapter 4. Computing lengths of non-crossing shortest paths

it only holds when the input graph is the union of shortest paths joining well-formed terminal
pairs on the same face. Shortcuts are the main tool of algorithm ImplicitPaths described in
Section 4.3, and the most important theoretical novelty of this chapter.

We introduce the operator o, explained in Figure 4.1, that allows us to replace a subpath in
a path and is used to define the shortcuts.

Definition 13. Let p be a simple ab path, let u, v ∈ V (p) be such that a, u, v, b appear in this order
in p and let q be a uv path. We denote by po q the (possibly not simple) path p[a, u] ◦ q ◦ p[v, b].

a bu v
y

xp

q

r
po q po r

Figure 4.1: illustrating operator o.

Now we can formally define shortcuts, which are clarified in Figure 4.2. The main application
of shortcuts is stated in Theorem 15. W.l.o.g., we assume that U is connected, otherwise it suffices
to work on each connected component.

Definition 14. Given a path p and a face f containing two vertices u, v ∈ p, we say that a uv
subpath q of ∂f not contained in p is a shortcut for p if ω(po q) ≤ ω(p).

p

f

p

f

g h

p

f
g h

k

Figure 4.2: all edges have unit weight. On the left, highlighted in orange, there is a shortcut for
p contained in ∂f . In the middle there are two shortcuts for p both contained in ∂f . On the
right there are no shortcuts for p.

Theorem 15. Let λ be an i-path, for some i ∈ [k]. If there are no shortcuts for λ, then λ is a
shortest i-path.

Proof. If λ = pi then the thesis holds. Thus let us assume by contradiction that ω(pi) < ω(λ)

and λ has no shortcuts.
Let a, b ∈ V (λ) ∩ V (pi) be two vertices such that pi[a, b] and λ[b, a] share no edges (such a

and b exist because pi 6= λ and they are both i-path). Let C be the simple cycle pi[a, b] ◦ λ[b, a],
and let R be the region bounded by C. If R is a face of U , then pi[a, b] is a shortcut for λ,
absurdum. Hence we assume that there exist edges in R̊, see Figure 4.3 on the left.

Either R ⊆ Intpi or R ⊆ Extpi . W.l.o.g., we assume that R ⊆ Intpi . Being U =
⋃
j∈[k] pj , for

every edge e ∈ R̊ there exists at least one path q ∈ P such that e ∈ q. Moreover, the extremal
vertices of q are in γi because paths in P are non-crossing and R ⊆ Intpi .
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4.3. Computing lengths in linear time

Now we show by construction that there exist a path p ∈ P and a face f such that f ⊆ R,
∂f intersects λ on vertices and ∂f \ λ ⊆ p; thus ∂f \ λ is a shortcut for λ because p is a shortest
path.

For all q ∈ P such that q ⊆ Intpi we assume that Intq ⊆ Intpi (if it is not true, then it suffices
to switch the extremal vertices of q).

For each q ⊆ Intpi , let Fq = {f ∈ F | ∂f ⊆ R∩ Intq}, where F is the set of the faces of U . To
complete the proof, we have to find a path p such that |Fp| = 1, indeed, the unique face f in Fp
satisfies ∂f \ λ ⊆ p, and thus ∂f \ λ is a shortcut for λ.

Now, let e1 ∈ R̊ and let q1 ∈ P be such that e1 ∈ q1. Being e1 ∈ R̊, then |Fq1 | < |Fpi |
and |Fq1 | > 0 because e1 ∈ q1, see Figure 4.3 on the right. If |Fq1 | = 1, the proof is completed,
otherwise we choose e2 ∈ R̊ ∩ I̊ntq1 and q2 ∈ P such that e2 ∈ q2. It holds that |Fq2 | < |Fq1 | and
|Fq2 | > 0 because e2 ∈ q2. By repeating this reasoning, and being U =

⋃
j∈[k] pj , we find a path

p such that |Fp| = 1.

xiyi a
b

pi

λ

R
xiyi

pi

λ

R

q1

Figure 4.3: paths and regions used in Theorem 15’s proof. Path λ is in green, pi in red, q1 in
blue and region R is highlighted in grey. It holds that |Fq1 | = 4.

Given a path p, we say that a path q is a right shortcut for p if q is a shortcut for p and
q ⊆ Extp. The following corollary can be proved by the same approach of Theorem 15 and is
more useful for our purposes.

Corollary 16. Let λ be an i-path, for some i ∈ [k]. If there are no right shortcuts for λ, then
there does not exist any path λ′ ⊆ Extλ satisfying ω(λ′) ≤ ω(λ).

4.3 Computing lengths in linear time

In Theorem 19 we show that the distances between terminal pairs can be computed in O(|E(U)|)
time by knowing U . This is the main result of this chapter. To achieve it, we introduce algorithm
ImplicitPaths, that gives us an implicit representation of non-crossing shortest paths used in
the proof of Theorem 19. The implicit representation is described in Remark 20.

The main idea behind algorithm ImplicitPaths is the following. We build a set of shortest
i-paths {λi}i∈[k], by finding λi at iteration i, where the terminal pairs are numbered according
to a postorder visit of Tg. In particular, at iteration i we find the rightmost shortest i-path in
Ui =

⋂
j∈[i−1] Extλj , in the following way: first we set λi as the leftmost i-path in Ui, then we

update λi by moving right through right shortcuts (the order in which shortcuts are chosen is
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Chapter 4. Computing lengths of non-crossing shortest paths

not relevant). When λi has no more right shortcuts, then it is the rightmost shortest i-path in
Ui by Corollary 16.

Algorithm ImplicitPaths:
Input: an undirected plane graph U composed by the union of k non-crossing shortest

paths in a plane graph G each one joining a terminal pair on the infinite face of
G

Output: an implicit representation of a set of paths {λ1, . . . , λk}, where λi is a shortest
i-path, for i ∈ [k]

1 Compute Tg and renumber the terminal pairs according to a postorder visit of Tg;
2 for i = 1, . . . , k do
3 Let λi be the leftmost i-path in Ui =

⋂
j∈[i−1] Extλj ;

4 while there exists a right shortcut τ for λi in Ui do
5 λi := λi o τ ;

Lemma 17. Let {λi}i∈[k] be the set of paths computed by algorithm ImplicitPaths. Then

17.(1) λi is the rightmost shortest i-path in Ui, for i ∈ [k],

17.(2) {λi}i∈[k] is a set of single-touch paths.

Proof. We proceed by induction to prove the first statement. Trivially λ1 is the rightmost shortest
1-path in U1 because of Corollary 16. Let us assume that λj is the rightmost shortest j-path in
Uj , for j ∈ [i− 1], we have to prove that λi is the rightmost shortest i-path in Ui.

In Line 3, we initialize λi as the leftmost i-path in Ui. By induction and the postorder visit,
at this step, there does not exist in Ui any i-path p to the left of λi shorter than λi. Otherwise
λi would cross a path λj , for some j < i, implying that λj is not a shortest j-path. We conclude
by the while cycle in Line 4 and Corollary 16.

Statement 17.(2) follows from 17.(1); indeed, if λi and λj are not single-touch, for some
i, j ∈ [k], then 17.(1) is denied either for λi or for λj .

Given i ∈ [k] we define Ci as the set of children of i in the genealogy tree, moreover, we say
that λj is a child of λi if j ∈ Ci.

Before stating our main result, we introduce a trivial consequence of non-crossing property
and Jordan’s Curve Theorem [83], indeed, every i-path π satisfies that π ◦ γi is a closed curve.

Remark 18. Let {πi}i∈[k] be a set of non-crossing i-paths. Let i, j, ` ∈ [k]. If πi, πj and π`
share a common edge, then at least two among {i, j, `} are a couple of ancestor/descendant in
the genealogy tree.

Theorem 19. Given an undirected plane graph U composed by the union of k non-crossing
shortest paths in a plane graph G each one joining a terminal pair on the infinite face of G, we
can compute the length of each shortest path in O(|E(U)|) total time.
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4.3. Computing lengths in linear time

Proof. We show that during the execution of algorithm ImplicitPaths we can also compute the
length of λi, for all i ∈ [k], in linear total time. If we also prove that algorithm ImplicitPaths
can be executed in linear time, then the thesis follows from Lemma 17.

We define, for all i ∈ [k], λi,0 as λi after Line 3, i.e., the leftmost i-path in Ui =
⋂
j∈[i−1] Extλj .

We have to show that all the λi,0’s and all the shortcuts required in Line 4 can be computed in
total linear time.

Let’s start dealing with the shortcuts. We do a linear preprocessing that visits clockwise
every face. Let f be a face of U : after this preprocessing, the lengths of the clockwise path and
of the counterclockwise path in ∂f joining any given pair of vertices in f can both be computed
in constant time. Now, if the intersection between ∂f and λi, for some i ∈ [k], is contained in
λj , for some j ∈ Ci, then we know that there are no right shortcuts in f for λi, otherwise they
would be right shortcuts for λj . Thus we ask for a right shortcut in f for λi if and only if λi
visits at least one edge in ∂f that is not contained in its children or λi ∩ ∂f is contained in an
least two children of λi (consequently at least one more edge of ∂f is visited). In this way, during
the execution of algorithm ImplicitPaths we ask for a shortcut in f at most O(|E(f)|) times
thank also to Remark 18. This implies that finding all the shortcuts requires total linear time.

Now we prove that all the λi,0’s can be computed in total linear time. We stress that all the
λi’s and all the λi,0’s are represented as list, in this way we can join two paths in constant time.
We recall that λi,0 is the leftmost i-path in Ui =

⋂
j∈[i−1] Extλj , Ci is the set of children of i, and

γi is the clockwise path on the infinite face of G from xi to yi. Let Yi =
⋃
j∈Ci λj and let fi be the

infinite face of Yi ∪ γi. We observe that, by its definition, λi,0 is the counterclockwise i-path on
fi. Clearly, if all the λj ’s, for j ∈ Ci, are vertex disjoint, then λj is contained in fi, for all j ∈ Ci.
If the λj ’s are not vertex disjoint, then some edges of Yi are not in fi, and by construction, they
are not in f`, for all i � `. Thus we can see the sequence of the fi’s as an updating graph for
which if an edge is deleted at iteration i, then it does not appear again in f` for all i � `. Hence,
thanks to Remark 18, every edge appears at most two times in this construction. Consequently,
all the λi,0’s can be computed in total linear time because also to their list representation.

We have proved that algorithm ImplicitPaths requires linear time. We use the same argu-
ment to compute paths’ lengths. Let i ∈ [k] and j ∈ Ci. At iteration i we know ω(λj), and we
compute ω(λi,0 ∩ λj) by subtracting from ω(λj) the length of edges of λj that are not in λi,0. In
this way we can compute the lengths of λi,0 for all i ∈ [k] in total linear time because every edge
is considered at most two times thanks to Remark 18. Being the shortcuts computable in linear
time, the thesis follows.

By following Theorem 19’s proof we obtain the following implicit representation of the λi’s.

Remark 20. Paths λi’s computed by algorithm algorithm ImplicitPaths are implicitly rep-
resented as follows: λi = q1 ◦ λj1 [a1, b1] ◦ q2 ◦ λj2 [a2, b2] ◦ . . . ◦ qr ◦ λjr [ar, br] ◦ qr+1 where
{j1, j2, . . . , jr} ⊆ Ci and E(q` ∩ λz) = ∅ for all ` ∈ [r + 1] and z ∈ Ci. Note that the q`’s
can be empty.

Now we explain the implicit representation of the λi’s. If i is a leaf of the genealogy tree,
then λi is given explicitly. Otherwise we give explicitly edges that do not belong to the children
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Chapter 4. Computing lengths of non-crossing shortest paths

of λi, that is the qi’s paths, and we give the intersection path between λi and one of its child
by specifying the extremal vertices of this intersection. This representation requires linear space
thanks to Remark 18.

4.4 Listing paths

We study the problem of listing the edges in λi, for some i ∈ [k], after the execution of algorithm
ImplicitPaths. We want to underline the importance of the single-touch property. In Figure 4.4,
in (a) four shortest paths are drawn (the graph is unit-weighted), we observe that the single-
touch property is clearly not satisfied. A single-touch version of the previous four paths is drawn
in (b); it can be obtained by algorithm ImplicitPaths. It is clear that the problem of listing
the edges in a path in this second case is easier. We stress that in the general case the union of
a set of single-touch paths can form cycles, see Figure 2.1 for an example.

x1
y1

x2
y2

x3y3

x4y4

(a)

x1
y1

x2
y2

x3y3

x4y4

(b)

Figure 4.4: (a) the union of shortest i-paths, for i ∈ [4], in unit-weighted graph, each different
path has different style, (b) the union of {λi}i∈[4], the output paths of algorithm ImplicitPaths.

Theorem 21. After O(n) time preprocessing, each shortest path λi, for i ∈ [k], can be listed in
O(max{`i, `i log log( k`i )}) time, where `i is the number of edges of λi.

Proof. For any i ∈ [k], we denote by
−→
λi the oriented version of λi from xi to yi. During the

execution of algorithm ImplicitPaths, we introduce a function Mark that marks a dart d with
i if and only if the d is used for the first time in the execution of algorithm ImplicitPaths at
iteration i. It means that Mark(d) = i if and only if d belongs to

−→
λi and d does not belong to

−→
λj ,

for all j � i and j 6= i. This function can be executed within the same time bound of algorithm
ImplicitPaths. Now we explain how to find darts in

−→
λi .

Let us assume that (d1, . . . , d`i) is the ordered sequence of darts in
−→
λi . Let v = head[dj−1],

and let us assume that deg(v) = r in the graph
⋃
j∈[k] λj . We claim that if we know dj−1, then

we find dj in O(log log r) time. First we order the outgoing darts in v in clockwise order starting
in dj−1, thus let Outv = (g1, . . . , gr) be this ordered set (this order is given by the embedding of
the input plane graph). We observe that all darts in Outv that are in Intλi are in

−→
λw for some

w ≤ i, thus Mark(d) ≤ i for all d ∈ Outv ∩ Intλi . Similarly, all darts in Outv that are Extλi
are in

−→
λz for some z ≥ i, thus Mark(d) ≥ i for all d ∈ Outv ∩ Extλi . Using this observation, we
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4.4. Listing paths

have to find the unique l ∈ [r] such that Mark(gl) ≤ i and Mark(gl+1) > i. This can be done in
O(log log r) by using a van Emde Boas tree [135].

Being the
−→
λi ’s pairwise single-touch, then

∑
v∈V (λi)

deg(v) ≤ 2k, where the equality holds if

and only if every
−→
λj , for j 6= i, intersects on vertices

−→
λi exactly two times, that is the maximum

allowed by the single-touch property.
Finally, if 2k ≤ `i, then we list

−→
λi in O(`i) because the searches of the correct darts do not

require more than O(k) time, otherwise we note that∑
j=1,...,`

a1+...+a`≤2k

log log aj ≤ ` log log

(
2k

`

)
,

so the time complexity follows.
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Chapter 5

Solving the NCSP problem in the
unweighted case in linear time

We solve the non-crossing shortest paths problem on undirected unweighted plane graphs in
linear time. We also give a novel concept of incremental shortest path subgraph of a plane
graph, i.e., a partition of the planar embedding in subregions that preserve distances, that
can be of interest itself.

5.1 Introduction

In this chapter, we solve the NCSP problem on an undirected unweighted plane graph in O(n)

time. We improve, in the unweighted case, the results in [130, 131]. By applying the technique
described in Chapter 4 we can compute distances between all terminal pairs in linear time.

Our algorithm relies on two main results:

• an algorithm due to Eisenstat and Klein [48], that gives in O(n) time an implicit repre-
sentation of a sequence of shortest path trees in an undirected unweighted plane graph G,
where each tree is rooted at a vertex in the infinite face of G. Note that, if we want to
compute shortest paths from the implicit representation of shortest path trees given in [48],
then we spend Θ(kn) time; this happens when all k shortest paths share a subpath of Θ(n)

edges;

• the novel concept of incremental shortest paths (ISP) subgraph of a plane graph G. We
show that an ISP subgraph of G partitions the embedding of G into distance preserving
regions, i.e., for any two vertices a, b in G lying in the same region R it is always possible
to find a shortest path in G joining a and b that is contained in R.

Improved results. We specialize the NCSP problem discussed in [130, 131] to the unweighted
case, decreasing the time complexity from O(n log log k) to O(n) (for every k). Therefore, in the
case of unweighted plane graphs we improve the results in [49, 93].
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Erickson and Nayyeri [49] generalized the work in [131] to the case in which the k terminal
pairs lie on h face boundaries. They prove that k non-crossing paths, if they exist, can be found
in 2O(h2)n log k time, that becomes 2O(h2)n log log k time by plugging in the algorithm in [130].
Applying our results, if the graph is unweighted, then the time complexity decreases to 2O(h2)n.

Kusakari et al. [93] showed that a set of non-crossing forests in a plane graph can be found
in O(n log n) time, where two forest F1 and F2 are non-crossing if for any pair of paths p1 ⊆ F1

and p2 ⊆ F2, p1 and p2 are non-crossing. With our results, if the graph is unweighted, then the
time complexity becomes linear.

Our approach. We introduce a new class of graphs, ISP subgraphs, that partition a plane
graph into regions that preserve distances. Our algorithm is split in two parts.

In the first part we use Eisenstat and Klein’s algorithm that gives a sequence of shortest path
trees rooted at the vertices in the infinite face. We choose some specific shortest paths from each
tree to obtain a sequence of ISP subgraphs X1, . . . Xk. By using the distance preserving property
of regions generated by ISP subgraphs, we prove that Xi contains a shortest xiyi path, for all
i ∈ {1, . . . , k}.

In the second part of our algorithm, we extract from each Xi a shortest xiyi path and we
obtain a set of non-crossing shortest paths that is our goal. In this part we strongly use the
partial order given by the genealogy tree.

5.2 ISP subgraphs

In this section we introduce the concept of incremental shortest paths (ISP) subgraph of a plane
graph G, that is a subgraph incrementally built by adding a sequence of shortest paths in G

starting from f∞ (see Definition 22). The interest towards ISP subgraphs is due to the fact that
for any two vertices a, b in G lying on the same face f of the ISP subgraph there is always a
shortest path in G joining a and b contained in f (boundary included). All the results of this
section hold for positive weighted graphs, where the length of a path is the sum of edge weights
instead of the number of edges.

This is the main novel result of this chapter, that allows us to prove that, in order to build
the union of shortest paths joining terminal pairs, we can start from the union of some of the
shortest paths computed by the algorithm in [48].

Definition 22. A graph X is an incremental shortest paths (ISP) subgraph of an undirected
positive weighted plane graph G if X = Xr, where X1, X2, . . . , Xr is a sequence of subgraphs of
G built in the following way: X1 = f∞ and Xi = Xi−1 ∪ qi, where qi is a shortest wizi path in
G with wi, zi ∈ Xi−1.

We define now operator ↓, that given a path π and a cycle C, in case π crosses C, replaces
some subpaths of π with some portions of C, as depicted in Figure 5.1(b). We observe that
π ↓ ∂f could be not a simple path even if π is.
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Chapter 5. Solving the NCSP problem in the unweighted case in linear time

Definition 23. Let C be a cycle in an undirected positive weighted plane graph G. Let a, b be two
vertices in RC and let π be a simple ab path. In case π ⊆ RC we define π ↓ C = π. Otherwise, let
(v1, v2, . . . , v2r) be the ordered subset of vertices of π that satisfies the following: π[a, v1] ⊆ RC ,
π[v2r, b] ⊆ RC , π[v2i−1, v2i] and RC have no common edges and π[v2i, v2i−1] ⊆ RC , for all i ∈ [r].
For each i ∈ [r], let µi be the v2i−1v2i path on C such that the region bounded by µi ◦π[v2i−1, v2i]

does not contain RC . We define π ↓ C = π[a, v1]◦µ1◦π[v2, v3]◦µ2 . . .◦π[v2r−2, v2r−1]◦µr◦π[v2r, b].

Definition 22 and Definition 23 are depicted in Figure 5.1.

w1

z1
w2

z2

w4

z4

w3

z3

w5

z5

(a)

C

π
π ↓ C

a

b

v1

v2

v3

v4
v5

v6

(b)

Figure 5.1: (a) an ISP subgraph X of G; extremal vertices wi, zi of qi are drawn, for i ∈ [5].
Different faces of X have different colors. An example of Definition 23 is given in (b).

Note that every face f of an ISP subgraph X of G induces the region R∂f in G, and this
region may contain vertices in G that are not in X. In the following theorem we show that, given
any face f of an ISP subgraph X of G, every path π in G whose extremal vertices are in R∂f is
not shorter than π ↓ ∂f .

Theorem 24. Let X be an ISP subgraph of an undirected positive weighted plane graph G. Let
f be any face of X, and let a, b be two distinct vertices in R∂f . For any ab path π we have
ω(π ↓ ∂f) ≤ ω(π).

Proof. Let {Xi}i∈[r] be the sequence of ISP subgraphs such that X = Xr, and let qi be the path
that builds Xi from Xi−1. We assume that qi has no vertices in Xi−1 other than its endpoints
wi and zi, otherwise we can split qi on intersections with Xi−1 and repeatedly apply the same
proof to each portion of qi. We prove the thesis by induction on r for every choice of a face f of
Xr, a, b ∈ R∂f and ab path π.

In the base case, where r = 1, Xr is equal to f∞ by Definition 22, thus for every path π we
trivially have that π ↓ ∂f∞ = π. Hence, ω(π ↓ ∂f) = ω(π) and the thesis holds. Let us assume
that the thesis is true for r − 1 and let us prove it for r.

Let f be a face of Xr and let f ′ be the unique face of Xr−1 such that f ⊂ f ′ (Figure 5.2(a)
and Figure 5.2(b) show faces f and f ′, respectively). Let a, b ∈ V (R∂f ) and let π be an ab path.
Three cases may occur:

case π ⊆ R∂f : the thesis trivial holds, since π ↓ ∂f = π;
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case π ⊆ R∂f ′ and π 6⊆ R∂f : since π ⊆ R∂f ′ and π 6⊆ R∂f , then π crosses qr an even number
of times, thus π ↓ ∂f is not longer than π, since some subpaths of π have been replaced by
subpaths of qr with the same extremal vertices and qr is a shortest path (see Figure 5.2(c)
where π is the red dashed path);

case π 6⊆ R∂f ′: since f ⊆ f ′, it is easy to see that π ↓ ∂f = (π ↓ ∂f ′) ↓ ∂f . Let us consider
π′ = π ↓ ∂f ′. By induction, it holds that ω(π′) ≤ ω(π). We observe now that π′ ⊆ R∂f ′

and π′ 6⊆ R∂f , hence the previous case applies, showing that ω(π′ ↓ ∂f) ≤ ω(π′). Finally,
the two previous inequalities imply ω(π ↓ ∂f) = ω((π ↓ ∂f ′) ↓ ∂f) = ω(π′ ↓ ∂f) ≤ ω(π′) ≤
ω(π) (see Figure 5.2(c) where π is the green continue path).

f

qr

Xr

(a) a face f in Xr

f ′

Xr−1

(b) a face f ′ in Xr−1

Xr

a b

(c) two examples of π in the
second case (dashed red) and
third case (continuous green)

Figure 5.2: in (a) and (b) faces f and f ′ build on the ISP graph in Figure 5.1(a). In (c) we
depict the second and third case of the proof of Theorem 24.

We can state now the main property of ISP subgraphs.

Corollary 25. Let X be an ISP subgraph of an undirected positive weighted plane graph G and
let f be a face of X. For every vertices a, b ∈ R∂f there exists a shortest ab path of G contained
in R∂f .

5.3 Our algorithm

We summarize in Subsection 5.3.1 the result of Eisenstat and Klein’s article [48], that deals with
the multiple-source shortest paths problem. For the sake of clarity, we split our algorithm in two
parts:

• in Subsection 5.3.2 we present algorithm NCSPsupergraph, that builds a sequence {Xi}i∈[k]

of subgraphs of G such that Xk contains a shortest path for each terminal pair, and it
possibly contains some extra edges. We anticipate that Xi ∪ f∞ is an ISP subgraph of G,
for all i ∈ [k];

• in Subsection 5.3.3 we describe algorithm NCSPunion that, by using the sequence of graphs
{Xi}i∈[k] found by algorithm NCSPsupergraph, builds a directed graph that is exactly the
union of the shortest directed paths joining each terminal pair contained in the output of
algorithm NCSPsupergraph.
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5.3.1 Eisenstat and Klein’s result

The algorithm in [48] takes as input an undirected unweighted plane graph G, where v1, v2, . . . , vr

is the sequence of vertices in the infinite face of G in clockwise order, and returns an implicit
representation of a sequence of shortest path trees Tvi , for i ∈ [r], where each Tvi is rooted at vi.

The sequence of trees Tvi , for i ∈ [r], is represented by explicitly listing the darts in Tv1 ,
and listing the darts that are added to transform Tvi into Tvi+1 , for 1 < i ≤ r (for each added
dart from x to y, the unique dart that goes to y in Tvi is deleted; with the only two exceptions
of the added dart leading to vi, and the deleted dart leading to vi+1). Hence, the output of
their algorithm is Tv1 and a sequence of sets of darts. A key result in [48] shows that if a dart
d appears in Tvi+1 \ Tvi , then d cannot appear in any Tvj+1 \ Tvj , for j > i. Thus the implicit
representation of the sequence of shortest path trees has size O(n). This representation can be
computed in O(n) time.

5.3.2 Algorithm NCSPsupergraph

Algorithm NCSPsupergraph builds a sequence {Xi}i∈[k] of subgraphs of G by using the sequence
of shortest path trees given by Eisenstat and Klein’s algorithm. We point out that we are not
interested in the shortest path trees rooted at every vertex in f∞, but we only need the shortest
path trees rooted at xi’s. So, we define Ti as the shortest path tree rooted at xi, for i ∈ [k], i.e.,
Ti = Txi . We denote by Ti[v] the path in Ti from xi to v.

The algorithm starts by computing the first subgraph X1, that is just the undirected 1-path
in T1, i.e., T1[y1] (we recall that all Ti’s trees given by algorithm in [48] are rooted directed trees,
thus T1 is the undirected version of T1). Then the sequence of subgraphs Xi, for i = 2, . . . , k is
computed by adding some undirected paths extracted from the shortest path trees Ti’s defined
by Eisenstat and Klein’s algorithm.

We define the set Hi ⊆ V (Xi) of vertices h such that at least one dart d is added while
transforming Ti−1 into Ti such that head[d] = h. Hence, Hi is the set of vertices of Xi whose
parent in Ti differs from the parent in Ti−1. At iteration i, we add path Ti[h] to Xi, for each h
in Hi.

Lemma 26. Algorithm NCSPsupergraph has O(n) time complexity.

Proof. Eisenstat and Klein’s algorithm requires O(n) time, implying that the Hi’s and the Ti’s
can be found in O(n) time. Algorithm NCSPsupergraph visits each edge of G at most O(1) times
because it builds Xi without visiting edges in Xi−1; indeed, in Line 7, Ti[h] can be found by
starting in h and by walking backwards on Ti until a vertex of Xi is found. The thesis follows.

Figure 5.3 shows how algorithm NCSPsupergraph builds X4 starting from X3. Starting from
X3 in Figure 5.3(a), Figure 5.3(b) shows the darts whose head is in H4. Consider the unique
dart d whose head is the vertex u: we observe that d is already in X3, this happens because
rev[d] ∈ T3[y3]. Indeed, it is possible that at iteration i some portions of some undirected paths
that we add in Line 7 are already in Xi−1. Figure 5.3(c) highlights

⋃
h∈H4

T4[h] and η4, while in
Figure 5.3(d) X4 is drawn.
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Algorithm NCSPsupergraph:
Input: an undirected unweighted plane graph G and k well-formed terminal pairs

{(xi, yi)}i∈[k] on the infinite face of G
Output: an undirected graph Xk that contains a set of non-crossing paths

P = {π1, . . . , πk}, where πi is a shortest xiyi path, for i ∈ [k]

1 Compute a shortest path tree T1 rooted at x1;
2 X1 = T1[y1];
3 for i = 2, . . . , k do
4 Xi = Xi−1;
5 Compute Ti from Ti−1 by the algorithm by Eisenstat and Klein [48];
6 Compute the set Hi of vertices of Xi whose parent in Ti differs from the parent in

Ti−1;
7 For all h ∈ Hi, Xi = Xi ∪ Ti[h];
8 Let ηi be the undirected path on Ti that starts in yi and walks backwards until a

vertex in Xi is reached;
9 Xi = Xi ∪ ηi;

Subgraphs {Xi}i∈[k] built by algorithm NCSPsupergraph, joined with f∞, satisfy all the
hypothesis of Theorem 24. Indeed, paths added in Line 7 and Line 9 are shortest paths in G

joining vertices in Xi−1, thus fulfilling Definition 22. So, we exploit Theorem 24 to prove that
Xi contains an i-path, for i ∈ [k], and, in particular, Xk contains a set of non-crossing paths
P = {π1, . . . , πk}, where πi is a shortest i-path, for i ∈ [k]. The main idea is to show that
Xi contains an undirected path that has the same length as the shortest i-path found by the
algorithm by Eisenstat and Klein. This is proved in Theorem 27.

Given a subgraph X of G, we say that an i-path p is the leftmost i-path in X if for every
i-path q ⊆ X it holds Rp◦γi ⊆ Rq◦γi .

We say that an undirected path p always turns left if p chooses the leftmost edge, w.r.t. the
fixed embedding, in each vertex going from a to b, where a and b are the extremal vertices of
p. Note that the leftmost ab path is not necessarily the path that starts in a and always turns
left until b is reached. To better understand the previous definition and the πi’s paths defined
in the following theorem, we refer to Figure 5.4, showing paths π1, π2, π3, π4 built on graph X4

in Figure 5.3(d).
Note that the following theorem describes a set of non-crossing shortest paths, but it does

not solve our problem. Indeed, if we extract πi from Xi, for each i ∈ [k], then we may spend
O(kn) time. We show how do it in linear time in the next section.

Theorem 27. Let πi be the undirected leftmost i-path in Xi, for i ∈ [k]. The following statements
hold:

27.(1) πi is the xiyi path in Xi that always turns left, for i ∈ [k],

27.(2) πi is a shortest i-path, for i ∈ [k],
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x1y1
x2 y2

x3y3

(a) X3 in black

x1y1
x2 y2

x3y3

u

(b) X3 in grey and the darts
whose head is in H4 in red

x1y1
x2 y2

x3y3

x4

y4

(c)
⋃

h∈H4
T4[h] in red and η4 in

green

x1y1
x2 y2

x3y3

x4

y4

(d) X4 in black

Figure 5.3: how algorithm NCSPsupergraph builds graph X4 starting from X3.

27.(3) for all i, j ∈ [k], πi and πj are non-crossing.

Proof. We prove all the statements separately.

27.(1) For convenience, for each i ∈ [k], let λi be the undirected path on Xi that starts in xi
and always turns left until it reaches either yi or a vertex of degree one in Xi; we observe
that λi is well defined. We have to prove that λi = πi.

Let i ∈ [k]. First, we observe that xi ∈ Xi because xi−1 ∈ Hi, thus, by Line 7, Ti[xi−1] ⊆
Xi. This implies xi ∈ Xi as we have claimed.

Let u be the extremal vertex of λi other than xi; by construction of λi, u ∈ f∞. Assume
by contradiction that u 6= yi. Two cases are possible: either u ∈ V (f∞) \ V (γi) or
u ∈ V (γi) \ {yi}.

The first case cannot occur because Line 7 and Line 9 imply Ti[yi] ⊆ Xi, thus λi would
cross ηi, absurdum. In the second case, let us assume by contradiction that u ∈ V (γi)\{yi}.
Let d ∈ λi be the dart such that head[d] = u. By definition of λi, vertex u has degree one
in Xi. By Line 2, Line 7 and Line 9, all vertices with degree one are equal to either x` or
y`, for some ` ∈ [k], and this implies that there exists j < i such that u ∈ {xj , yj}. This is
absurdum because there is not xj or yj in V (γi) \ {xi, yi} such that j < i. Hence λi is an
i-path, and, by its definition, λi is the leftmost i-path in Xi. Therefore λi = πi.

27.(2) We prove that πi is a shortest i-path by using Theorem 24, indeed, Xi ∪ f∞ is an ISP
subgraph of G by construction. Let G′ be the graph obtained from G by adding a dummy
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path q from xi to yi in f∞ with high length (for example, |q| = |E(G)|). Let C be the
cycle πi ◦ q. We observe that Ti[yi] ↓ C = πi and C is the boundary of a face of G′. Thus,
by Theorem 24, |πi| ≤ |Ti[yi]|. Since Ti[yi] is a shortest path, then πi is a shortest path in
G′, hence it also is a shortest path in G.

27.(3) Let us assume by contradiction that there exist i, j ∈ [k] such that πi and πj are crossing,
with i < j. Thus πj has not turned always left in Xj , absurdum.

x1y1
x2 y2

x3y3

x4

y4

Figure 5.4: paths π1, π2, π3, π4 built on graph X4 in Figure 5.3(d).

5.3.3 Algorithm NCSPunion

The graph Xk given by algorithm NCSPsupergraph contains a shortest path for each terminal
pair, but Xk may also contain edges that do not belong to any shortest path. To overcome this
problem we apply algorithm NCSPunion, that builds a directed graph Yk =

⋃
i∈[k] ρi, where ρi is

a directed shortest i-path, for i ∈ [k]. Moreover, we prove that Yk can be built in linear time.
This implies that, by using the results in Theorem 19, we can compute the length of all shortest
i-paths, for i ∈ [k], in O(n) time (see Theorem 32).

We use the sequence of subgraphs {Xi}i∈[k]. By Theorem 27, we know that Xi contains a
shortest undirected i-path πi and we can list its edges in O(|πi|) time. But if an edge e is shared
by many πi’s, then e is visited many times. Thus obtaining

⋃
i∈[k] πi by this easy procedure

requires O(kn) time. To overcome this problem, we should visit each edge in
⋃
i∈[k] πi only a

constant number of times.
Now we introduce two useful lemmas. The first lemma shows that two directed paths λi

and λj that are uncomparable in the genealogy tree Tg (i.e., such that i � j and j � i) cannot
share a dart, although it is possible that

−→
ab ∈ λi and

−→
ba ∈ λj . The second lemma deals with the

intersection of non-crossing paths joining comparable pairs.

Lemma 28. Let λi be a shortest directed i-path and let λj be a shortest directed j-path, for some
i, j ∈ [k]. If j is not an ancestor neither a descendant of i in Tg, then λi and λj have no common
darts.

Proof. Let us assume by contradiction that λi and λj have at least one common dart, and let d
be the dart in λi ∩ λj that appears first in λi. Let R be the region bounded by λj [xj , tail[d]],
λi[xi, tail[d]] and the clockwise undirected xixj path in f∞ (Figure 5.5 shows λi, λj and R).
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Being λj a simple path, then λj crosses λi in at least one vertex in λi[xi, tail[d]]. Let u be the
first vertex in λi[xi, tail[d]] after head[d] in λj .

Now by looking at cycle λi[u, head[d]]◦λj [head[d], u] shown in Figure 5.5, we prove that λi and
λj can be both shortest paths. Indeed, if λi is a shortest path, then λj [xj , tail[d]] ◦ λi[tail[d], u] ◦
λj [u, yj ] is shorter than λj because it does not contain d. Finally, if λj is a shortest path, then
λi[xi, u] ◦ λj [u, head[d]] ◦ λi[head[d], yi] is shorter than λi because it does not contain d.

d

R xi

yixj
yj

λi
u

xi

yixj
yj

λj

Figure 5.5: paths λi and λj , dart d, region R and vertex u used in the proof of Lemma 28.

Lemma 29. Let {λi}i∈[k] be a set of non-crossing directed i-paths. Let i, j ∈ [k], if i � j, then
λi ∩ λj ⊆ λ`, for all ` ∈ [k] such that i � ` � j.

Proof. Let us assume λi and λj have at least one common vertex and choose ` ∈ [k] such that
i � ` � j. Let v be a vertex in λi ∩λj and let Q be the region bounded by λj [xj , v], λi[xi, v] and
the clockwise undirected xjxi path in f∞ (region Q and vertex v are shown in Figure 5.6). It is
clear that if v 6∈ λ`, then {λi, λj , λ`} is not a set of non-crossing paths, absurdum.

Q

v

xi
yi

x`
y`

xj
yj

Figure 5.6: region Q and vertex v used in the proof of Lemma 29.

Now we show how to use these two lemmas for our goals. Let ρi be a shortest directed i-path
and let ρj be a shortest directed j-path, for some i, j ∈ [k], i 6= j. By Lemma 28, if i and j are
not comparable in Tg, then ρi and ρj have no common darts. Moreover, by Lemma 29, if i is
a descendant of j in Tg, then ρi ∩ ρj ⊆ ρp(i). By using these two facts, in order to list darts in
ρi, then it suffices to find darts in ρi \ ρp(i), for all i ∈ [k] \ {1} (we remind that i = 1 is the
root of Tg). To this goal we use algorithm NCSPunion, that builds a sequence of directed graphs
{Yi}i∈[k] such that Yk is equal to

⋃
i∈[k] ρi, where ρi is a shortest directed i-path, for i ∈ [k].

We prove the correctness of algorithm NCSPunion in Theorem 31. At iteration i we compute
ρi \ρp(i), showing that ρi \ρp(i) = σi∪ rev[τi], where σi and τi are computed in Line 5 and Line 6,
respectively. We observe that if ρi and ρp(i) have no common darts, then σi = rev[τi] = ρi.
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Algorithm NCSPunion:
Input: an undirected unweighted plane graph G and k well-formed terminal pairs

{(xi, yi)}i∈[k] on the infinite face of G
Output: a directed graph Yk formed by the union of directed non-crossing shortest

paths from xi to yi, for i ∈ [k]

1 Compute X1 as in algorithm NCSPsupergraph;
2 Y1 is the directed version of X1 oriented from x1 to y1;
3 for i = 2, . . . , k do
4 Compute Xi as in algorithm NCSPsupergraph;
5 σi is the directed path that starts in xi and always turns left in Xi until either σi

reaches yi or the next dart di of σi satisfies di ∈ Yi−1;
6 τi is the directed path that starts in yi and always turns right in Xi until either τi

reaches xi or the next dart d′i of τi satisfies rev[d′i] ∈ Yi−1;
7 Yi = Yi−1 ∪ σi ∪ rev[τi];

To better understand Line 2 of algorithm NCSPunion, we recall that X1 is an undirected
1-path, hence Y1 is the directed version of this path.

Lemma 30. Algorithm NCSPunion has O(n) time complexity.

Proof. Algorithm NCSPunion uses algorithm NCSPsupergraph, that has O(n) time complexity
by Lemma 26. Moreover, algorithm NCSPunion visits each dart of the “directed version” of Xk

at most O(1) times, where the directed version of Xk is the directed graph built from Xk by
replacing each edge ab with the pair of darts

−→
ab and

−→
ba. Thus, algorithm NCSPunion requires

O(n) time, since Xk is a subgraph of G.

Theorem 31. Graph Yk computed by algorithm NCSPunion is the union of k shortest directed
non-crossing i-paths, for i ∈ [k].

Proof. Let {πi}i∈[k] be the set of paths defined in Theorem 27. For all i ∈ [k], we denote by −→πi
the directed version of πi, oriented from xi to yi.

First we define ρ1 = −→π1 and for all i ∈ [k] \ {1} we define

ρi =

−→πi [xi, ui] ◦ ρp(i)[ui, vi] ◦ −→πi [vi, yi], if −→πi and ρp(i) share at least one dart,
−→πi , otherwise,

(5.1)

where we assume that if −→πi and ρp(i) have at least one common dart, then ui and vi are the tail
of the first common dart and the head of the last common dart, respectively, where the order
is with respect to −→πi . The definition of ρi as in (5.1) is shown in Figure 5.7. Now we split the
proof into three parts: first we prove that {ρi}i∈[k] is a set of shortest paths (we need it to apply
Lemma 28); second we prove that {ρi}i∈[k] is a set of non-crossing paths (we need it to apply
Lemma 29); third we prove that Yk =

⋃
i∈[k] ρi (we prove it by Lemma 28 and Lemma 29).
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{ρi}i∈[k] is a set of shortest paths: we proceed by induction on i. The base case is trivial
because π1 is a shortest path by definition. Let us assume that ρj is a shortest j-path, for
j < i, we have to prove that ρi is a shortest i-path. If −→πi and ρp(i) have no common darts,
then ρi = −→πi by (5.1), thus the thesis holds because {πi}i∈[k] is a set of shortest paths.
Hence let us assume that −→πi and ρp(i) have at least one common darts, then it suffices, by
definition of ρi, that |πi[ui, vi]| = |ρp(i)[ui, vi]|. It is true by induction.

{ρi}i∈[k] is a set of non-crossing paths: we proceed by induction on i. The base case is
trivial because there is only one path. Let us assume that {ρj}j∈[i−1] is a set of non-crossing
paths, we have to prove that ρi does not cross ρj , for any j < i.

By construction of ρi, ρi cannot cross ρp(i). Thus if ρi and ρj are crossing and j is not
an ancestor of i, then either ρp(i) and ρj are crossing or πi and πj are crossing; that is
absurdum in both cases by induction and Theorem 27. Moreover if ` is an ancestor of i
such that ` 6= p(i), then ρi does not cross ρ` otherwise ρ` would cross ρp(i), absurdum by
induction. Hence {ρi}i∈[k] is a set of non-crossing paths.

Yk is the union of ρi’s: now we prove that Yk =
⋃
i∈[k] ρi. In particular we show that ρ1 = −→π1

and for all i ∈ [k] \ {1}

ρi =

σi ◦ ρp(i)[ui, vi] ◦ rev[τi], if −→πi and ρp(i) share at least one dart,
−→πi , otherwise.

(5.2)

Again, we proceed by induction on i. The base case is trivial, thus we assume that (5.1) is
equivalent to (5.2) for all i < `. We have to prove that (5.1) is equivalent to (5.2) for i = `.

If −→π` does not intersect any dart of ρp(`), then (5.1) is equivalent to (5.2). Thus we assume
that −→π` and ρp(`) have at least one common dart. By (5.1) and (5.2) and by definition
of σi and τi in Line 5 and Line 6, respectively, it suffices to prove that di ∈ ρp(i) and
rev[d′i] ∈ ρp(i).

Now, by induction we know that di ∈ ρ` for some ` < i, we have to show that di ∈ ρp(i).
By Lemma 28 and being {ρj}j∈[k] a set of shortest paths, it holds that ` is an ancestor or a
descendant of i. Being the xj ’s visited clockwise by starting from x1, then ` is an ancestor
of i. Finally, by Lemma 29 and being {ρj}j∈[k] a set of non-crossing paths, it holds that
ρi ∩ ρ` ⊆ ρp(i). Being p(i) < i, then di ∈ ρp(i) as we claimed. By a similar argument, it
holds that rev[d′i] ∈ ρp(i).

Now we can state and prove the main theorem of this chapter.

Theorem 32. Given an undirected plane graph G with small integer weights and a set of well-
formed terminal pairs {(xi, yi)} on the infinite face f∞ of G we can compute U =

⋃
i∈[k] pi and

the lengths of all pi, for i ∈ [k], where pi is a shortest i-path and {pi}i∈[k] is a set of non-crossing
paths, in O(n+ L) time, where L is the sum of all edge weights.
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xi
yi

xp(i)
yp(i)

−→πi

ρp(i)
ui

vi

(a) path −→πi and ρp(i)

xi
yi

xp(i)
yp(i)

ρi

ρp(i)

(b) path ρi

Figure 5.7: proof of Theorem 31, explanation of (5.1).

Proof. By Theorem 31, the required graph U is the undirected version Yk of the graph computed
by algorithm NCSPunion, that has O(n+L) time complexity by Lemma 30; indeed, we can split
an edge of weight r in r unweighted edges. Moreover, we compute the length of pi, for all i ∈ [k],
in O(n+ L) time by Theorem 19.
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Chapter 6

Max flow vitality of edges and vertices
in undirected planar graphs

We give efficient algorithms to compute an additive guaranteed approximation of the vitality
of edges and vertices with respect to the st-max flow in undirected planar graphs. We show
that in the general case high vitality values are well approximated in time close to the
time currently required to compute st-max flow O(n log log n). We also give improved, and
sometimes optimal, results in the case of integer capacities. All our algorithms work in O(n)

space.

6.1 Introduction

Let G be a planar graph and let s and t be two fixed vertices. In this chapter we propose fast
algorithms for computing an additive guaranteed approximation of the vitality with respect to
the st-max flow of all edges and vertices whose capacity is less than an arbitrary threshold c.
Later we explain that these results can be used to obtain a useful approximation of vitality for
general distribution of capacities and in the case of power-law distribution. We stress that in
applications we are usually interested in finding edges and or vertices with high vitality, i.e.,
edges or vertices whose removal involves important decrease on the max flow value.

Our main results are summarized in the following two theorems. We recall that c : E(G)→
R+ is the edge capacity function, we define the capacity c(v) of a vertex v as the sum of the
capacities of all edges incident on v. Moreover, for each x ∈ E(G) ∪ V (G) we denote by vit(x)

its vitality with respect to the st-max flow.

Theorem 33. Let G be a planar graph with positive edge capacities. Then for any c, δ >

0, we compute a value vitδ(e) ∈ (vit(e) − δ, vit(e)] for all e ∈ E(G) satisfying c(e) ≤ c, in
O( cδn+ n log logn) time.
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6.1. Introduction

Theorem 34. Let G be a planar graph with positive edge capacities. Then for any c, δ >

0, we compute a value vitδ(v) ∈ (vit(v) − δ, vit(v)] for all v ∈ V (G) satisfying c(v) ≤ c, in
O( cδn+ n log n) time.

All our algorithms work in O(n) space. To explain the result stated in Theorem 33, we note
that in the general case capacities are not bounded by any function of n. Thus, in order to obtain
useful approximations, c/δ would seem to be very high. Despite this we explain that in many
cases we can assume c/δ constant, implying that the time complexity of Theorem 33 is equal
to the best current time bound for computing the st-max flow. The following remark is crucial,
where cmax = maxe∈E(G) c(e).

Remark 35 (Bounding capacities). We can bound all edge capacities higher than MF to MF,
obtaining a new bounded edge capacity function. This change has no impact on the st-max flow
value or the vitality of any edge/vertex. Thus w.l.o.g., we can assume that cmax ≤ MF.

By using Remark 35 we can explain why c/δ can be assumed constant in Theorem 33, we study
separately the case of general distribution of capacities and the case of power-law distribution.

• General distribution (after bounding capacities as in Remark 35). If we set c = cmax and
δ = c/k, for some constant k, then we obtain edge capacities with an additive error less than
MF/k, because of Remark 35. In many applications this error is acceptable even for small
values of k, e.g., k = 10, 50, 100. In this way we obtain small percentage error of vitality for
edges with high vitality—edges whose vitality is comparable with MF—while edges with
small vitality—edges whose vitality is smaller than MF/k—are badly approximated. We
stress that we are usually interested in high capacity edges, and that with these choices the
time complexity is O(n log logn), that is the time currently required for the computation
of the st-max flow.

• Power-law distribution (after bounding capacities as in Remark 35). The previous method
cannot be applied to power-law distribution because the largest part of edges has capacity
lower than MF/k, even for high value of k. Thus we have to separate edges with high
capacity and edges with low capacity. Let c = cmax

` for some constant ` and let Hc = {e ∈
E(G) | c(e) > c}. By power-law distribution, |Hc| is small even for high value of `, and thus
we compute the exact vitality of edges in Hc by using Corollary 2. For edges with capacity
less than c, we set δ = c/k, for some constant k. By Remark 35 we compute the vitality
of these edges with an additive error less than MF

k` . Again, the overall time complexity is
equal or close to the time currently required for the computation of the st-max flow.

To apply the same argument to vertex vitality in Theorem 34 we need some observations. If
G’s vertices have maximum degree d, then, after bounding capacities as in Remark 35, it holds
maxv∈V (G) c(v) ≤ dMF. Otherwise, we note that a real-world planar graph is expected to have
few vertices with high degree. The exact vitality of these vertices can be computed by Corollary 2
by removing the edges adjacent to a vertex one by one, or by using the following our result.

Theorem 36. Let G be a planar graph with positive edge capacities. Then for any S ⊆ V (G),
we compute vit(v) for all v ∈ S in O(|S|n+ n log logn) time.
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Chapter 6. Max flow vitality of edges and vertices in undirected planar graphs

If we denote by ES =
∑

v∈S deg(v), then the result in Theorem 36 is more efficient than the

result given in Corollary 2 if either |S| < log n and ES > |S| log n or |S| ≥ log n and ES >
|S|n1/3

log8/3 .

Small integer case. In the case of integer capacity values that do not exceed a small constant,
or in the more general case in which capacity values are integers with bounded sum, by using
Theorem 32 we obtain the two following corollaries.

Corollary 37. Let G be a planar graph with integer edge capacities and let L be the sum of all
the edge capacities. Then

• for any H ⊆ E(G) ∪ V (G), we compute vit(x) for all x ∈ H, in O(|H|n+ L) time;

• for any c ∈ N, we compute vit(e) for all e ∈ E(G) satisfying c(e) ≤ c, in O(cn+ L) time.

Corollary 38. Let G be a planar graph with unit edge capacities. Let n>d be the number of
vertices whose degree is greater than d. We compute the vitality of all edges in O(n) time and
the vitality of all vertices in O(min{n3/2, n(n>d + d+ log n)}) time.

Finally, the results by Kowalik and Kurowski [92] about shortest paths of bounded length in
unweighted planar graphs allows us to get the following corollary.

Corollary 39. Let G be a planar graph with unit edge capacities where only a constant number
of vertices have degree greater than a fixed constant d. Then we compute the vitality of all vertices
in O(n) time.

Our approach. We adopt Itai and Shiloach’s approach [79], that first computes a modified
version D of a dual graph of G, then reduces the computation of the max flow to the computation
of shortest non-crossing paths between pairs of vertices on the infinite face of D. We first study
the effect on D of an edge or a vertex removal in G, showing that computing the vitality of
an edge or a vertex can be reduced to computing some distances in D (see Proposition 42 and
Proposition 43).

Then we determine required distances by solving SSSP instances. To decrease the cost we
use a divide and conquer strategy: we slice D in regions delimited by some of the non-crossing
shortest paths computed above. We choose shortest non-crossing paths with similar lengths,
so that we compute an additive approximation of each distance by looking into a single region
instead of examining the whole graph D (see Lemma 46).

Finally we have all the machinery to compute an approximation of required distances of
Proposition 42 and Proposition 43 and obtain edges and vertices vitalities.

6.2 Deleting an edge or a vertex

In this section we show our main theoretical results (Proposition 42 and Proposition 43) that
allow us to compute edge and vertex vitality. In Subsection 6.2.1 we show the effects in G∗ and
D of removing an edge or a vertex from G. In Subsection 6.2.2 we deal with crossings between π
and st-separating cycles and in Subsection 6.2.3 we state the two main propositions about edge
and vertex vitality.
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6.2. Deleting an edge or a vertex

6.2.1 Effects on G∗ and D of deleting an edge or a vertex of G

We observe that removing an edge e from G corresponds to contracting endpoints of e∗ into one
vertex in G∗. With respect to D, if e∗ 6∈ π, then the removal of e corresponds to the contraction
into one vertex of endpoints of eD. If e∗ ∈ π, then both copies of e∗ have to be contracted. In
Figure 6.1 we show the effects of removing edge eg from graph G in Figure 3.3.

Let v be a vertex of G. Removing v corresponds to contracting vertices of face f∗v in G∗

into a single vertex. In D, if f∗v and π have no common vertices, then all vertices of fDv are
contracted into one. Otherwise f∗v intersects π on vertices

⋃
i∈I{v∗i } for some non empty set

I ⊆ [k]. Then all vertices of fDv are contracted into one vertex, all vertices of
⋃
i∈I{xi} not

belonging to fDv are contracted into another vertex and all vertices of
⋃
i∈I{yi} not belonging to

fDv are contracted into a third vertex. For convenience, we define qx
fDv

= (
⋃
i∈Iv{xi})\V (fDv ) and

qy
fDv

= (
⋃
i∈Iv{yi}) \V (fDv ). To better understand these definitions, see Figure 6.2. In Figure 6.3

it is shown what happens when we remove vertex g of graph G in Figure 3.3.

v∗new

v∗1 v∗4
v∗5

v∗6

v∗7v∗8

v∗∞

a b c d

e g

h
is

t

y1 ynew y4

x1 xnew x4

vD5

vD6vD7

vD8
vD∞

fDa
fDb

fDc

fDd

fDe

fDg

fDh fDi

Figure 6.1: starting from graph G in Figure 3.3, we show on the left graph G−eg and (G−eg)∗,
and graph DG−eg on the right.

qx
fDv

qy
fDv

fDv

Figure 6.2: a face fDv , for some v ∈ V (G), and sets qx
fDv

and qy
fDv

. Removing v from G corresponds
in D to contracting vertices of fDv , qx

fDv
and qy

fDv
in three distinct vertices.

6.2.2 Single-crossing st-separating cycles

As explained in Subsection 3.4.1, Itai and Shiloach [79] consider only shortest st-separating cycles
that cross π exactly once, that correspond in D to paths from xi to yi, for some i ∈ [k]. In our
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Figure 6.3: starting from graph G in Figure 3.3, we show on the left graph G− g and (G− g)∗,
and graph DG−g on the right.

approach, we contract vertices of an edge or a face of G∗. Despite this we can still consider only
st-separating cycles that cross π exactly once. The proof of this is the goal of this subsection.

Lemma 40. Let γ be a simple st-separating cycle and let S be either an edge or a face of G∗.
Let r = |V (γ)∩V (S)|. After contracting vertices of S into one vertex, then γ becomes the union
of r simple cycles and exactly one of them is an st-separating cycle.

Proof. Since an edge can be seen as a degenerate face, we prove the statement only in the case in
which S is a face f . Let v∗ ∈ V (γ) and let u∗1, u∗2, . . . , u∗r be the vertices in V (γ) ∩ V (f) ordered
in clockwise order starting from v∗. For convenience, let u∗r+1 = u∗1. For i ∈ [r], let qi be the
clockwise u∗iu

∗
i+1 path on γ. After contracting the vertices in f into one, qi becomes a cycle.

Each qi’s joined with the counterclockwise u∗iu
∗
i+1 path on the border cycle of f defines a region

Ri of G∗. We remark that if qi is composed by a single edge e∗, then qi becomes a self-loop and
region Ri is a composed only by e∗.

Cycle γ splits graph G∗ into two regions: a region internal to γ called Rin and an external
region called Rout. W.l.o.g., we assume that s ∈ Rin and t ∈ Rout. Now we split the proof into
two cases: f ⊆ Rin and f ⊆ Rout.

Case f ⊆ Rin: by above, it holds that R1, . . . , Rr ⊆ Rin (see Figure 6.4 on the left). Being
γ an st-separating cycle, then there exists a unique j ∈ [r] such that s ∈ Rj . Thus, after
contracting vertices in f into one, pj becomes the unique st-separating cycle, while all
others Ri’s become cycles that split G∗ into two regions, and each region contains neither
s nor t (see Figure 6.4 on the right).

Case f ⊆ Rout: by above there exists a unique j ∈ [r] such that Ri ⊆ Rout for all i 6= j and
Rin ⊆ Rj (see Figure 6.5 on the left). W.l.o.g., we assume that j = r. After contracting
the vertices in f into one, all regions R1, . . . , Rr−1 become regions inside Rr because of the
embedding (see Figure 6.5 on the right). We recall that s ∈ Rin, thus there are two cases:
if t ∈ Ri for some i ∈ [r − 1], then pi becomes the unique st-separating cycle; otherwise,
t ∈ Rout, and thus pr becomes the unique st-separating cycle.
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Figure 6.4: on the left, cycle γ and face f belonging to Rin. On the right, cycle γ after contracting
all vertices in f into one, the dashed edge represents a self-loop.
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Figure 6.5: on the left, cycle γ and face f belonging to Rout. On the right, cycle γ after
contracting all vertices in f into one, dashed edges represent self-loops.

Let Γ be the set of all st-separating cycles in G∗, and let Γ1 be the set of all st-separating
cycles in G∗ that cross π exactly once. Given γ ∈ Γ and either an edge or a face S of G∗, thanks
to Lemma 40 we can define ∆S(γ) as “the length of the unique st-separating cycle contained
in γ after contracting vertices in S into one”. Being MF equal to the length of a minimum
st-separating cycle, the following relations hold:

for any e ∈ E(G), vit(e) = MF−min
γ∈Γ

∆e∗(γ),

for any v ∈ V (G) \ {s, t}, vit(v) = MF−min
γ∈Γ

∆f∗v (γ).

Now we show that in the above equations we can replace set Γ with set Γ1.

Lemma 41. Let e ∈ E(G) and v ∈ V (G) \ {s, t}. It holds that vit(e) = MF −minγ∈Γ1 ∆e∗(γ)

and vit(v) = MF−minγ∈Γ1 ∆f∗v (γ).

Proof. We recall that removing an edge e from G corresponds to contracting endpoints of e∗ into
one vertex, while removing a vertex v from G corresponds to contracting all the vertices in face
f∗v into one vertex. So we prove the thesis only in the more general case of vertex removal. For
convenience, we denote f∗v by f . Let γ ∈ Γ be such that vit(f) = MF−∆f (γ) and assume that
γ 6∈ Γ1. If V (γ)∩V (f) = ∅, then vit(f) = 0, hence it suffices to remove crossings between γ and
π, see [79]. Thus let us assume that V (γ) ∩ V (f) 6= ∅.

By Lemma 40, there exist unique a∗, b∗ ∈ V (f)∩V (γ) such that the clockwise a∗b∗ path p on
γ becomes an st-separating cycle after the contraction of vertices in f into one. Then we remove
crossings between p and π in order to obtain a path p′ not longer than p as above. Finally, let
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Chapter 6. Max flow vitality of edges and vertices in undirected planar graphs

γ′ = p ◦ q, where q is the clockwise a∗b∗ path on f . It holds that γ′ ∈ Γ1 and ∆f (γ′) ≤ ∆f (γ),
the thesis follows.

6.2.3 Vitality vs. distances in D

The main results of this subsection are Proposition 42 and Proposition 43. The first proposition
shows which distances in D are needed to obtain edge vitality and in the latter proposition we
do the same for vertex vitality. In Subsection 6.2.1 we proved that removing an edge or a vertex
from G corresponds to contracting in single vertices some sets of vertices of D. The main result
of Proposition 42 and Proposition 43 is that we can consider these vertices individually.

Let e be an edge of G. The removal of e from G corresponds to the contraction of endpoints
of e∗ into one vertex in G∗. Thus if an st-separating cycle γ of G∗ contains e∗, then the removal
of e from G reduces the length of γ by ω(e∗). Thus e has strictly positive vitality if and only
if there exists an st-separating cycle γ in G∗ whose length is strictly less than MF + ω(e∗) and
e∗ ∈ γ. This is the main idea to compute the vitality of all edges. Now we have to translate it
to D.

We observe that capacities of edges in G become lengths (or weights) in D. For this reason,
we define ω(eD) = c(e), for all edges e ∈ G satisfying e∗ 6∈ π and ω(eDx ) = ω(eDy ) = c(e) for all
edges e ∈ G satisfying e∗ ∈ π.

For i ∈ [k], we define di = distD(xi, yi). We observe that MF = mini∈[k] di. For a subset S
of V (D) and any i ∈ [k] we define di(S) = min{di, distD(xi, S) + distD(yi, S)}. We observe that
di(S) represents the distance in D from xi to yi if all vertices of S are contracted into one.

For each x ∈ V (G) ∪ E(G) we define MFx as the max flow in graph G − x. By definition,
vit(x) = MF−MFx and, trivially, x has strictly positive vitality if and only if MFx < MF.

Proposition 42. For each edge e of G, if e∗ 6∈ π, then MFe = mini∈[k]{di(eD)}. If e∗ ∈ π, then
MFe = mini∈[k]

{
min{di(eDx ), di(e

D
y )}

}
.

Proof. Let e be an edge of G. If vit(e) = 0, then MFe = MF and the thesis trivially holds. Hence
let us assume vit(e) > 0, then by Lemma 41 there exists γ ∈ Γ1 such that ω(γ) < MF + ω(e∗)

and e∗ ∈ γ. If e∗ 6∈ π, then e corresponds in D to edge eD, thus the thesis holds. If e∗ ∈ π, then
we note that every path in D containing both eDx and eDy corresponds in G∗ to an st-separating
cycle that passes through e∗ twice, thus its length is equal or greater than MF+ 2c(e). Thus we
consider only paths that contain eDx or eDy but not both. The thesis follows.

Now we deal with vertex vitality. Note that if f∗v and π have some common vertices, then
one among qx

fDv
and qy

fDv
could be empty. For convenience, we set di(∅) = +∞, for all i ∈ [k].

Proposition 43. For each vertex v of G, if f∗v and π have no common vertices, then MFv =

49
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mini∈[k]{di(f)}, where f = fDv , otherwise

MFv = min



mini∈[k]{di(f)},
mini∈[k]{di(qxf )},
mini∈[k]{di(q

y
f )},

distD(f, qxf ),

distD(f, qyf )


. (6.1)

Proof. If f∗v and π have no common vertices, then the proof is analogous to the edge case. Thus
let us assume that f∗v and π have common vertices. Let D′ be the graph obtained from D

by adding a vertex u, v, z connected with all vertices of qxf , of q
y
f , of f , respectively, with zero

weight edges; for convenience we assume that qxf and qyf are both not empty. By Lemma 41 and
discussion in Subsection 6.2.1, MFv = ω(p), where p is a shortest xiyi path in D′, varying i ∈ [k].

Note that after contracting vertices in f into one vertex there exists an xiyi path whose
length is distD(f, xi), for all xi ∈ qxf . In particular, there exists an xiyi path whose length is
distD(f, qxf ), for some i satisfying xi ∈ qxf . The same argument applies for qyf . This implies that
if vit(v) = 0, then Equation (6.1) is correct. Hence we assume that vit(v) > 0, so at least one
among u, v and z belongs to p.

If u ∈ p and v, z 6∈ p (resp., v ∈ p and u, z 6∈ p), then ω(p) = mini∈[k]{di(qxf )} (resp.,
ω(p) = mini∈[k]{di(q

y
f )}) . If z ∈ p and u, v 6∈ p then ω(p) = mini∈[k]{di(f)}. We have analyzed

all cases in which p contains exactly one vertex among u, v and z. To complete the proof, we
prove that, for any i ∈ [k], every xiyi path that contains at least two vertices among u, v and z
also contains a subpath whose length is at least min{distD(f, qxf ), distD(f, qyf )}.

Let ` be an xiyi path, for some i ∈ [k]. If u, z ∈ `, then there exists a subpath `′ of ` from
a vertex xj of qxf to a vertex r of f . If we add to `′ the two zero weighted edges rz and zyj

we obtain a xjyj path whose length is at least distD(f, qxf ). We can use a symmetric strategy if
v, z ∈ `.

It remains only the case in which u, v ∈ `. If qxf and qyf are both non-empty, then f splits D
and D′ into two or more parts and no parts contain vertices of both qxf and qyf (see Figure 6.2).
Thus if u, v ∈ `, then ` passes through at least one vertex of f , implying that ` has a subpath
from a vertex of f to a vertex of qxf , or q

y
f . As above, this path can be transformed in a xjyj

path shorter than ` whose length is at least min{distD(f, qxf ), distD(f, qyf )}, for some j ∈ [k].

6.3 Slicing graph D preserving approximated distances

In this section we explain our divide and conquer strategy. We slice graph D along shortest xiyi’s
paths. If these paths have lengths that differ at most δ, then we have a δ additive approximation
of distances required in Proposition 42 and Proposition 43 by looking into a single slice instead of
the whole graph D. This result is stated in Lemma 46. These slices can share boundary vertices
and edges, implying that their dimension might be O(n2). In Lemma 47 we compute an implicit
representation of these slices in linear time.
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From now on, we mainly work on graph D, thus we omit the superscript D unless we refer
to G or G∗. To work in D we need a shortest xiyi path and its length, for all i ∈ [k]. In the
following theorem we show time complexities for obtaining elements in D.

Theorem 44 ([54, 80]). If G is a planar graph with positive edge capacities,

• we compute U =
⋃
i∈[k] pi and ω(pi) for all i ∈ [k], where pi is a shortest xiyi path in D and

{pi}i∈[k] is a set of pairwise non-crossing single-touch paths, in O(n log log n) time—see [80]
for computing U and Theorem 19 for computing ω(pi)’s;

• for every I ⊆ [k], we compute
⋃
i∈I pi in O(n) time—see [54] by noting that U is a forest

and the paths can be found by using nearest common ancestor queries.

From now on, for each i ∈ [k] we fix a shortest xiyi path pi, and we assume that {pi}i∈[k] is
a set of pairwise single-touch non-crossing shortest paths. Let U =

⋃
i∈[k] pi, see Figure 6.6(a).

Each pi’s splits D into two parts as shown in the following definition and in Figure 6.6(b).

Definition 45. For each i ∈ [k], we define Lefti as the subgraph of D bounded by the cycle
πy[y1, yi] ◦ pi ◦ πx[xi, x1] ◦ l, where l is the leftmost x1y1 path in D. Similarly, we define Righti
as the subgraph of D bounded by the cycle πy[yi, yk] ◦ r ◦ πx[xk, xi] ◦ pi, where r is the rightmost
xkyk path in D.
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Lefti Righti

(b)

x1

y1

xi

yi

xj

yj

xk

yk

Ωi,j

(c)

Figure 6.6: in (a) graph U in bold, in (b) subgraphs Lefti and Righti are highlighted, in (c)
subgraph Ωi,j , for some i < j.

Based on Definition 45, for each i, j ∈ [k], with i < j, we define Ωi,j = Righti ∩ Leftj , see
Figure 6.6(c). We classify (xi, yi)’s pairs according to the difference between di and MF. Each
class contains pairs for which this difference is about r times δ; where δ > 0 is an arbitrarily
fixed value.

For each r ∈ N, we define Lr = (`r1, . . . , `
r
zr) as the ordered list of indices in [k] such that

dj ∈ [MF+ δr,MF+ δ(r+ 1)), for all j ∈ Lr, and `rj < `rj+1 for all j ∈ [zr− 1]. It is possible that
Lr = ∅ for some r > 0 (it holds that L0 6= ∅). If no confusion arises, we omit the superscript r;
thus we write `i in place of `ri .

The following lemma is the key of our slicing strategy. In particular, Lemma 46 can be
applied for computing distances required in Proposition 42 and Proposition 43, since the vertex
set of a face or an edge of D is always contained in a slice. An application is in Figure 6.8.
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6.3. Slicing graph D preserving approximated distances

Lemma 46. Let r > 0 and let Lr = (`1, `2, . . . , `z). Let S be a set of vertices of D such that
S ⊆ Ω`i,`i+1

for some i ∈ [z − 1]. Then

min
`∈Lr

d`(S) > min{d`i(S), d`i+1
(S)} − δ.

Moreover, if S ⊆ Left`1 (resp., S ⊆ Right`z) then min`∈Lr d`(S) > d`1(S)−δ (resp., min`∈Lr d`(S)

> d`z(S)− δ).

Proof. We need the following crucial statement.

a) Let i < j ∈ Lr. Let L be a set of vertices in Lefti and let R be set of vertices in Rightj .
Then di(L) < dj(L) + δ and dj(R) < di(R) + δ.

Proof of a): we prove that di(L) < dj(L)+δ. By symmetry, it also proves that dj(R) < di(R)+δ.
Let us assume by contradiction that di(L) ≥ dj(L) + δ.

Let α (resp., ε, µ, ν) be a path from xi (resp., yi, xj , yj) to zα (resp., zε, zµ, zν) whose length
is d(xi, L) (resp. d(yi, L), d(xj , L), d(yj , L)), see Figure 6.7 on the left. Being xj , yj ∈ Righti and
L ⊆ Lefti, then µ and ν cross pi. Let v be the vertex that appears first in pi ∩ µ starting from
xj on µ and let u be the vertex that appears first in pi ∩ ν starting from yj on ν. An example of
these paths is in Figure 6.7 on the left. Let ζ = pi[yi, u], θ = pi[u, v], β = pi[xi, v], κ = µ[xj , v],
ι = ν[yj , u], η = ν[u, zν ] and γ = µ[v, zµ], see Figure 6.7 on the right.

Now ω(β) + ω(γ) ≥ ω(α), otherwise α would not be a shortest path from xi to L. Similarly
ω(ζ) + ω(η) ≥ ω(ε). Moreover, being ω(ζ) + ω(θ) + ω(β) = di, then ω(θ) ≤ di − ω(α) +

ω(γ)− ω(ε) + ω(η). Being di(L) ≥ dj(L) + δ, then ω(α) + ω(ε) ≥ ω(µ) + ω(ν) + δ, this implies
ω(α) + ω(ε) ≥ ω(κ) + ω(γ) + ω(ι) + ω(η) + δ.

It holds that ω(θ)+ω(κ)+ω(ι) ≤ di−ω(α)+ω(γ)−ω(ε)+ω(η)+ω(α)+ω(ε)−ω(γ)−ω(η)−δ =

di − δ < dj because i, j ∈ Lr imply |di − dj | < δ. Thus κ ◦ θ ◦ ι is a path from xj to yj strictly
shorter than dj , absurdum. End proof of a).

Being S ⊆ Right`j for all j < i and S ⊆ Left`j′ for all j′ > i + 1, then the first part of the
thesis follows from a). The second part follows also from a) by observing that if S ⊆ Left`1 , then
S ⊆ Left` for all ` ∈ Lr.

xi
xj

yi
yj

pi pj
L

R

α

ε
ν

µzα

zε

zν
zµ

v

u

xi
xj

yi
yj

α

ε

β

γ

ζ
η

θ

ι

κ

Figure 6.7: example of paths and subpaths used in the proof of a).

To compute distances in D we have to solve some SSSP instances in some Ωi,j ’s subsets.
These subsets can share boundary edges, thus the sum of their edges might be O(n2). We note
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x`1

y`1

x`2

y`2

x`3

y`3

x`4

y`4

x`z−1

y`z−1

x`z

y`z

Ω`1,`2

Ω`2,`3

Ω`2,`3

Ω`3,`4 Ω`z−1,`z

S

Figure 6.8: by Lemma 46, it holds that min`∈Lr d`(S) ≥ min{d`3(S), d`4(S)} − δ.

that, by the single-touch property, if an edge e belongs to Ωi,j and Ωj,` for some i < j < ` ∈ [k],
then e ∈ pj .

To overcome this problem we introduce subsets Ω̃i,j in the following way: for any i < j ∈ [k],
if pi ∩ pj is a non-empty path q, then we define Ω̃i,j as Ωi,j in which we replace path q with an
edge with the same length; note that the single-touch property implies that all vertices in q but
its extremal have degree two. Otherwise, we define Ω̃i,j = Ωi,j . Note that distances between
vertices in Ω̃i,j are the same as in Ωi,j . Now we show how to compute all Ω̃i,j ’s in O(n) time.

Lemma 47. Let A = (a1, a2, . . . , az) be any increasing sequence of indices in [k]. It holds that∑
i∈[z−1] |E(Ω̃ai,ai+1)| = O(n). Moreover, given U , we compute Ω̃ai,ai+1, for all i ∈ [z − 1], in

O(n) total time.

Proof. For convenience, we denote by Ωi the set Ωai,ai+1 , for all i ∈ [z − 1]. We note that
if e ∈ Ωi ∩ Ωi+1, then e ∈ pi+1. Thus, if e belongs to more than two Ωi’s, then e belongs
to exactly two Ω̃i’s because it is contracted in all other Ωi’s by definition of the Ω̃i’s. Thus∑

i∈[z−1] |E(Ω̃i)| = O(n) +O(z) = O(n) because z ≤ k ≤ n.
To obtain all the Ω̃i’s, we compute Uz =

⋃
a∈A pa in O(n) time by Theorem 44. Then we

preprocess all trees in Uz in O(n) time by using Gabow and Tarjan’s result [54] in order to obtain
the intersection path pai ∩ pai+1 and its length in O(1) time. Finally, we build Ω̃i in O(|E(Ω̃i)|),
for all i ∈ [z − 1], with a BFS visit of Ωi that excludes vertices in pai ∩ pai+1 .

6.4 Computing edge vitality

Now we can give our main result about edge vitality stated in Theorem 33. We need the following
preliminary lemma that is an easy consequence of Lemma 46 and Lemma 47.

Lemma 48. Let r ∈ N, given U , we compute a value αr(e) ∈ [mini∈Lr{di(e)}, mini∈Lr{di(e)}+

δ) for all e ∈ E(D) in O(n) time.

Proof. We compute Ur =
⋃
i∈Lr pi in O(n) time by Theorem 44. Let e ∈ E(D). If e ∈ Ur, we

set αr(e) = MF + δ(r + 1) − ω(e). If e 6∈ Ur, then either e ∈ Ω̃`i,`i+1
for some i ∈ [zr − 1], or

e ∈ Left`1 , or e ∈ Right`z .
For all e ⊆ Left`1 , we set αr(e) = d`1(e), similarly, for all e ⊆ Right`z , we set αr(e) = d`z(e).

Finally, if e ∈ Ω̃`i,`i+1
, then we set αr(e) = min{d`i(e), d`i+1

(e)}. All these choices satisfy the
required estimation by Lemma 46.
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6.5. Computing vertex vitality

To compute required distances, it suffices to solve two SSSP instances with sources xi and yi
to vertices in Ω̃`i−1,`i ∪ Ω̃`i,`i+1

, for each `i ∈ Lr (we handle extremal pairs as in Lemma 46). In
total we spend O(n) time by Lemma 47 by using algorithm in [75] for SSSP instances.

Theorem 33. Let G be a planar graph with positive edge capacities. Then for any c, δ >

0, we compute a value vitδ(e) ∈ (vit(e) − δ, vit(e)] for all e ∈ E(G) satisfying c(e) ≤ c, in
O( cδn+ n log logn) time.

Proof. We compute U in O(n log log n) time by Theorem 44. If di > MF + c(e), then di(eD) >

MF, so we are only interested in computing (approximate) values of di(eD) for all i ∈ [k] satisfying
di < MF + c. By Lemma 48, for each r ∈ {0, 1, . . . , d cδ e}, we compute αr(eD) ∈ [mini∈Lr di(e

D),

mini∈Lr di(e
D) + δ), for all eD ∈ E(D), in O(n) time. Then, for each eD ∈ E(D), we compute

α(eD) = minr∈{0,1,..., c
δ
} αr(e

D); it holds that α(eD) ∈ [mini∈[k]{di(eD)}, mini∈[k]{di(eD)} + δ).
Then, by Proposition 42, for each e ∈ E(G) satisfying c(e) ≤ c, we compute a value vitδ(e) ∈
(vit(e)− δ, vit(e)] in O(1) time.

6.5 Computing vertex vitality

In this section we show how to compute vertex vitality by computing an additive approximation
of distances required in Proposition 43.

Let us denote by FD the set of faces of D. By Proposition 43, for each face f ∈ FD we
need mini∈[k]{di(f)}, this is discussed in Lemma 49. For faces f ∈ F y = {f ∈ FD | f and
πx have common vertices} we need also mini∈[k]{di(q

y
f )} and distD(fv, q

y
f ). Similarly, for faces

f ∈ F x = {f ∈ FD | f and πy have common vertices} we need also mini∈[k]{di(qxf )} and
distD(fv, q

x
f ).

We observe that there is symmetry between qxf and qyf . Thus we restrict some definitions and
results to the “y case” and then we use the same results for the “x case”. In this way, we have to
show only how to compute distD(f, qyf ) (it is done in Subsection 6.5.1) and mini∈[k]{di(q

y
f )} (see

Subsection 6.5.2) for each face f ∈ FD that intersects πx on vertices, i.e., f ∈ F y.
By using the same procedure of Lemma 48, we can also computing di(f) for f ∈ FD. Thus

we can state the following lemma.

Lemma 49. Let r ∈ N, given U , we compute a value αr(f) ∈ [mini∈Lr{di(f)}, mini∈Lr{di(f)}+
δ) for all f ∈ FD in O(n) time.

6.5.1 Computing distD(f, q
y
f )

Our only result of this subsection is stated in Lemma 51. To obtain it, we use the following result
that easily derives from Klein’s algorithm about the multiple source shortest path problem [87].

Theorem 50 ([87]). Given an n vertices undirected plane graph G with positive edge lengths,
given r pairs {(ai, bi)}i∈[r] where the bi’s are on the boundary of the infinite face and the ai’s are
anywhere, it is possible to compute distG(ai, bi), for all i ∈ [r], in O(r log n + n log n) time and
O(n) space.
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Chapter 6. Max flow vitality of edges and vertices in undirected planar graphs

Lemma 51. We compute distD(f, qyf ), for all f ∈ F y, in O(n log n) time.

Proof. For each i ∈ [k] let Fi ⊆ F y be the set of faces such that xi ∈ f , for all f ∈ Fi. We
observe that if |Fi| = m, then degD(xi) ≥ m+ 1, where degD(xi) is the degree of xi in D.

Let D′ be the graph obtained by adding a new vertex uf for each face f ∈ F y and connecting
uf to all vertices of f by an edge of length L, where L =

∑
e∈E(D) ω(e) (see Figure 6.9 for an

example of construction of graph D′). Thus distD(yi, f) = distD′(yi, uf )− L.
We compute dD′(yi, uf ), for i ∈ [k] and f ∈ Fi, by using the result stated in Theorem 50.

Being |V (D′)| = O(n), we spend O
(

log n
∑

i∈[k] |Fi|+n log n
)
≤ O

(
log n

∑
i∈[k](degD(xi)−1) +

O(n log n)
)

= O(n log n+ n log n) = O(n log n) time. Finally, for all f ∈ F y

distD(f, qyf ) = min
{i∈[k] |xi∈f}

distD(yi, f) = min
{i∈[k] |xi∈f}

distD′(yi, uf )− L.

Thus we need time
∑
{i∈[k] |xi∈f}O(1) ≤ O(

∑
f∈F y |V (f)|) ≤ O(

∑
f∈FD |V (f)|) = O(n).

a

b

c d

e

f
g

D D′

Figure 6.9: graph D, faces in F y and graph D′ used in the proof of Lemma 51.

6.5.2 Computing di(q
y
f )

We note that for computing the di(q
y
f )’s we cannot directly use Lemma 46 as we have done for

the di(e)’s and the di(f)’s. Indeed, it is possible that vertices in qyf are not contained in any slice
Ωi,j , with i, j consecutive indices in Lr. To overcome this, we have to introduce a partial order
on faces of D.

For all f ∈ F y, we define f− and f+ as the minimum and maximum indices in [k], respectively,
such that xf− , xf+ ∈ V (f). Now we introduce the concept of maximal face. Let f ∈ F y and let
pf and qf be the two subpaths of the border cycle of f from xf− to xf+ . We say that g @ f if g
is contained in the region R bounded by πx[xf− , xf+ ] ◦ pf , this implies that g is also contained
in the region R′ bounded by πx[xf− , xf+ ] ◦ qf , thus the definition does not depend on the choice
of pf and qf . Finally, we say that f is maximal if there does not exist any face g ∈ F y satisfying
f @ g, and we define Fmax = {f ∈ F y | f is maximal}, see the left part of Figure 6.10. We find
Fmax in O(n) time.

Given r ∈ N and f ∈ F y, we define f+
r as the smallest index in Lr such that f+ < f+

r (if
f+ > `rzr , then we define f+

r = `rzr). Similarly, we define f−r as the largest index in Lr such that
f−r > f− (if f− < `r1, then we define f−r = `r1), see the right part of Figure 6.10.
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a

b

c

d

e

xa− xa+xb− xb+xα
xβ xγ

f

g
h i j

x`1 x`2 x`3 x`4
x`5

x`6 x`7

Figure 6.10: on the left c @ b @ a and e @ d; a and d are the only maximal faces; it holds that
c− = c+ = α, [d−, d+] = [e−, e+] = [β, γ]. On the right let Lr = (`1, `2, . . . , `7), it holds that:
[f−r , f

+
r ] = [`1, `5], [g−r , g

+
r ] = [`2, `5], [h−r , h

+
r ] = [`4, `6], [i−r , i

+
r ] = [j−r , j

+
r ] = [`6, `7].

Now we deal with computing di(q
y
f ), for all f ∈ F y. By following Equation (6.1), we can

restrict only to the easier case in which f satisfies di(q
y
f ) < distD(f, qyf ); indeed, if f does not

satisfy it, then we are not interested in the value of di(q
y
f ).

Lemma 52. Let r ∈ N. Given distD(f, qyf ) and given U , for all f ∈ F y satisfying mini∈Lr di(q
y
f )

< distD(f, qyf ) we compute a value βr(f) ∈ [mini∈Lr di(q
y
f ), mini∈Lr di(q

y
f ) + δ) in O(n) total

time.

Proof. Let f ∈ F y. We observe that if i ∈ [f−, f+], then every path from xi to q
y
f passes through

either xf− or xf+ . Thus, for each i ∈ [f−, f+], it holds that di(q
y
f ) ≥ distD(f, qyf ). Hence for any

f ∈ F y satisfying mini∈Lr di(q
y
f ) < distD(f, qyf ) it holds that

min
i∈Lr

di(q
y
f ) = min

i∈Lr,i 6∈[f−,f+]
{di(qyf )}, (6.2)

being qyf ⊆ Rightf−r and qyf ⊆ Leftf+r , then Lemma 46 and Equation (6.2) imply

min
i∈Lr

di(q
y
f ) = min

i∈Lr,i 6∈[f−,f+]
{di(qyf )} ≥ min{df−r (qyf ), df+r (qyf )} − δ. (6.3)

To complete the proof, we need to show how to compute df−r (qyf ) and df+r (qyf ), for all f ∈ F y

satisfying mini∈Lr di(q
y
f ) < distD(f, qyf ) in O(n) time. In the following statement we prove it by

removing the request that each face f ∈ F y has to satisfy mini∈Lr di(q
y
f ) < distD(f, qyf ).

b) We compute df−r (qyf ) and df+r (qyf ), for all f ∈ F y, in O(n) time.

Proof of b): we recall that di(q
y
f ) = distD(xi, q

y
f ) + distD(yi, q

y
f ), for all i ∈ [k] and f ∈ F y.

Being qyf ⊆ V (πy) we compute distD(yi, q
y
f ) in O(|V (qyf )|) time. Thus we have to compute only

distD(xi, q
y
f ), for required i ∈ Lr and f ∈ F y.

For each f ∈ F y, let Rf = Ωf−r ,f
+
r
, and let R =

⋃
f∈Fmax Rf . We observe that, given two

maximal faces f and g, it is possible that Rf = Rg. This happens if and only if f−r = g−r and
f+
r = g+

r (see face i and face j in Figure 6.11). We overcome this abundance by introducing F̃
as a minimal set of faces such that R =

⋃
f∈F̃ Rf and Rf 6= Rg, for all distinct f, g ∈ F̃ (see

Figure 6.11 for an example of F̃ ).
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For each f ∈ F̃ , it holds that πy[f−r , f+
r ] ⊆ Rf . Thus, by the above argument, if g ∈ F y

and Rg ⊆ Rf , then qyg ⊆ Rf . We solve 4 SSSP instances in Rf with sources xj , for all j ∈
{f−r , f+

r , f
−, f+} (possibly, f−r = f− and/or f+

r = f+ and/or f− = f+). Now we prove that
this suffices to compute df−r (qyf ) and df+r (qyf ), for all f ∈ F y. In particular we show that, after
solving the SSSP instances, we compute dg−r (qyg ) and dg+r (qyg ) in O(|V (g)|) time, for each g ∈ F y.

Let g ∈ F y, and let f ∈ F̃ be such that g ⊆ Rf . There are two cases: either g−r = f−r and
g+
r = f+

r , or g−r 6= f−r and/or g+
r 6= f+

r .
If the first case occurs, then we compute distD(xg−r , q

y
g ) = distD(xf−r , q

y
g ) and distD(xg+r , q

y
g ) =

distD(xf+r , q
y
g ) in O(|V (g)|) time, because qyg ⊆ Rf and |V (qyg )| < |V (g)|. Otherwise, w.l.o.g., we

assume that g−r 6= f−r (if g+
r 6= f+

r , then the proof is similar). By definitions of F̃ , Ωg, and Ωf , it
holds that g @ f . Thus g−r ∈ [f−, f+], therefore every path from xg−r to qyg passes through either
f− or f+ (see g3 and f5 in Figure 6.11). By this discussion, it follows that

distD(xg−r , q
y
g ) = min

{
distD(xg−r , xf−) + distD(xf− , q

y
f )

distD(xg−r , xf+) + distD(xf+ , q
y
f )

}

= min

{
|π[xg−r , xf− ]|+ distD(xf− , q

y
f )

|π[xg−r , xf+ ]|+ distD(xf+ , q
y
f )

}
.

We compute all these distances by the solutions of previous SSSP instances in O(|V (qyg )|) time,
and thus we compute distD(xg−r , q

y
g ) in O(|V (qyg )|) time. By symmetry, the same cost is required

to compute distD(xg+r , q
y
g ).

We have proved that, after solving the described SSSP instances, we compute df−r (qyf ) and
df+r (qyf ), for all f ∈ F y, in O(|V (f)|) time for each f ∈ F y. Being

∑
f∈F y |V (f)| = O(n), it

remains to show that we can solve all the previous SSSP instances in O(n) time. We want to
use Lemma 47 (we recall that, for our purposes, distances in Ωf−r ,f

+
r

are the same in Ω̃f−r ,f
+
r
).

Let us fix i ∈ [h] and let a = fi, b = fi+1, c = fi+2 and d = fi+3. We cannot use directly
Lemma 47 because it is possible that a−r < b+r (see in Figure 6.11 a = f3 and b = f4, thus
b−r = `4 < `5 = a+

r ) and thus we might have not an increasing set of indices. But, by definition
of F̃ , it holds that a+

r ≤ d−r , indeed, a+
r ∈ [b−r , c

+
r ] otherwise Rb = Rc; these relations do not

depend on i. Similarly, d−r ≥ a+
r . Thus we solve first the SSSP instances in Rfi , for all i ∈ [h]

such that i ≡ 0 mod 3; then for i ≡ 1 mod 3 and finally for i ≡ 2 mod 3. By Lemma 47 it costs
O(n) time. End proof of b).

Finally, by Equation (6.3), we set βr(f) = min{df−r (qyf ), df+r (qyf )}, for all f ∈ F y satisfying
βr(f) < distD(f, qyf ) and we ignore faces in F y that do not satisfy it.

6.5.3 Computational complexity of vertex vitality

Now we give our theorems about vertex vitality. To prove Theorem 34 we follow the same
approach used in Theorem 33, by referring to Proposition 43 in place of Proposition 42.

We recall that the result stated in Theorem 36 is more efficient than the result in Corollary 2
if either |S| < log n and ES > |S| log n or |S| ≥ log n and ES >

|S|n1/3

log8/3 , where ES =
∑

v∈S deg(v).
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x`1 x`2 x`3 x`4
x`5 x`6 x`7

f1
f2 f3

f4 f5

f6

g1

g2

g3
g4

Figure 6.11: assume that Lr = (`1, . . . , `7). A possible F̃ is F̃ = {f1, . . . , f6}. Moreover, g1, g3, g4

are not in Fmax, g2 ∈ Fmax and Rg2 = Rf4 thus g2 6∈ F̃ .

Theorem 34. Let G be a planar graph with positive edge capacities. Then for any c, δ >

0, we compute a value vitδ(v) ∈ (vit(v) − δ, vit(v)] for all v ∈ V (G) satisfying c(v) ≤ c, in
O( cδn+ n log n) time.

Proof. We compute D and U in O(n log log n) time by Theorem 44. If c(v) < c, then ω(fDv ) < c.
For convenience, we denote fDv by f . By Lemma 51, we compute distD(f, qyf ) (resp., distD(f, qxf ))
in O(n log n) time, for all f ∈ F y (resp., for all f ∈ F x). Now we have to show how to
obtain mini∈[k]{di(f)}, mini∈[k]{di(q

y
f )} and mini∈[k]{di(qxf )} that we may compute with an error

depending on δ.
We note that mini∈[k] di(f) = mini∈[k],di<MF+ω(f) di(f). Indeed, if di(f) = MF − z, for

some z > 0, then di is at most MF − z + ω(f). For the same reason, mini∈[k] di(q
x
f ) =

mini∈[k],di<MF+ω(f) di(q
x
f ) and, similarly, mini∈[k] di(q

y
f ) = mini∈[k],di<MF+ω(f) di(q

y
f ).

By using Lemma 48, for each r ∈ {0, 1, . . . , d cδ e}, we compute a value αr(f) ∈ [mini∈Lr di(f),

mini∈Lr di(f) + δ), for all f ∈ FD, in O(n) time. Then, for each f ∈ FD, we compute α(f) =

minr∈{0,1,..., c
δ
} αr(f). By above, for any f ∈ FD satisfying ω(f) < c, it holds that α(f) satisfies

α(f) ∈ [mini∈[k]{di(f)}, mini∈[k]{di(f)}+ δ).
With a similar strategy, by replacing Lemma 48 with Lemma 52, for each f ∈ F y satisfying

ω(f) < c and mini∈Lr di(q
y
f ) < distD(f, qyf ), we compute a value β(f) ∈ [mini∈[k]{di(q

y
f )},

mini∈[k]{di(q
y
f )} + δ). The same results hold for the “x case”: for each f ∈ F x satisfying

ω(f) < c and mini∈Lr di(q
x
f ) < distD(f, qyf ), we compute a value γ(f) ∈ [mini∈[k]{di(qxf )},

mini∈[k]{di(qxf )}+ δ).
Then, by Proposition 43, for each v ∈ V (G) satisfying c(v) ≤ c (ω(f) < c) we compute a value

vitδ(v) satisfying vitδ(v) ∈ (vit(v) − δ, vit(v)] in O(1) time by using distD(f, qxf ), distD(f, qyf ),
α(f), β(f) and γ(f).

Theorem 36. Let G be a planar graph with positive edge capacities. Then for any S ⊆ V (G),
we compute vit(v) for all v ∈ S in O(|S|n+ n log logn) time.

Proof. We compute D and U in O(n log logn) time by Theorem 44. For convenience, we denote
fDv by f . To compute mini∈[k]{di(f)}, distD(f, qxf ) and distD(f, qyf ) we put a vertex uf in face f
and we connect it to all vertices of f with zero weighted edges. Then we solve an SSSP instance
with source uf and we compute mini∈[k]{di(f)}, distD(f, qxf ) and distD(f, qyf ) in O(n). With
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a similar strategy, we compute mini∈[k]{di(q
y
f )} and mini∈[k]{di(qxf )} in O(n) time. Finally, by

Proposition 43, for each v ∈ S, we compute vit(v) in O(1) time.

6.6 Small integer capacities and unit capacities

If the edge capacities are integer, then we compute the max flow in O(n+L) time thanks to the
algorithm by Eisenstat and Klein [48], and U in O(n+ L) time thanks to Theorem 32, where L
is the sum of all the edge capacities.

Corollary 37. Let G be a planar graph with integer edge capacities and let L be the sum of all
the edge capacities. Then

• for any H ⊆ E(G) ∪ V (G), we compute vit(x) for all x ∈ H, in O(|H|n+ L) time;

• for any c ∈ N, we compute vit(e) for all e ∈ E(G) satisfying c(e) ≤ c, in O(cn+ L) time.

Proof. Note that, being all the edge capacities integer, then every edge or vertex vitality is an
integer. Thus, by taking δ = 1 in Theorem 33 and Theorem 34, we obtain all the vitalities without
error. The two statements follow from the proof of Theorem 33 and Theorem 34 by taking δ = 1

and by computing U in O(n+ L) time instead of O(n log log n) time by Theorem 32.

Corollary 38. Let G be a planar graph with unit edge capacities. Let n>d be the number of
vertices whose degree is greater than d. We compute the vitality of all edges in O(n) time and
the vitality of all vertices in O(min{n3/2, n(n>d + d+ log n)}) time.

Proof. The complexity of edge vitality is implied by Corollary 37 by taking c = 1 and because
L = O(n). Being the vitality integers, then we compute the vitality of all vertices in O((n>d +

d)n+ n log n) time by Theorem 34.
To compute the vitality of all vertices in O(n3/2) time we note that in a planar graph, by

Euler formula, there are at most 6
√
n vertices whose degree is greater than

√
n. Thus it suffices

to take d =
√
n, that implies n>d ≤ 6

√
n and O((n>d + d)n+ n log n) = O(n3/2).

Corollary 39. Let G be a planar graph with unit edge capacities where only a constant number
of vertices have degree greater than a fixed constant d. Then we compute the vitality of all vertices
in O(n) time.

Proof. By above discussion, Corollary 38 and the proof of Theorem 34, it suffices to show that
we can compute distD(fv, q

y
f ) in O(n) worst-time for all f ∈ F y. For each i ∈ [k] let Fi ⊆ F y be

the set of faces such that xi ∈ f , for all f ∈ Fi. Note that if |Fi| = m, then degD(xi) = m+ 1.
Let d be the maximum degree of G. We use the algorithm by Kowalik and Kurowski [92]

that with a preprocessing of O(n) time establishes in O(1) time if the distance between two
vertices of D is at most d and, if so, computes it in O(1) time. We need dD(yi, z), for all
i ∈ [k] and z ∈ V (f), for all f ∈ Fi. In total we spend

∑
i∈[k]

(∑
f∈Fi |V (f)|

)
≤
∑

i∈[k] |Fi|d =∑
i∈[k](degD(xi) + 1)d = O(n) time.
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Chapter 7

Path Covering with Forests Number of
non-crossing shortest paths

We prove that if P is a set of non-crossing shortest paths of a plane graph G whose extremal
vertices lie on the same face of G, then PCFN(P ) ≤ 4, and this bound is tight. We also
give a linear time algorithm for computing the (at most) four covering forests. These results
complement the results shown in Chapter 4 about non-crossing shortest paths, where lengths
of each shortest path are computed in total linear time; now each path can be listed in time
proportional to its length.

7.1 Introduction

In Chapter 4 and Chapter 5 we dealt with non-crossing shortest paths in plane graphs showing
some theoretical and algorithmic results. In this chapter we give the more powerful structural
result on this topic. We prove that the Path Covering with Forests Number of P is at most four
for every set P of non-crossing shortest paths whose extremal vertices lie on the same face of
a plane graph. We also prove that this bound is tight and we describe a linear time algorithm
to list the (at most) four covering forests. In this way we conclude the argument started in
Chapter 4 about non-crossing shortest paths, and definitely solve the problem of listing paths
and computing their distances: by having explicitly the four covering forests and by using the
result by Gabow and Tarjan [54] about lowest common ancestor queries on forests, we can
compute the length of each path in total linear time and we can list a path in time proportional
to its length.

We first explain that this setting, i.e., non-crossing paths in plane graphs, is not too restrictive.
Removing the non-crossing property makes PCFN(P ) dependent on |P |. We briefly prove this
with an example. In Figure 7.1 there are six pairwise crossing paths in a grid graph G having
the extremal vertices on the same face of G. Note that any set of three paths forms a cycle,
hence, each forest can contain at most two paths. So the Path Covering with Forests Number of
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these six paths is three. It is trivial to generalize this example to a set P of single-touch shortest
paths in a plane graph whose extremal vertices lie on the same face so that PCFN(P ) = |P |/2.

v1

v2

v3

v4

v5

v6

Figure 7.1: a set P of pairwise crossing paths satisfying PCFN(P ) = |P |/2. If edges incident
on vi, for i ∈ [6], have weight less than 1 and other edges have weight 1, then colored paths are
unique shortest paths between their extremal vertices.

Our approach. We translate the Path Covering with Forests Number into a problem of forest
labeling, i.e., a labeling assigning labels to paths such that then union of paths with a same label
is a forest. The number of distinct labels corresponds to the upper bound of Path Covering with
Forests Number. A crucial result is that we can establish whether a labeling is a forest labeling
by restricting the check only to the faces of the graph resulting from the union of the paths. At
this point the main result is reached by three steps: first we prove that the Path Covering with
Forests Number is constant by introducing a simple algorithm FifteenForests able to give a
forest labeling which uses at most 15 labels (see Theorem 74 and Corollary 75); then we refine
this algorithm obtaining algorithm FourForests able to give a forest labeling which uses at
most 4 labels; finally we show that this result is tight by exhibiting a set of non-crossing shortest
paths in a plane graph whose Path Covering with Forests Number is at least 4 (we recall that in
Figure 2.2 there is a set of non-crossing shortest paths P such that PCFN(P ) = 3). This proves
our main result.

Now we briefly explain the strategy behind our algorithms. We recursively organize all the
paths in levels with respect to the genealogy tree and intersections between paths. In this way,
at each iteration our algorithms have to assign labels only to paths intersecting a fixed path p.

7.2 The problem and a labeling approach

In this section we give a formal definition of the problem and we introduce a labeling approach.

Definition 53. Given a set of paths P we say that P is a set of non-crossing shortest paths
(NCSP) if there exists a plane graph G such that

• for each p ∈ P , the extremal vertices of p are in f∞;

• for each p ∈ P , p is a shortest path in G and P is a set of single-touch paths;

• for each p, q ∈ P , p and q are non-crossing in G.

We observe that the single-touch property can be always required for a set of shortest paths,
and is also known as consistent property in the literature of path systems [27]. Indeed, the
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single-touch property is implied by ensuring the uniqueness of the shortest path in G, that can
be obtained through a tiny perturbation of edges’ weights. We stress that in this chapter we use
the single-touch property rather than the property of being shortest paths. Indeed, it is easy to
describe a set P of k non-crossing shortest paths in a plane graphs whose Path Covering with
Forests Number is k − 1 if the single-touch property is not required.

From now on, if no confusion arises, given a NCSP P , G is the plane graph in Definition 53.
We study the Path Covering with Forests Number of a NCSP P by using a labeling function
that assigns labels to paths in P . So we say that a function L : Q 7→ [k] is a path labeling of P if
L assigns one value of [k] to each path in Q, for some k ∈ N and Q ⊆ P . If no confusion arises,
then we omit the dependence on P .

Definition 54. Given a NCSP P , given a path labeling L of P , L : P 7→ [k], we say that L is a
forest labeling if

⋃
{p∈P |L(p)=i} p is a forest for each i ∈ [k].

Given a path labeling L of P and a subset of paths Q ⊆ P we define L(Q) =
⋃
q∈QL(q).

Moreover, given an edge e, we define L(e) = L({q ∈ P | e ∈ E(q)}), hence, L(e) may contain
more labels.

7.3 Restricting to faces

Our goal is to find a path labeling such that every set of paths covering a cycle does not share
the same label. In this section we prove that we can restrict our check to U ’s faces, where U is
the graph obtained by the union of all paths in P . In a first step we prove that given a NCSP
P its genealogy tree can be binarized (see Subsection 7.3.1). After this simplification, we can
establish whether a path labeling is a forest labeling by checking how it works on the faces of U
(see Subsection 7.3.2 and in particular Theorem 60).

7.3.1 Binarization of the genealogy tree

In order to simplify the treatment, given a NCSP P , we can assume that its genealogy tree Tg is
a binary tree in the following way. For two paths p, q ∈ P , we say that pCq if x1, xq, yq, xp, yp, y1

appear in this order on f∞; we recall that 1 is the root of the genealogy tree. Given p ∈ P having
r children with r ≥ 3, we order its set of children (q1, . . . , qr), so that qj C qj+1 for j ∈ [r − 1].
If we add a terminal pair (xp′ , yp′) so that xp′ = xq2 and yp′ = yqr , then p has only two children
q1 and p′. By repeating this procedure, we obtain the binarization of Tg. Note that the number
of terminal pairs becomes at most doubles. For convenience, for each path p ∈ P , if we binarize
Tg, then we denote by pr and p` the right child and left child, respectively, of p.

We observe that, being U connected, then there exists an xp′yp′ path that does not cross
other paths. Moreover, this path is a shortest path in U but it might be not a shortest path in
G. We do not care about this because it is an auxiliary path. By repeating this reasoning for
all i ∈ [k] having more than two children, we can assume that Tg is binary. Being U connected,
then the binarization can be obtained in O(|P |) time because we have only to add some terminal
pairs.
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Definition 55. Given a set of paths P we say that P is a binary set of non-crossing shortest
paths (BNCSP) if

• P is a NCSP;

• each path p ∈ P has zero or two children in the genealogy tree;

• for each p ∈ P , if p has two children in the genealogy, then p, pr, p` form a face.

We observe that the last requirement in Definition 55 can be always obtained by modifying f∞

contracting vertices and changing edge lengths in order to maintain the shortest path property.
In Figure 7.2 the binarization of Tg in Figure 3.2 according to Definition 55.

e∗

f∞

x10 = x7

y8 = y10

y1

x1

x2

y2

x3

y3

x4

y4x5y5
x6

y6

y7

x11 = x8

y11 = x9 y9

1

10 2

8 7 6 3

5 49 11

Figure 7.2: how to binarize the genealogy tree in Figure 3.2 according to Definition 55 by adding
two terminal pairs (in green).

7.3.2 Solving faces

The goal of this subsection is to prove that, given a path labeling L, if every face of U is solved
by L (see Definition 59) then L is a forest labeling, as stated in Theorem 60. This result allows
us to greatly simplify the discussion.

From now on, we assume that our input is a BNCSP P and we denote by F the set of faces of
U , where we recall that U =

⋃
p∈P p. In the following definition we specify some paths, subpaths

and edges related to a face.

Definition 56. Given a face f ∈ F we define:

• qf the upper path of f as the minimum path with respect to � satisfying f ⊆ Intqf ;

• ∂f \ qf the lower boundary of f ;

• efr , ef` the extremal edges of the lower boundary of f such that efr ∈ qfr and ef` ∈ q
f
` .

The next two lemmas will be used in Theorem 60’s proof.

Lemma 57. Let p ∈ P and let f be a face in F . Then the intersection between p and ∂f is a
path.
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Proof. If the intersection between p and ∂f is empty or consists of a single vertex, then the thesis
holds. Thus we assume that there exist two vertices a, b ∈ V (p ∩ ∂f). We have to prove that
p[a, b] ⊆ ∂f .

Let λ be the ab path on ∂f so that the region R bounded by λ◦p[a, b] does not contain f . We
have to prove that λ = p[a, b]. Let us assume by contradiction that there exists e ∈ λ satisfying
e 6∈ p, and let q ∈ P contain e. Being R a closed region, then the non-crossing property implies
a, b ∈ q. Thus the single-touch property assures q[a, b] = p[a, b] and hence e 6∈ q, absurdum.

Lemma 58. Let f be a face in F and let q be the upper path of f . Then q intersects ∂f in at
least one edge.

Proof. Let us assume by contradiction that q does not intersect ∂f in at least one edge. Let
R = {r1, . . . , rh} be the minimum set of paths such that ∂f ⊆

⋃
r∈RE(r), clearly q 6∈ R. By

definition of upper path, f ⊆ Extr for all r ∈ Q. Lemma 57 and minimality of R imply that
(r ∩ ∂f) ∩ (r′ ∩ ∂f) = ∅, for all r 6= r′. Thus r � r′ for all r 6= r′ ∈ R, otherwise at least one
r ∈ R should satisfy f ⊆ Intr.

Being q the upper path of f , it holds that q is the lowest common ancestor of r and r′ for all
r 6= r′ ∈ R, i.e., each r ∈ R is a child of q. Finally, the single-touch property implies that h ≥ 3,
otherwise two paths would form the cycle ∂f , thus q has at least 3 children, absurdum.

Definition 59. Given a face f in F and a path labeling L of P , we say that f is solved by L if
L(efr ) ∩ L(ef` ) = ∅.

Theorem 60. Let P be a BNCSP, and let L be a path labeling of P . If every face of F is solved
by L, then L is a forest labeling.

Proof. Let us assume by contradiction that every face of F is solved by L and that there exists
a simple cycle H so that

⋂
e∈E(H) L(e) 6= ∅. Let RH be the region bounded by H. If H is a face,

then we have a trivial absurdum because H is solved by L. Otherwise, let g be a face in RH ,
and let q be the upper path of g. By Lemma 58 and being H a cycle, it holds that q intersects
V (H). Let c be the maximal subpath of H that is in Intq.

To finish the proof it suffices to show that there exists a face h such that its lower bound-
ary is a subpath of c. Indeed, if so, then L(ehr ) 6= L(eh` ) because h is solved by L, therefore⋂
e∈E(H) L(e) = ∅, absurdum.
Let D = {f ∈ F | f ⊆ Intq ∩ RH and ∂f ∩ c 6= ∅} and for each face d ∈ D let ∆d = {f ∈

D | f ⊆ Intqd}, we recall that qd is the upper path of d. We have to find a face h ∈ D satisfying
|∆h| = 1, i.e., ∆h = {h}; indeed, this implies that the lower boundary of h is a subpath of c.

Now, let d ∈ D. If |∆d| = 1, then the proof is completed, otherwise we observe that for each
d′ ∈ ∆d, it holds that ∆d′ < ∆d because d 6∈ ∆d′ and ∆d > 0 because d ∈ ∆d. Hence there exists
a face h ∈ D satisfying |∆h| = 1.
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g

h

f∞
H

q

qheh`
ehr

Figure 7.3: faces g, h, paths q, qh and cycle H used in the proof of Theorem 60. Edges ehr and
eh` are dotted.

7.4 A first easy upper bound of the Path Covering with Forests
Number

In this section we show that the Path Covering with Forests Number of a NCSP P is at most 15.
In particular, we present algorithm FifteenForests that produces a forest labeling of P which
uses at most 15 labels. We stress that every result of this section will be used in Section 7.5 to
build algorithm FourForests which gives an improved upper bound.

In Subsection 7.4.1 we describe the outline of algorithm FifteenForests, in particular we
explain in which order we visit paths in P by introducing the sets Max and Touch. In Sub-
section 7.4.2 we classify the faces related to a path in Max in three types. In Subsection 7.4.3
we deal with faces of the first type and Subsection 7.4.4 with faces of second and third type.
Finally, in Subsection 7.4.5 we prove the correctness of algorithm FifteenForests.

7.4.1 Outline of the algorithm

From now on, unless otherwise stated, P denotes a BNCSP. Algorithm FifteenForests finds a
forest labeling of P which uses at most 15 labels.

Definition 61. Given p ∈ P , we define Touchp = {q ∈ P | q � p ∧ q and p share at least one
vertex} and Maxp = {q ∈ P | q � p ∧ q is a maximal path w.r.t. � in P \ Touchp}.

Roughly speaking, Touchp consists of all paths in Intp that “touch” p, and Maxp consists of
all paths in Intp that are maximal w.r.t. � after the removal of paths in Touchp.

By applying recursively Definition 61, we can organize path in P in levels. We start by setting
Max0 = {p1}, and then we define sets Maxi and Touchi recursively as follows:p ∈ Touchi, if and only if p ∈ Touchm for some m ∈Maxi−1,

m ∈Maxi, if and only if m ∈ Maxp for some p ∈ Touchi−1.

We define also Max =
⋃
i∈NMaxi and Touch =

⋃
i∈NTouchi. For convenience, let N ∈ N

satisfy Max =
⋃
i∈N Maxi and Touch =

⋃
i∈N Touchi; in few words N is the last level. Note

that p ∈ Touchp for all p ∈ P , thus Max ⊆ Touch. These sets are explained in Figure 7.4.
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p

f∞

Figure 7.4: p is the dotted path, paths in Touchp are red (note that p ∈ Touchp), paths in Maxp
are green. Thus if p ∈Maxi−1, then red paths are in Touchi, green paths in Maxi and black
paths in Touchi+1.

FifteenForests:
Input: a NCSP P

Output: a forest labeling L : P 7→ [15]

1 Transform P from a NCSP to a BNCSP;
2 For each path p ∈ P define the global variable L(p) initialized to NULL;
3 For each path p ∈Max define the global variable triple(p) initialized to NULL;
4 triple(p1)← T1;
5 for i = 0, . . . , N do
6 for each p ∈Maxi do
7 LabelTouch(p); // assign L(q) ∈ triple(p) for all q ∈ Touchp
8 TripleMax(p); // assign triple(q) for all q ∈ Maxp

9 return L;

Before explaining the details of algorithm FifteenForests we state an important remark
about the two global variables assigned to paths in P . We prefer to use global variables in order
to avoid having too much entries in our functions.

Remark 62. In our algorithms we use global variables:

• for each path p ∈ Max we define the global variable triple(p) that assumes as value a
non-ordered triple of labels;

• for each path p ∈ P we define the global variable L(p) which denotes the label assigned
to p; L is the output of our main algorithms (algorithm FifteenForests and algorithm
FourForests);

• both variables are initialized to NULL and do not change once assigned.

We define also five triples of labels: T1 = {1, 2, 3}, T2 = {4, 5, 6}, T3 = {7, 8, 9}, T4 =

{10, 11, 12} and T5 = {13, 14, 15}, and let T = {T1, T2, T3, T4, T5}.
Now we can describe how algorithm FifteenForests works. Algorithm FifteenForests has

N iterations and is based on function LabelTouch(p) and function TripleMax(p). The former
assigns one label of triple(p) to L(q) for all q ∈ Touchp, the latter assigns one triple in T to triple(q)
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for all q ∈ Maxp. The assignments are set so that at iteration i all faces in Touchp ∪Maxp are
solved by L, for all p ∈Maxi.

We note that the partial order � is respected: if p � q, then algorithm FifteenForests
labels p after q is labeled. Let’s start with a preliminary definition.

7.4.2 Face types

Given p ∈Max, we classify all faces whose upper path is in Touchp in three types as shown in
Definition 63 and in Figure 7.5. We observe that, given a face f of Touchp ∪Maxp, the upper
path q of f is in Touchp because the children of each path in Maxp are not in Touchp ∪Maxp.
This fact is crucial to classify the faces in the following definition.

Definition 63. Let p ∈Max. Let f be a face of Touchp ∪Maxp and let q be the upper path of
f . We say that

• f is of type I for p if qr, q` ∈ Touchp;

• f is of type II for p if qr, q` ∈ Maxp. For convenience, we denote qr and q` by m
f
r and mf

` ,
respectively;

• f is of type III for p if qr ∈ Touchp and q` ∈ Maxp (or qr ∈ Maxp and q` ∈ Touchp).

If no confusion arises, then we omit the reference to p.

p

f∞

fI
p

f∞

fII
p

f∞

fIII

Figure 7.5: fI , fII , fIII are faces of type I, II, III, respectively, for p.

7.4.3 Dealing with faces of type I

The main result of this subsection is given in Proposition 68, that allows us to assign L(q) for all
paths q in Touchp with the three labels in triple(p) so that every face of type I for p is solved by L,
for an arbitrary p ∈Max. We obtain such a labeling by using function RightLabel and function
LabelTouch. Let’s start with a definition, explained in Figure 7.6, about paths in Touchp.

Definition 64. Let p ∈ Max. We define TreeTouchp as the subtree of Tg induced by Touchp.
Given q ∈ Touchp we define Rp(q) as the set of right descendants of q w.r.t. p and it is composed
by all elements in TreeTouchp that are in the path from q to the rightmost leaf of the subtree of
TreeTouchp rooted at q. Similarly, we define Lp(q) as the set of left descendants of q w.r.t. p
and it is composed by all elements in TreeTouchp that are in the path from q to the leftmost leaf
of the subtree of TreeTouchp rooted at q. When no confusion arises, we denote Rp(q) and Lp(q)
by R(q) and L(q), respectively.
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L(q) R(q)

q

Figure 7.6: the subtree of TreeTouchp rooted at q. In red vertices belonging to L(q) and in green
those to R(q). Note that q and its child are both in L(q) ∩R(q).

In order to solve faces of type I for p we deal with intersecting paths. Given two paths p
and q with q � p, roughly speaking, it holds that if q intersects p on vertices, then q splits p
into three subpaths: the right subpath containing xp, the subpath p ∩ q (this is a path by the
single-touch property), and the left subpath containing yp. Note that the right subpath or the
left subpath might be composed by one vertex. From this fact we obtain the following remark,
that can be formally proved by using Jordan’s Curve Theorem [83] and by observing that p ◦ γp
is a closed curve for every arbitrary path p in P .

Remark 65. Let p, q, q′ ∈ P satisfy q � p, q′ � p and p ∩ q 6= ∅. Then q splits p into three
subpaths: p = r ◦ p ∩ q ◦ `, with xp ∈ r and yp ∈ `. The following statements hold:

• if q′ ∩ r 6= ∅, then q C q′;

• if q′ ∩ ` 6= ∅, then q′ C q.

We want to apply the previous result to faces of type I for p. Given a face f of type I for p,
we observe that efr and ef` both have exactly one extremal vertex in p by their definition. Thus if
a path q contains either efr or ef` , then q ∈ Touchp. The following lemma, whose proof is strictly
based on Remark 65, explains which paths contain efr and which paths contains efr . This result
is the key to label all paths in Touchp with three labels in order to solve all faces of type I for p
(see Lemma 67 and Proposition 68).

For an edge e we define P (e) = {p ∈ P | e ∈ p}.

Lemma 66. Let p ∈Max. Let f be a face of type I for p and let q be the upper path of f , then
P (efr ) ⊆ L(qr) and P (ef` ) ⊆ R(q`).

Proof. We prove that P (efr ) ⊆ L(qr), by symmetry, it also proves that P (ef` ) ⊆ R(q`). First
of all, efr ∈ qr by Definition 56. Let z be the extremal vertex of efr not belonging to p. Then
the subpath λ of qr from z to yqr does not intersect p on vertices because of the single-touch
property.

Let us assume that qr has two children cr and c` belonging to Touchp, with c`C cr. Indeed, if
qr has no children belonging to Touchp, then the thesis is trivial, and if qr has exactly one child
belonging to Touchp, then it belongs to L(qr) by definition.

Being λ ∩ p = ∅, then efr belongs to c`; indeed, if e
f
r belongs to cr, then Remark 65 would

imply c` ∩ qr = λ, thus c` 6∈ Touchp, absurdum. By repeating recursively this reasoning, the
thesis follows.
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Now we introduce recursive function RightLabel(p, q, σ) whose entries are p, q, σ, where p
is a path in Max, q is a path in Touchp and σ is an permutation of triple(p). By calling
RightLabel(p, q, σ), we label all paths in Touchp belonging to Intq. It holds that q is labeled
with the first label in σ. Then if q has one child in Touchp, then σ is passed to its child without
permutations. If q has two children in Touchp, then σ is passed to its children with permutations.
An example of how these permutations change is given in Figure 7.7.

RightLabel(p, q, (c1, c2, c3)):
Input: a path p in Max, a path q in Touchp and a permutation (c1, c2, c3) of triple(p)
Output: assign L(q′) ∈ triple(p) for all q′ ∈ Touchp such that q′ � q

1 L(q)← c1;
2 if q has one child q′ in Touchp then
3 RightLabel(p, q′, (c1, c2, c3));

4 if q has two children in Touchp then
5 RightLabel(p, qr, (c1, c3, c2));
6 RightLabel(p, q`, (c2, c1, c3));

(1, 2, 3)

(2, 1, 3) (1, 3, 2)

(1, 2, 3) (2, 3, 1) (1, 3, 2)

(2, 1, 3) (1, 3, 2) (3, 2, 1) (2, 1, 3) (3, 1, 2) (1, 2, 3)

RightLabel

Figure 7.7: assume that triple(p) = {1, 2, 3}. Example of permutations of triple(p) during the call
RightLabel(p, q, (1, 2, 3)), where q is the vertex on the top. The first element of the permutation,
in red, denotes also the label assigned to the path.

The recursive calls of function RightLabel change the permutation of labels in order to obtain
the following lemma. In Subsection 7.5.2 we will introduce its symmetric version called function
LeftLabel.

Lemma 67. Let p ∈Max, let (c1, c2, c3) be any ordering of triple(p) and let q ∈ Touchp. If we
call RightLabel(p, q, (c1, c2, c3)), then L(R(q)) = {c1} and L(L(q)) ⊆ {c1, c2}.

Proof. To prove that L(R(q)) = {c1}, we observe that the first element of the permutation does
not change for all the calls in R(q) because of Line 3 and Line 5.

Similarly, to prove that L(L(q)) ⊆ {c1, c2}, we observe that the first and the second element
of the permutation are the same (possibly swapped) for all the calls in L(q) because of Line 3
and Line 6.
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By using function RightLabel, we introduce the following compact function.

LabelTouch(p):
Input: a path p in Max
Output: assign L(q) ∈ triple(p) for all q in Touchp so that every face of type I for p is

solved by L

1 Let (c1, c2, c3) be an arbitrary ordering of triple(p);
2 RightLabel(p, p, (c1, c2, c3)); // assign L(q) ∈ triple(p) for all q ∈ Touchp

Proposition 68. Let p ∈ Max, if we call LabelTouch(p), then L(q) ∈ triple(p) for all q ∈
Touchp and every face of type I for p is solved by L.

Proof. It’s clear that if we call LabelTouch(p), then all paths in Touchp are labeled with labels
in triple(p). Now let f be a face of type I for p and let q be the upper path of f . By definition
of face of type I, q ∈ Touchp. We have to prove that f is solved by L. Note that function
LabelTouch calls recursively function RightLabel, thus by calling LabelTouch(p) we arrive to
call RightLabel(p, q, (c1, c2, c3)), for some (c1, c2, c3) permutation of triple(p).

The call RightLabel(p, q, (c1, c2, c3)) implies the call RightLabel(p, qr, (c1, c3, c2)) and the
call RightLabel(p, q`, (c2, c1, c3)). Lemma 67 implies L(L(qr)) ⊆ {c1, c3} and L(R(q`)) = {c2}.
Being L(efr ) ⊆ L(L(qr)) and L(ef` ) ⊆ L(R(q`)) by Lemma 66, then L(efr ) ∩ L(ef` ) = ∅, hence f
is solved by L.

7.4.4 Dealing with faces of type II and type III

In this subsection we build function TripleMax(p) that assigns triple(q) for all q ∈ Maxp, where
p ∈ Max. The consequences of the execution of TripleMax(p) are explained in Proposition 73
and they are concerned paths in Touchp and Maxp that interfere with (see Definition 69) the
same face.

To solve the faces of type I for p we worked only with paths in Touchp, because given f of
type I for p, then q contains efr or ef` only if q ∈ Touchp. To deal with faces of type II and
type III we have to work also with paths in Maxp. For this reason we introduce the concept of
interfere with.

Definition 69. Let f ∈ F , we say that q ∈ P interferes with f if q contains either efr or ef` .

The structure of faces of type II for p is easy. Indeed, given a face f of type II for p, then mf
r

and mf
` interfere with f and it does not exist any q ∈ Maxp ∪ Touchp interfering with f so that

q 6∈ {mf
r ,m

f
` }. Clearly, some paths in Touch

mfr
and Touch

mf`
may interfere with f , but they

are labeled by LabelTouch(mf
r ) and LabelTouch(mf

` ) (see algorithm FifteenForests). Thus to
solve the face f it suffices to set triple(mf

r ) ∩ triple(mf
` ) = ∅.

Dealing with faces of type III is more complex. For convenience, we define MaxIIp = {m ∈
Maxp | fm is a face of type II for p} and MaxIIIp = {m ∈ Maxp | fm is a face of type III for p}.
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To explain the following definition we note that, given a path m ∈ Max \ {p1}, m forms a
face f with its parent and its sibling (the other child of the parent). In order to solve f , we deal
with the extremal edge of the lower boundary of f belonging to m. Clearly, this does not happen
for p1, for which we choose as arbitrary edge the edge adjacent to x1.

Definition 70. Given m ∈Max\{p1} we define fm ∈ F the face whose upper path is the parent
of m in Tg. Moreover, we define edgem the edge among efmr and efm` belonging to m. Finally, we
define edgep1 as the edge in p1 adjacent to x1.

Note that, given m ∈ MaxIIIp , edgem belongs only to m—and so, possibly, to some paths in
Touchm—and there are not other paths in Touchp∪Maxp containing edgem. But there may exist
a path m′ ∈ MaxIIp ∪MaxIIIp distinct from m interfering with f . Thus we introduce the relation
99K and we study its structure in Lemma 72. We observe that 99K is not transitive.

Definition 71. Let p ∈Max. Given m,m′ ∈ Maxp we write m 99K m′ if m interferes with fm′.

Figure 7.8 explains Definition 71, note that m3 99K m5 even if m3 and m5 are vertex disjoint.

f

fm3

fm4

fm5

p

f∞

m1 m2

m3

m4

m5

m1 m2

m3

m4 m5

Figure 7.8: on the left in red paths in Touchp and in green paths in Maxp. On the right the
graph (Maxp, 99K). Note that (MaxIIIp , 99K) is a rooted tree, f is a face of type II for p while
fm3 and fm5 are faces of type III for p.

The main consequence of the following lemma is that (MaxIIIp , 99K) is bipartite. This fact
will be used in function TripleMax.

Lemma 72. For each p ∈Max, the graph (MaxIIIp , 99K) is a forest of rooted trees.

Proof. For each m ∈ MaxIIIp we denote by qm its parent in Tg. We split the proof into three
parts.

c) let m,m′ ∈ Maxp. If m 99K m′, then qm � qm′ and qm interferes with fm′ ;
d) every vertex in (Maxp, 99K) has at most one incoming dart;

e) in (MaxIIIp , 99K) there are no cycles.

Proof of c): It holds that fm′ ⊆ Intqm′ , thus the lower boundary of fm′ is in Intqm′ \ qm′ . This
implies that qm is in Intqm′ \qm′ because otherwisem could not satisfym 99K m′. Therefore, qm �
qm′ as we claimed. Moreover, qm interferes with fm′ for the same reasoning. End proof of c).

Proof of d): Let us assume by contradiction that there exists m ∈ Max having two incoming
darts in (Maxp, 99K). Then, by definition of 99K, there exist m′,m′′ ∈ Maxp sharing the extremal
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edge e of the lower boundary of fm not contained in m. Being m′ ◦ γm′ and m′′ ◦ γm′′ two closed
curves, then every face f containing e is either in Intm or in Intm′ . Thus f is not a face of type
I, nor II nor III for p, absurdum. End proof of d).

Proof of e): Let us assume by contradiction that there exist r elements in MaxIIIp ,m1,m2, . . . ,mr,
r ≥ 2 such that mi 99K mi+1, for all i ∈ [r − 1] and mr 99K m1. Then c) implies qm1 � qm2 �
. . . � qmr � qm1 , and thus qm1 = qm2 = . . . = qmr . Thus qm1 has at least r children. If r ≥ 3,
then it is absurdum because Tg is a binary tree. Else, r = 2 and thus fm1 = fm2 is a face of type
II because m1 and m2 share the same parent in Tg, implying m1 6∈ MaxIIIp and m2 6∈ MaxIIIp ,
absurdum. End proof of e).

Now, we observe that the thesis is a consequences of d) and e).

TripleMax(p):
Input: a path p in Max
Output: assign triple(q) ∈ T for all q ∈ Maxp

1 Let {X,Y,W,Z} = T \ {triple(p)};
2 for each face f of type II for p do
3 triple(mf

r )← X;
4 triple(mf

` )← Y ;

5 Bipartite the forest (MaxIIIp , 99K) into the two classes A and B so that u 699K v for all
u, v in the same class;

6 for each m ∈ A do
7 triple(m)←W

8 for each m ∈ B do
9 triple(m)← Z

The following lemma is crucial to prove the correctness of algorithm FifteenForests and
explains the main consequences of function TripleMax.

Proposition 73. Let p ∈ Max and let f be a face of type II or type III for p. If we call
TripleMax(p) then

73.(1) let m ∈ Maxp interfere with f , then triple(m) ∩ triple(p) = ∅;

73.(2) let m,m′ ∈ Maxp interfere with f , then triple(m) ∩ triple(m′) = ∅.

Proof. The first statements is implied by Line 1 and all lines in which a value of triple is assigned.
To prove the second statement let f and g be a face of type II and type III for p, respectively.
By definition, the unique paths in Maxp that interfere with f are mf

r and mf
` . The for cycle

in Line 2 implies triple(mf
r ) = X and triple(mf

` ) = Y , and the thesis applies in this case. Now
let m,m′ interfere with g. Hence either m 99K m′ or m′ 99K m and, w.l.o.g., we assume that
m′ 99K m. Thus g = fm and there are two cases: either m ∈ MaxIIp or m ∈ MaxIIIp . If the former
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case applies, then triple(m) ∈ {X,Y } because of the for cycle in Line 2 and triple(m) ∈ {W,Z}
because of Line 7 and Line 9, so the thesis holds in this case. If the latter case applies, then
Line 5, Line 7 and Line 9 imply triple(m) = W and triple(m′) = Z, or vice-versa, and thus the
thesis holds. We stress that we can bipartite the graph (MaxIIIp , 99K) because Lemma 72 states
that it is a forest.

7.4.5 Correctness of algorithm FifteenForests

In this subsection we prove the correctness of algorithm FifteenForests shown in Subsec-
tion 7.4.1. As a consequence we have Corollary 75 which state that every NCSP has Path
Covering with Forests Number at most 15.

Theorem 74. Given a NCSP P , algorithm FifteenForests produces a forest labeling L of P
which uses at most 15 labels.

Proof. Thanks to Theorem 60 we only need to prove that every faces in
⋃
q∈P q is solved by L.

Let f be a face, then there exists p ∈Max such that f is a face of type I, or type II or type III
for p.

If f is a face of type I for p, then f is solved by L because of Proposition 68 and the call
LabelTouch(p).

If f is a face of type II for p, then efr ∈ mf
r and ef` ∈ m

f
` . Moreover, if a path q ∈ P interferes

with f , then either q ∈ Touch
mfr

or q ∈ Touch
mf`

. Thus f is solved by L because of 73.(2) and

the calls LabelTouch(mf
r ) and LabelTouch(mf

` ).
If f is a face of type III for p, then either efr ∈ mf or ef` ∈ mf , where mf is the unique

child of q belonging to Maxp. W.l.o.g., we assume that efr ∈ mf . We observe that ef` may
belong to some paths in Touchp and at most one path in Maxp. Every path q in Touchp satisfies
L(q) ∈ triple(p), thus thanks to 73.(1) and the call LabelTouch(mf ) we can ignore paths in
Touchp to determine whether f is solved by L. Hence let us assume that there exists m′ ∈ Maxp
satisfying ef` ∈ m

′. Then f is solved by L because of both the statements of Proposition 73 and
the calls LabelTouch(mf ) and LabelTouch(m′).

Corollary 75. Let P be a set of non-crossing shortest paths in a plane graph G whose extremal
vertices lie on the infinite face of G. Then the Path Covering with Forests Number of P is at
most 15.

7.5 The Path Covering with Forests Number is at most four

In this section we show that the Path Covering with Forests Number of a NCSP P is at most
4. In particular, we present algorithm FourForests that produces a forest labeling of P which
uses at most 4 labels. We strictly use all results in Section 7.4.

In Subsection 7.5.1 we describe the outline of algorithm FourForests. In Subsection 7.5.2
we deal with faces of the first type and Subsection 7.5.3 with faces of second and third type.
Finally, in Subsection 7.5.4 we exhibit algorithm FourForests and we prove its correctness.
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7.5.1 Outline of the algorithm

Algorithm FourForests is a refining of algorithm FifteenForests, thus they share the same
structure; the only differences are that function LabelTouch and function TripleMax are re-
placed with function LabelSpecialTouch and function TripleSpecialMax, respectively. We
introduce special(p) ∈ triple(p) for all p ∈ Max as a special label of triple(p). Function
LabelSpecialTouch(p) assigns one label of triple(p) for all q ∈ Touchp so that all paths contain-
ing edgep (see Definition 70) are labeled with special(p). Function TripleSpecialMax(p) assigns
triple(q) and special(q) for all q ∈ Maxp. The assignments are set so that at iteration i all faces
in Touchp ∪Maxp are solved by L, for all p ∈Maxi.

FourForests:
Input: a NCSP P

Output: a forest labeling L : P 7→ [4]

1 Transform P from a NCSP to a BNCSP;
2 For each path p ∈ P define the global variable L(p) initialized to NULL;
3 For each path p ∈Max define the global variables triple(p), special(p) both initialized to

NULL;
4 triple(p1)← {1, 2, 3};
5 special(p1)← 1;
6 for i = 0, . . . , N do
7 for each p ∈Maxi do
8 LabelSpecialTouch(p); // assign L(q) ∈ triple(p) for all q ∈ Touchp
9 TripleSpecialMax(p); // assign triple(q), special(q) for all q ∈ Maxp

10 return L;

7.5.2 Dealing with faces of type I

The main goal of this subsection is to build function LabelSpecialTouch(p) which assigns L(q) ∈
triple(p) for all q ∈ Touchp so that all paths containing edgep are labeled with special(p) and all
faces of type I for p are solved by L (see Proposition 78), where p ∈Max. We obtain function
LabelSpecialTouch by joining function RightLabel and function LeftLabel.

Function LeftLabel is equal to function RightLabel except for the last line in which qr and
q` are swapped. Therefore, Lemma 76 is a consequence of Lemma 67.

Lemma 76. Let p ∈Max, let (c1, c2, c3) be any ordering of triple(p) and let q ∈ Touchp. If we
call LeftLabel(p, q, (c1, c2, c3)), then L(R(q)) ⊆ {c1, c2} and L(L(q)) = {c1}.

We can use function RightLabel and function LeftLabel to label all elements in Touchp in
order to solve all faces of type I for p and to assure that all paths containing edgep are labeled with
special(p). This is made with function SpecialLabel(p, q, (cr, c`)) whose entries are p, q, (cr, c`),
where p is a path in Max, q is a path in Touchp, and cr, c` are two labels in triple(p).
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LeftLabel(p, q, (c1, c2, c3)):
Input: a path p in Max, a path q in Touchp and a permutation (c1, c2, c3) of triple(p)
Output: assign L(q′) ∈ triple(p) for all q′ ∈ Touchp such that q′ � q

1 L(q)← c1;
2 if q has one child q′ in Touchp then
3 LeftLabel(p, q′, (c1, c2, c3));

4 if q has two children in Touchp then
5 LeftLabel(p, q`, (c1, c3, c2));
6 LeftLabel(p, qr, (c2, c1, c3));

(1, 2, 3)

(1, 3, 2) (2, 1, 3)

(1, 2, 3) (3, 1, 2) (2, 1, 3)

(1, 3, 2) (2, 1, 3) (3, 2, 1) (1, 3, 2) (2, 3, 1) (1, 2, 3)

LeftLabel

Figure 7.9: assume that triple(p) = {1, 2, 3}. Example of permutations of triple(p) during the call
LeftLabel(p, q, (1, 2, 3)), where q is the vertex on the top. The first element of the permutation,
in red, denotes also the label assigned to the path.

We call SpecialLabel(p, q, (cr, c`)) if and only if q contains edgep, and the child of q containing
edgep is labeled with special(p); moreover, if the right (resp. left) child of q does not contain
edgep, then we label it with cr (resp., c`). If both children of q do not contain edgep, then we
label all left descendants of q with special(p)—in a way, we assume that if the right child of q
does not contain edgep, then the left child does. Clearly, if q has one child in Touchp, then we
assume that it contains edgep.

It holds that cr, c` ∈ triple(p)\{special(p)} but they are not necessarily distinct. Let Q be the
set of all elements in Touchp that contain edgep. We observe that Q forms a path in TreeTouchp.
In few words, function SpecialLabel calls RightLabel for paths on the left of Q and LeftLabel
for paths on the right of Q (see Figure 7.10). The recursive calls of SpecialLabel turn the labels
in order to obtain the following lemma.

Lemma 77. Let p ∈Max, let cr, c` ∈ triple(p)\{special(p)} be not necessarily distinct and let q ∈
Touchp satisfy edgep ∈ q. If we call SpecialLabel(p, q, (cr, c`)), then L(R(q)) ⊆ {cr, special(p)}
and L(L(q)) ⊆ {c`, special(p)}.

Proof. If q has only one child in TreeTouchp, then function SpecialLabel does the same call
to its child, thus we can assume that q has two children in TreeTouchp. W.l.o.g., we assume
that edgep ∈ qr, indeed, if edgep 6∈ qr, then the proof is symmetric. Thus function SpecialLabel
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TreeTouchp
RightLabel

LeftLabel

Figure 7.10: on the left TreeTouchp in which red vertices correspond to paths containing edgep.
On the right, red vertices correspond to paths labeled with special(p). We show for which vertices
SpecialLabel calls RightLabel and for which LeftLabel.

SpecialLabel(p, q, (cr, c`)):
Input: a path p ∈Max, a path q ∈ Touchp, two labels cr, c` ∈ triple(p) \ {special(p)}
Output: assign L(q′) ∈ triple(p) for all q′ ∈ Touchp such that q′ � q so that

L(q′′) = special(p) for all q′′ ∈ Touchp containing edgep

1 L(q)← special(p);
2 if q has one child q′ in Touchp then SpecialLabel(p, q′, (cr, c`));
3 if q has two children in Touchp then
4 if edgep ∈ qr then
5 SpecialLabel(p, qr, (cr, triple(p) \ {c`, special(p)}));
6 RightLabel(p, q`, (c`, special(p), triple(p) \ {c`, special(p)}));
7 else
8 SpecialLabel(p, q`, (triple(p) \ {cr, special(p)}, c`));
9 LeftLabel(p, qr, (cr, special(p), triple(p) \ {cr, special(p)}));

does the call SpecialLabel(p, qr, (cr, triple(p) \ {c`, special(p)})) and the call RightLabel(p, q`,

(c`, special(p), triple(p) \ {c`, special(p)}). The second call implies that L(L(q)) ⊆ {c`, special(p)}
by Lemma 67. It remains to show that L(R(q)) ⊆ {cr, special(p)}.

Let w be the first element w.r.t. � in R(q) such that wr does not contain edgep, i.e., edgep 6∈ wr
and edgep ∈ z for all z ∈ R(q)\R(wr). Thus all elements in R(q) before (w.r.t. �) wr are labeled
with special(p) because of Line 1. Moreover, by Line 7 we call LeftLabel(p, wr, (cr, special(p),
triple(p) \ {cr, special(p)})); indeed, we note that the third element (i.e., cr) in all these recursive
calls of SpecialLabel does not change because of Line 5. Finally, Lemma 76 implies that
L(R(wr)) ⊆ {cr, special(p)}, thus L(R(q)) ⊆ {cr, special(p)} as we claimed.

Proposition 78. Let p ∈Max, if we call LabelSpecialTouch(p), then every face of type I for
p is solved by L, L(q) ∈ triple(p) for all paths in Touchp and L(q′) = special(p) for all paths in
Touchp containing edgep.

Proof. By the recursion of function LabelSpecialTouch, it is clear that all paths in Touchp
are labeled with labels in triple(p) and all paths in Touchp containing edgep are labeled with
special(p). It remains to prove that every face of type I for p is solved by L. We need the
following preliminary claim.
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f) Let cr, c` ∈ triple(p) be not necessarily distinct and let f be a face of type I for p such that
the upper path q of f is in Touchp. If we call SpecialLabel(p, q, (cr, c`)), then f is solved
by L.

Proof of f): It holds that q contains edgep and one of its children contains edgep (we have assumed
that if the right child does not contain edgep, then the left child does). W.l.o.g., qr contains edgep.
Thus L(qr) = special(p), L(q`) = c`, we call SpecialLabel(p, qr, (cr, triple(p) \ {c`, special(p)}))
and RightLabel(p, q`, (c`, special(p), triple(p) \ {c`, special(p)})).

By Lemma 66, L(efr ) ∈ L(L(qr)) and L(ef` ) ∈ L(R(q`)). By Lemma 67 and by calling
RightLabel(p, q`, (c`, special(p), triple(p)\{c`, special(p)})), it holds that L(R(q`)) ⊆ {c`}. More-
over, by calling SpecialLabel(p, qr, (cr, triple(p)\{c`, special(p)})) and by Lemma 77, L(L(qr)) ⊆
{(triple(p) \ {c`, special(p)}), special(p)} = triple(p) \ {c`}. Hence f is solved by L because
L(efr ) ∩ L(ef` ) = ∅. End proof of f).

Now let f be a face of type I for p and let q be its upper path. Because of the call
LabelSpecialTouch(p), we call either RightLabel(p, q, (c1, c2)) or LeftLabel(p, q, (c1, c2)) or
SpecialLabel(p, q, (cr, c`)) for some distinct c1, c2 ∈ triple(p) and not necessarily distinct cr, c` ∈
triple(p) \ {special(p)}. If one among the first two cases applies, then f is solved by L by apply-
ing Lemma 67 or Lemma 76 and the same reasoning of Proposition 68’s proof. If the last case
applies, then f is solved by L because of f).

LabelSpecialTouch(p):
Input: a path p in Max
Output: assign L(q) ∈ triple(p) for all q ∈ Touchp so that every face of type I for p is

solved by L and L(q′) = special(p) for all q′ ∈ Touchp containing edgep

1 Let cr, c` in triple(p) \ {special(p)} be not necessarily distinct;
2 SpecialLabel (p, p, (cr, c`)); // assign L(q) ∈ triple(p) for all q ∈ Touchp

The following corollary is a consequence of Lemma 67, Lemma 76 and Lemma 77 and is
crucial in the proof of Lemma 80 in the next subsection.

Corollary 79. Let p ∈ Max. If we call LabelSpecialTouch(p), then |L(R(q))| ≤ 2 and
|L(L(q))| ≤ 2 for all q ∈ Touchp.

7.5.3 Dealing with faces of type II and type III

In algorithm FifteenForests we use many labels, and we assign triple(q) for each q ∈ Maxp so
that triple(q) ∩ triple(p) = ∅, ignoring paths in Touchp because they are labeled with labels in
triple(p), where p ∈ Max. In this section, arguing with algorithm FourForests, we have only
four labels available, and the previous request is impossible to satisfy; indeed, two distinct triples
in {1, 2, 3, 4} have non empty intersection. Thus we have to consider also paths in Touchp. In
function TripleSpecialMax we assign triple(q) for each q ∈ Maxp by visiting each tree T in
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(MaxIIIp , 99K), and in the following lemma we show that all paths in Touchp that interfere with
a face related to T have at most two labels.

Lemma 80. Let p ∈ Max, let T be a tree in the forest (MaxIIIp , 99K) and let ∆ = C
(
{q ∈

Touchp | q interferes with fm for some m ∈ V (T )}
)
. If we call LabelSpecialTouch(p), then

|∆| ≤ 2.

Proof. For convenience, let Q = {q ∈ Touchp | q interferes with fm for some m ∈ V (T )}. Thanks
to Corollary 79, it suffices to prove that either Q ⊆ R(q) or Q ⊆ L(q) for some q ∈ Touchp. For
each m ∈ V (T ) we denote by qm its parent in Tg. Let mroot be the root of T and, w.l.o.g., we
assume that mroot is the right child in Tg of qmroot . For the sake of clarity the proofs of g), h)
and i) are at the end of the main proof.

g) let m,m′ ∈ V (T ) satisfy m 99K m′. If m is the right child of qm in Tg, then m′ is the right
child of qm′ in Tg.

Because of g) and being mroot the right child of qmroot , given any m ∈ V (T ), then m is the
right child of its parent qm in Tg. For each m ∈ V (T ) we define Pm as the path in V (T ) from
the root mroot to m. Moreover, for each m ∈ V (T ), let Qm = {q ∈ Touchp | q interferes with
fm} and QPm =

⋃
m′∈Pm Qm′ . We need other two statements:

h) for each m ∈ V (T ) it holds that Qm ⊆ R(qm),

i) for each m ∈ V (T ) it holds that QPm ⊆ R(qm).

Let wroot ∈ Touchp be the child of qmroot different from mroot. Being mroot in MaxIIIp then
wroot interferes with fmroot , hence, wroot ∈

⋂
m∈V (T )QPm . By i), wroot ∈ R(qm) for every

m ∈ V (T ), consequently we can order all elements in V (T ) in (m1,m2, . . . ,m|V (T )|) so that
qm1 ∈ R(qm2) ⊆ R(qm3) ⊆ . . . ⊆ R(qm|V (T )|)); otherwise there would be a vertex in TreeTouchp
with two incoming darts because of the definition of right descendant in Definition 64. It is easy
to see that m|V (T )| is a leaf in T . Finally, Q =

⋃
m∈V (T )Qm ⊆

⋃
m∈V (T )QPm ⊆ R(qm|V (T )|) by

above reasoning and i), and the thesis holds. To complete the proof, now we prove the previous
three claims.

Proof of g): let w be the child of qm different from m and let w′ be the child of qm′ different
from m′. By the single-touch property, qm′ splits w′ into three parts: w′ = r ◦ qm′ ∩ w′ ◦ `, with
xw′ ∈ r and yw′ ∈ `. Let er (resp., e`) be the extremal edge of r (resp., `) that does not contain
xw′ (resp., yw′). All these paths and edges are shown in Figure 7.11.

Being m 99K m′, then either er ∈ m or e` ∈ m; indeed, one among er and e` is an extremal
edge of the lower boundary of fm′ . By Remark 65 applied to w′ and qm′ , the thesis holds if
er ∈ m. We note that if e` ∈ m, then wm does not intersect p because of Remark 65 and because
m is the right child of qm in Tg. This is absurdum because wm ∈ Touchp. Thus, by above,
er ∈ m and the thesis is proved. End proof of g).

Proof of h): being m the right child of qm, if qm′ ∈ Touchp interferes with fm, then e
fm
r belongs

to qm′ . Thus all paths in Qm contain efmr and they can be ordered w.r.t. �. Hence Qm =
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{q1, q2, . . . , qz} so that qi+1 � qi for all i ∈ [z − 1]. Now we can proceed by induction on i. We
note that q1 is the child of qm in Tg different from m and qz ∈ R(qm) because qz is the only child
in TreeTouchp. Therefore, we have proved the base case. The induction case is trivial if qi has
only one child in TreeTouchp, otherwise it follows from the same reasoning of g). End proof of h).

Proof of i): let (m1,m2, . . . ,mw) be the ordered sequence of vertices in Pm. Then Qmi ⊆ R(qmi)

because of h). Moreover, being mi 99K mi+1, then qmi ∈ Qmi+1 (this is formally proved in c) in
Lemma 72). Hence for any i ∈ [w], Qmi ∈ R(qmw) by applying repeatedly as stated, and the
thesis follows. End proof of i).

The proof is now complete.

p

f∞

w′

qm′

r`

ere`

Figure 7.11: paths and edges used in the proof of g). In red continuous line paths w′ and qm′ , in
black dotted lines path r and `, and we point out edges er and e`.

The following result explains the effects of function TripleSpecialMax. We recall that, given
m ∈Max \ {p1}, fm ∈ F denotes the face whose upper path is the parent of m in Tg.

Proposition 81. Let p ∈Max, let f be a face of type II for p, let g be a face of III for p and
let m ∈ MaxIIIp satisfy g = fm. If we call LabelSpecialTouch(p) and TripleMax(p) then

81.(1) special(mf
r ) 6= special(mf

` );

81.(2) let q ∈ Touchp interfere with g. Then special(m) 6= L(q);

81.(3) let m′ ∈ Maxp \ {m} interfere with g. Then special(m) 6∈ triple(m′).

Proof. The first statement is a consequence of the for cycle in Line 1. Let T be the tree in
(MaxIIIp , 99K) containing m and let ∆ be as defined in Line 8. The second statement is implied
by the for cycle in Line 7, indeed, L(q) ∈ ∆ and special(m) 6∈ ∆ because of Line 11.

It remains to prove the third statement. There are two cases: m′ ∈ MaxIIp and m′ ∈ MaxIIIp .
If the former case applies, then m is the root of T . Thus triple(m) = triple(p) because of Line 5
or Line 6 and special(m) 6∈ triple(p) because of Line 10 that assigns the class A to the root of
T . If the latter case applies, then m′ 99K m. Hence, because of Line 10, m ∈ A and m′ ∈ B,
or vice-versa. Finally, special(m) 6∈ triple(m′) by construction of the for cycles in Line 12 and
Line 15.

7.5.4 Correctness of algorithm FourForests

We prove in Theorem 82 the correctness of algorithm FourForests shown in Subsection 7.5.1;
the proof is analogous to Theorem 74’s proof. As a consequence we have Corollary 83 which
states that every NCSP has Path Covering with Forests Number at most 4.
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TripleSpecialMax(p):
Input: a path p in Max
Output: an assignment of triple(q) and special(q) for all q ∈ Maxp

1 for each face f of type II for p do
2 Let labelr, label` ∈ triple(p) be distinct;
3 special(mf

r )← labelr;
4 special(mf

` )← label`;
5 triple(mf

r )← triple(p);
6 triple(mf

` )← triple(p);

7 for each tree T in the forest (MaxIIIp , 99K) do
8 Let ∆ = C

(
{q ∈ Touchp | q interferes with fm for some m ∈ V (T )}

)
;

9 If |∆| = 1, then add to ∆ another label of triple(p);
10 Bipartite the tree T into the two classes A and B so that the root of T is in A and

u 699K v for all u, v in the same class;
11 Let labelA = {1, 2, 3, 4} \ {triple(p)} and labelB = triple(p) \∆;
12 for each m ∈ A do
13 special(m)← labelA;
14 triple(m)← ∆ ∪ {labelA}

15 for each m ∈ B do
16 special(m)← labelB;
17 triple(m)← triple(p)

Theorem 82. Given a NCSP P , algorithm FourForests produces a forest labeling L of P which
uses at most 4 labels.

Proof. Thanks to Theorem 60 we only need to prove that every faces in
⋃
p∈P p is solved by L.

Let f be a face, then there exists p ∈Max such that f is a face of type I, or type II or type III
for p.

If f is a face of type I for p, then f is solved by L because of Proposition 78 and the call
LabelSpecialTouch(p).

If f is a face of type II for p, then efr ∈ mf
r and ef` ∈ m

f
` . Moreover, if a path q ∈ P interferes

with f , then either q ∈ Touch
mfr

or q ∈ Touch
mf`

. Thus f is solved by L because of 81.(1) and

the calls LabelSpecialTouch(mf
r ) and LabelSpecialTouch(mf

` ).
If f is a face of type III for p, then either efr ∈ mf or ef` ∈ m

f , where mf is the unique child
of q belonging to Maxp. W.l.o.g., we assume that efr ∈ mf . We observe that ef` may belong to
some paths in Touchp and at least one in Maxp. If there does not exist any path m′ ∈ Maxp
satisfying ef` ∈ m

′, then f is solved by L because of 81.(2) and the call LabelSpecialTouch(mf ).
Otherwise, let m′ ∈ Maxp satisfy ef` ∈ m

′. Then f is solved by L because of 81.(2), 81.(3) and
the calls LabelSpecialTouch(mf ) and LabelSpecialTouch(m′).
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Corollary 83. Let P be a set of non-crossing shortest paths in a plane graph G whose extremal
vertices lie on the infinite face of G. Then the Path Covering with Forests Number of P is at
most 4.

7.6 Four forests are necessary

In this section we prove that in the general case covering a NCSP P may require four forests.
As a consequence, the result in Theorem 82 is tight.

Theorem 84. There exists a NCSP P such that PCFN(P ) = 4.

Proof. The NCSP P of this proof is built recursively.

A) For each k there exists a NCSP Pk such that:

• Pk = Touchp1 , where p1 is the path corresponding to the root of the genealogy tree;

• the genealogy tree of Pk is a complete binary tree composed by 2k − 1 paths;

• if f is a face of type I for p, then the lower boundary of f has exactly two edges, i.e., the
lower boundary consists of efr and ef` ;

• for each face f of type I for p1, it holds that e
f
r ∈ q′, for all q′ ∈ L(qfr ), and ef` ∈ q

′′, for all
q′′ ∈ R(qf` ) (we recall that qfr and qf` are the right child and the left child, respectively, of
the upper path of f , see Definition 56).

The construction of Pk can be obtained by generalizing P3 in Figure 7.12. We consider P13.
For each leaf w of P6 let R(w) = {rw1 , . . . , rw8 } be ordered so that rwi+1 � rwi , for all i ∈ [7].

Similarly, let L(w) = {`w1 , . . . , `w8 } be ordered so that `wi+1 � `wi , for all i ∈ [7] (note that
rw1 = `w1 = w). For all leaf w of P6, we add three paths qw1 , qw2 , qw3 whose extremal vertices are in
the subpath of the infinite face between y`w1 and y`w8 according to Figure 7.13. Similarly, we add
three paths pw1 , pw2 , pw3 whose extremal vertices are in the subpath of the infinite face between
xrw1 and xrw8 according to a symmetric version of Figure 7.13.

In this way we obtain a NCSP P composed by 6 · 25 + 213 − 1 = 8383 paths. Let us assume
by contradiction that there exists a forest labeling L : P 7→ [3]. We say that a face f is unsolved
by L if

⋂
e∈E(∂f) L(e) 6= ∅. To finish the proof it suffices to prove that there exists a face f in⋃

p∈P p unsolved by L.

B) There exist three paths q, q′, q′′ ∈ P13 such that q � q′ � q′′, |L({q, q′, q′′})| = 3 and q is a
leaf of P4.

C) Let f, f1, f2 be the faces in P13 whose upper paths are q, qr, q`, respectively. If e is an
extremal edge of the lower boundary of a face g in {f, f1, f2} then |L(e)| < 3, otherwise g would
be unsolved by L because of B).

D) Let qr,` be the left child of qr and let q`,r be the right child of q`. By C), for some distinct
c1, c2 ∈ [3] it happens

• L(R(qr,`)) = {c1} and L(L(qr,`)) = {c1, c2}, or
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• L(L(qr,`)) = {c1, c2} and L(L(qr,`)) = {c1}, or

• L(R(q`,r)) = {c1} and L(L(q`,r)) = {c1, c2}, or

• L(L(q`,r)) = {c1, c2} and L(L(q`,r)) = {c1},

indeed, if no one of the previous one applies, then

• |L(R(qr,`))| = 1 and |L(L(qr,`))| = 1, which in turn implies L(R(qr,`)) = L(L(qr,`)) =

L(qr,`) and thus the face f2 is unsolved by L, absurdum, or

• |L(R(q`,r))| = 1 and |L(L(q`,r))| = 1, similar to the previous case, or

• |L(R(qr,`))| = |L(L(qr,`))| = |L(R(qr,`))| = |L(L(qr,`))| = 2, and thus f is unsolved by L

because of B) and C), absurdum.

E) By D), there exists a leaf w of P6 such that either L(R(w)) = {c} and L(L(w)) = {c, c′} for
some distinct c, c′ ∈ [3], or L(L(w)) = {c} and L(R(w)) = {c, c′}. Let us assume that the latter
case applies.

F) Now, A) and B) imply that every path w′ in P13 such that w′ � w is labeled according to
function LeftLabel(p1, w, (c, c

′, c′′)), where c′′ = {1, 2, 3} \ {c, c′}. Hence, L({`w2 , `w4 , `w6 , `w8 }) =

{c′} and L({`w2 , `w4 , `w6 , `w8 }) = {c}.

G) Let g1, g2, g3 be the faces generated by paths qw1 , qw2 , qw3 as depicted in Figure 7.13. By F),
if L(qw1 ) ∈ {c, c′}, then f1 is unsolved by L, thus L(qw1 ) = c′′. Similarly, L(qw2 ) = c′′ and
L(qw3 ) = c′′. Finally, c′′ ∈

⋂
e∈E(g3) L(e), and thus g3 is unsolved by L, absurdum.

ff2 f1

Figure 7.12: the NCSP P3 and faces f, f1, f2.

g1 g2

g3

qw1 qw2

qw3f∞

Figure 7.13: paths qw1 , qw2 and qw3 ,
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7.7 Covering with four forests in linear time

We proved that given a NCSP P algorithms FourForests gives us a forest labeling L of P which
uses at most 4 labels. In this section we prove that the four forests induced by L can be obtained
in O(|E(U)|) time. To reach this goal we use a multiple labeling C̃ : E(U)→ 2[4] which assigns
a list of at most four labels to each edge of U .

Theorem 85. Let P be a NCSP and let L be a forest labeling of P which uses at most 4 labels.
We can obtain a multiple labeling C̃ : E(U)→ 2[4] satisfying L(q) ∈ C̃(e) for all q ∈ P and e ∈ q
in O(|E(U)|) time.

Proof. We obtain C̃ through L given by algorithm FourForests. For convenience and readability,
we proceed step by step.

A) In Chapter 4, in particular Remark 20, we give an implicit representation of non-crossing
shortest paths, and we describe the intersection between each path and its children in the ge-
nealogy tree. We can also list each path p in O(max{`, ` log log(k` )}) where ` is the number of
edges in p and k = |P |. But if we know the edges in p, then we can list the edges of a child q of
p without visiting again the edges in q ∩ p because of the implicit and compact representation.
In algorithm FourForests, we visit the paths by passing from parent to children and so on, thus
the listing can be made in total linear time, because we do not visit already visited edges.

B) Each edge e is visited in at most two iterations of cycle in Line 6 of algorithm FourForests.
Indeed, let p ∈Max be such that e ∈

⋃
q∈Touchp∪Maxp q and e 6∈

⋃
q∈Touchp′∪Maxp′

q for all p � p′.
It holds that there exist at most two paths m1,m2 in Maxp containing e. In this way e appears
only in the iterations i and i+ 1 assuming that p ∈Maxi.

C) By B) to finish the proof it suffices to show that, for each p ∈Max, LabelSpecialTouch(p)

and TripleSpecialMax(p) can both be executed in O(|E(
⋃
q∈Maxp∪Touchp q)|). This trivially

holds for TripleSpecialMax(p) that can be executed by visiting each path in Maxp ∪ Touchp
a constant number of times. Hence we focus on LabelSpecialTouch(p) which works only with
paths in Touchp.

D) Let p ∈ Max, we update C̃(e) for all e ∈ q as soon as L(q) is assigned, for each q ∈ Touchp.
In this way each path is visited exactly one time, but some paths may share edges, hence we
have to pass on the same edge at most a constant number of times.

E) Let q, q1, q2 ∈ Touchp, so that q � q1 � q2. The single-touch and non-crossing properties
imply that q2∩q ⊆ q1∩q, thus as soon as L(q) is assigned, then there are four vertices v1, v2, v3, v4

not necessarily distinct and three labels c1, c2, c3 ∈ triple(p) such that

• the edges of the subpath of q from xq to v1 are labeled by C̃ with c1;

• the edges of the subpath of q from v1 to v2 are labeled by C̃ with c1, c2;

• the edges of the subpath of q from v2 to v3 are labeled by C̃ with c1, c2, c3;

• the edges of the subpath of q from v3 to v4 are labeled by C̃ with c1, c2;

• the edges of the subpath of q from v4 to yq are labeled by C̃ with c1.
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In this way, by knowing v1, v2, v3, v4, we can update C̃(e) for all e ∈ q′, where q′ is a child of
q, with the value L(q′) without passing on edges of q already labeled with L(q′), see also the
discussion in A). Thus we can update C̃ so that each edge in

⋃
q∈Touchp q is visited at most three

times, i.e., one for each label in triple(p).
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Chapter 8

Two new characterizations of path
graphs

We start from the characterization of path graphs by Monma and Wei [102] and we reduce
it to some 2-coloring subproblems, obtaining the first characterization that directly leads
to a polynomial recognition algorithm. Then we exhibit a list of minimal forbidden 2-edge
colored subgraphs in each of the attachedness graph.

8.1 Introduction

In this chapter we describe two new characterizations of path graphs. Our first characterization
is the only one, to the best of our knowledge, that directly implies a polynomial recognition
algorithm, and we obtain it by starting from Monma and Wei’s characterization [102]. The
second characterization follows from the first one and consists in a list of minimal forbidden
subgraphs and a list of minimal forbidden induced subgraphs on the attachedness graph. Now
we describe in detail the two new characterizations.

In the characterization by Monma and Wei [102], described in Section 3.5, the graph is
decomposed recursively by clique separators and in every decomposition step one has to solve
a coloring problem (see Theorem 9); the solution of the coloring problem is used to represent
the graph as the intersection graph of paths in a tree. The difficulty with their coloring problem
led them to not prove that it can be solved in polynomial time. In our first characterization we
simplify Monma and Wei’s characterization by reducing it to some 2-coloring subproblems that
are clearly solvable in polynomial time (see Section 8.3, in particular Subsection 8.3.1). Thus
this characterization also describes a polynomial recognition algorithm. Moreover, it has two
consequences.
• The obstructions to our 2-coloring subproblems are well-known, this allows us to give

our second characterization, which consists in a list of minimal forbidden subgraphs and a list
of minimal forbidden induced subgraphs of the attachedness graphs of the input graph (see
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Section 8.4, in particular Theorem 102).
• Our first characterization is used in Chapter 9 to describe a recognition algorithm that

specializes for path graphs and directed path graphs. We refer to Chapter 9 for further details.

8.2 A strong coloring

In this section we briefly resume the characterization in [102] about path graph already explained
in Section 3.5. We also give it in a recursive fashion (see Corollary 87).

Given a clique separator C of G, in the following definition we say when G is strong C-
colorable, that corresponds to the conditions stated in Theorem 9. We use the term “strong”
because in Section 8.3 we introduce a weaker coloring and we prove that they are equivalent.

Definition 86. Let C be a clique separator of G, we say that G is strong C-colorable if there
exists f : ΓC → [s] such that:

86.(1) if γ ↔ γ′, then f(γ) 6= f(γ′);

86.(2) if {γ, γ′, γ′′} is a neighboring triple, then |f({γ, γ′, γ′′})| ≤ 2.

We refer to a coloring f satisfying the conditions of Definition 86 as a strong C-coloring.
In the following corollary, we translate Theorem 9 from a recursive fashion to a local one that
is more useful to our purposes by using Definition 86. We recall that a graph with no clique
separators (i.e., an atom) is a path graph if and only if it is chordal.

Corollary 87. A chordal graph G is a path graph if and only if G is strong C-colorable, for all
clique separator C of G.

By Corollary 87, deciding whether a graph G is a path graph is as difficult as deciding
whether G is strong C-colorable for each separator C. It is thus natural to wonder whether
there are obstructions to strong C-colorability and, if so, how do such obstructions look like
on the attachedness graph of G. One such obstruction is easily recognized (see [102]): let
{γ, γ′, γ′′} ⊆ ΓC be a neighboring triple and suppose that γ, γ′ and γ′′ are pairwise antipodal
(hence {γ, γ′, γ′′} induces a triangle on the C-antipodal graph of G). We refer to any such triple
as a full antipodal triple. It is clear that if ΓC contains a full antipodal triple, then G is not
strong C-colorable because the two conditions in Definition 86 cannot be both satisfied. For
later reference we formalize this easy fact in a lemma.

Lemma 88. Let C be a clique separator of G. If G is strong C-colorable, then ΓC has no full
antipodal triples.

8.3 A weak coloring

In this section we introduce a weak coloring that is used in Theorem 93 to give our first char-
acterization of path graphs. This characterization simplifies Monma and Wei’s one [102] from
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an algorithmic point of view justifying the terms “strong” and “weak”. This simplification is
explained in Subsection 8.3.1. In Subsection 8.3.2 we prove Theorem 93.

Dominance is a reflexive and transitive relation. Hence (ΓC ,≤) is a preorder. We assume
that such a preorder is in fact a partial order. The latter assumption is not restrictive as shown
implicitly by Schäffer [127] and explicitly as follows. Let ∼ be the equivalence relation on ΓC

defined by γ ∼ γ′ ⇔ (γ ≤ γ′ ∧ γ′ ≤ γ), i.e., ∼ is the standard equivalence relation associated
with a preorder. If γ ∼ γ′ for some two γ, γ′ ∈ ΓC , then for any γ′′ ∈ ΓC it holds that γ ↔ γ′′

if and only if γ′ ↔ γ′′. Analogously, if γ ∼ γ′ for some two γ, γ′ ∈ ΓC , then for any γ′′ ∈ ΓC it
holds that γ ≤ γ′′ if and only if γ′ ≤ γ′′. Moreover, if γ is a neighboring of v, for some v ∈ C,
and γ ∼ γ′, then γ′ is a neighboring of v.

The following lemma shows that it is not restrictive to assume that ΓC = ΓC/ ∼.

Lemma 89. Let C be a clique separator of G. If there exists f : ΓC/ ∼→ [m] satisfying 86.(1)
and 86.(2), then G is strong C-colorable.

Proof. Let f̃ : ΓC → [m] be defined by f̃(γ) = f([γ]∼). It holds that f̃ satisfies 86.(1) and 86.(2),
hence f̃ is a strong C-coloring.

After the lemma, we assume that (ΓC ,≤) is a partial order for every clique separator C of
G. In other words, we assume ΓC = ΓC/ ∼.

Given a clique separator C of G, we define UpperC = {u ∈ ΓC |u 6≤ γ, for all γ ∈ ΓC} the
set of upper bounds of ΓC with respect to ≤. From now on we fix (u1, u2, . . . , u`) an ordering of
UpperC and for all i, j ∈ [`] and i < j we define

DC
i = {γ ∈ ΓC | γ ≤ ui and γ � uj , ∀j ∈ [`] \ {i}}; (8.1)

DC
i,j = {γ ∈ ΓC | γ ≤ ui, γ ≤ uj and γ � uk, ∀k ∈ [`] \ {i, j}}; (8.2)

DC =
{
DC
i | i ∈ [`]

}
∪
{
DC
i,j | i, j ∈ [`], i < j

}
. (8.3)

In few words, DC
i consists of those elements of ΓC dominated only by ui and no other upper

bounds, while DC
i,j consists of those elements of ΓC dominated only by ui and uj and no other

upper bounds. Referring to Figure 8.1, UpperC = {u1, u2} = {γ3, γ5}, if we fix the ordering
(u1, u2) = (γ3, γ5), then DC

1 = {γ2, γ3}, DC
2 = {γ1, γ5} and DC

1,2 = {γ4}. If no confusion arises,
we omit the superscript C.

Remark 90. If UpperC has no full antipodal triples, then for each γ ∈ ΓC there are at most
two different u, u′ ∈ UpperC such that γ ≤ u and γ ≤ u′. Thus the Di’s and the Di,j’s form a
partition of ΓC .

Before giving the definition of weak coloring we need some preliminary definitions. Let
CrossC = {γ ∈ ΓC | γ ∈ D, for some D ∈ D, and γ ↔ γ′, for some γ′ 6∈ D}. In few words,
CrossC is composed by all elements in D, varying D ∈ D, that are antipodal to at least one
element not in D, i.e., CrossC is composed by all elements that “cross” the partition through
antipodality.
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γ1

γ2

γ3

γ4

γ5

D1

D2

D1,2

Figure 8.1: connected components of Figure 3.7, and sets D1, D2 and D1,2 according to the
ordering of UpperC = {u1, u2} = {γ3, γ5} as (u1, u2) = (γ3, γ5).

Definition 91. Let C be a clique separator of G. Let (u1, u2, . . . , u`) be any ordering of UpperC .
We say that f : UpperC ∪ CrossC → [`] is a partial C-coloring if f satisfies the following:

91.(1) for all i ∈ [`], f(ui) = i;

91.(2) for all i ∈ [`], for all γ ∈ Di, if ∃γ 6∈ Di such that γ ↔ γ′, then f(γ) = i;

91.(3) for all i < j ∈ [`], for all γ ∈ Di,j, if ∃γ′ 6∈ Di,j such that γ ↔ γ′, thenf(γ) = i, if γ′ ∈ Dj ,

f(γ) = j, if γ′ ∈ Di.
(8.4)

We comment Definition 91. The first condition says how we color the upper bounds of ΓC ;
actually, because of 86.(1), we only need that two antipodals upper bounds have different colors,
i.e., u, u′ ∈ UpperC and u ↔ u′ imply f(u) 6= f(u′) for all strong C-coloring f . We prefer to
set f(ui) = i in order to use color i, j, k instead of f(ui), f(uj), f(uk) and so on; furthermore,
condition 91.(1) implies the uniqueness of a partial C-coloring. Finally, it is easy to see that
conditions 91.(2) and 91.(3) hold for every strong C-coloring satisfying 91.(1).

Note that there exists always a coloring satisfying conditions 91.(1) and 91.(2), while condi-
tion 91.(3) cannot be satisfied if there exist γ ∈ Di,j , γ′ ∈ Di and γ′′ ∈ Dj such that γ ↔ γ′ and
γ ↔ γ′′, for some i < j ∈ [`]. This fact leads to a kind of obstruction (see Section 8.4).

We are ready to give the definition of weak-coloring.

Definition 92. Let C be a clique separator of G. Let (u1, u2, . . . , u`) be any ordering of UpperC .
We say that G is weak C-colorable if there exists f : ΓC → [` + 1] such that f restricted to
UpperC ∪ CrossC is a partial C-coloring and

92.(1) for all i ∈ [`], f(Di) ⊆ {i, `+ 1};

92.(2) for all i < j ∈ [`], f(Di,j) ⊆ {i, j};

92.(3) for all D ∈ D, if γ, γ′ ∈ D and γ ↔ γ′, then f(γ) 6= f(γ′).

We refer to a coloring f satisfying the conditions of Definition 92 as a weak C-coloring.
We comment Definition 92. It is easy to see that if we extend a partial C-coloring, then

conditions 86.(1) and 86.(2) imply conditions 92.(2) and 92.(3). The condition 92.(1) is more
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restrictive than the necessary. Indeed, conditions 86.(1) and 86.(2) should imply f(Di) ⊆ {i, ci}
(a possible choice of ci is ` + i), but the stiff structure given by the absence of full antipodal
triples should imply that all elements colored by ci’s are pairwise not antipodal, and thus we can
use the same color for all of them (as Proposition 97’s proof shows).

In the following theorem we give our first characterization of path graphs, and we prove it in
Subsection 8.3.2.

Theorem 93. A chordal graph G is a path graph if and only if ΓC has no full antipodal triples
and G is weak C-colorable, for all clique separator C of G.

8.3.1 Weak coloring equals to 2-coloring subproblems

Now we explain why our coloring problem shown in Theorem 93 simplifies the one stated in
Corollary 87 (equivalent to Theorem 9 by Monma and Wei [102]) from an algorithmic point of
view. Note that the two conditions of strong C-coloring are in conflict with each other. Indeed,
if too few colors are used, then the first condition is violated, otherwise, if one uses too many
colors, then the second condition is violated. For this reason their characterization does not
describe directly a polynomial algorithm. Despite this, Schäffer [127] succeed in implementing a
sophisticated backtracking polynomial algorithm that starts from their characterization.

Our characterization in Theorem 93 requires the absence of full antipodal triples and the check
of six conditions: 91.(1), 91.(2), 91.(3) of Definition 91 and 92.(1), 92.(2), 92.(3) of Definition 92.
First we note that conditions 91.(1), 91.(2), and 92.(1), 92.(2) are always satisfiable, i.e., there
exists always a coloring f : ΓC → [`+ 1] that satisfies them. Moreover, checking for the absence
of full antipodal triples and condition 91.(3) are polynomial problems, because they are antipodal
paths/cycles of length 3. Finally, condition 92.(3) consists in 2-coloring problems restricted on
elements in D, for D ∈ D. In other words, after polynomial checks, we succeed in reducing the
coloring problem by Monma and Wei to some 2-coloring subproblems. This allows us to exhibit
a list of forbidden subgraphs in the attachedness graph (see Section 8.4).

8.3.2 Proof of Theorem 93

This subsection is split into three parts: in Subsection 8.3.2 we give some useful results about
dominance and antipodality, in Subsection 8.3.2 and Subsection 8.3.2 we prove the “if part”
and the “only if part” of Theorem 93, respectively. In particular, Theorem 93 is implied by
Proposition 97 and by Proposition 98.

Preliminary results

It is convenient to have a handy pictorial representation to deal with the relations ≤ and↔. Two
elements γ′, γ′′ ∈ ΓC such that γ′ ≤ γ′′ are drawn placing γ′ below γ′′—here “below” means that
viewing the sheet as a portion of the Cartesian plane with origin placed in left bottom corner,
the ordinate of γ′ is smaller than the ordinate of γ′′—and joining them by a dotted line, while,
if γ′, γ′′ ∈ ΓC such that γ′ ↔ γ′′, then their are joined by a continuous line wherever they are
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placed. For, instance, the following diagrams, represent all possible cases involving three pairwise
attached elements of ΓC (there is not a case that is impossible because of the transitivity of ≤).

γ′′

γ′

γ

(i)

γ′′

γ′

γ

(ii)

γ′′

γ′

γ

(iii)

γ′′

γ′

γ

(iv)

γ′′

γ′

γ

(v)

(8.5)

Lemma 94. Let C be a clique separator of G, the following hold:

94.(a) γ ≤ γ′ ⇒ γ and γ are neighboring of v, for all v ∈ V (γ) ∩ C;

94.(b) γ ↔ γ′ ⇒ γ and γ are neighboring of v, for all v ∈ V (γ) ∩ V (γ′) ∩ C;

94.(c) let γ, γ′, γ′′ ∈ ΓC , if one among (ii),(iii),(iv),(v) of (8.5) applies, then γ, γ′, γ′′ are neigh-
boring of v for all v ∈ V (γ) ∩ V (γ′) ∩ C.

Proof. The first two statements follow from definitions of ≤ and ↔. The last statement holds
for cases (ii) and (v) by applying 94.(a) on γ ≤ γ′ and γ ≤ γ′′. For cases (iii) and (iv), 94.(b)
implies that γ and γ′ are neighboring of v for all v ∈ V (γ)∩ V (γ′)∩C, finally, 94.(a) applied to
γ and γ′′ implies the thesis.

The following lemma shows that the absence of full antipodal triples gives a stiff structure
of antipodality graph with respect to partition D. Indeed, for some D,D′ ∈ D, it holds that γ
cannot be antipodal to γ′, for γ ∈ D and γ′ ∈ D′.

Lemma 95. Let C be a clique separator of G and let i < j ∈ [`]. If UpperC has no full antipodal
triples, then the following hold:

95.(a) γ ≤ γ′ and γ ∈ Di,j ⇒ γ′ ∈ Di,j ∪Di ∪Dj;

95.(b) γ ↔ γ′ and γ ∈ Di,j ⇒ γ′ ∈ Di,j ∪Di ∪Dj;

95.(c) γ ↔ γ′, γ ∈ Di and γ′ 6∈ Di ⇒ γ ↔ uk for γ′ ≤ uk and k 6= i.

Proof. Statements 95.(a) and 95.(b) follow from the absence of full antipodal triples, transitivity
of ≤, 94.(a) and 94.(b). Indeed, if one among 95.(a) and 95.(b) is denied, then, by using 94.(a)
and 94.(b), we find a full antipodal triple {ui, uj , uk} ∈ UpperC , absurdum by hypothesis.

To prove 95.(c), we observe that γ′ 6∈ Di implies that there exists uk ∈ UpperC such that
γ′ ≤ uk and k 6= i. Such k is unique, indeed, if there exists k′ 6= k such that γ′ ≤ uk′ ,
then {uk, uk′ , ui} is a neighboring set by 94.(a) and 94.(b), and thus it is full antipodal triple,
absurdum by hypothesis. Finally, γ, γ′, ui, uk is a neighboring set because of 94.(a) and 94.(b),
and thus ui ↔ uk as claimed.

Lemma 95 implies that every partial C-coloring sets the color of γ ∈ ΓC if and only if
γ ∈ CrossC . By its definition, the color is univocally determined, i.e., if there exists a partial
C-coloring, then it is unique.
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Strong coloring implies weak coloring

The following lemma shows that a strong C-coloring f can be modified in order to satisfy
condition 91.(1), and, if so, then f satisfies conditions 91.(2), 91.(3), 92.(2), 92.(3). This is the
first step to prove that definition of strong C-coloring implies the definition of weak C-coloring.

Lemma 96. Let C be a clique separator and let f : ΓC → [r] be a strong C-coloring. Then there
exists g : ΓC → [r′], with r′ ≥ r, satisfying 91.(1). Moreover, conditions 91.(2), 91.(3), 92.(2),
92.(3) hold for every strong C-coloring satisfying 91.(1).

Proof. Let’s start with the first part of the claim. By Lemma 88, there are no full antipodal
triples in ΓC . If f(ui) 6= f(uj) for all i 6= j ∈ [`], then the thesis is true. Thus let us assume that
there exists i 6= j ∈ [`] such that f(ui) = f(uj). We need a preliminary result that explains how
to obtain a strong C-coloring g satisfying g(ui) 6= g(uj) starting from f .

j) Let i, j ∈ [`] be such that f(ui) = f(uj). Let Ωi = {γ ∈ ΓC | γ ≤ ui and f(γ) = f(ui)}.
Let

g(γ) =

r + 1, if γ ∈ Ωi,

f(γ), otherwise,
(8.6)

then g is a strong C-coloring and g(ui) 6= g(uj).

Proof of j): It is clear that g satisfies 86.(1). Let us assume by contradiction that g does not sat-
isfy 86.(2). Thus let γ, γ′, γ′′ ∈ ΓC be such that |g({γ, γ′, γ′′})| = 3 and γ, γ′, γ′′ are neighboring
of v for some v ∈ C. W.l.o.g., by (8.6), we assume that γ ∈ Ωi, γ′, γ′′ 6∈ Ωi, f(γ′) = f(ui) and
f(γ′′) 6= f(ui). Indeed, if one of these conditions do not hold, then |g({γ, γ′, γ′′})| < 3 because
f is a strong C-coloring.

Being v ∈ V (γ) and γ ∈ Ωi, then v ∈ V (ui) by 94.(a). Being γ′ neighboring of v, then either
γ′ ≤ ui or ui ↔ γ′. If γ′ ≤ ui, then f(γ′) = f(ui) implies γ′ ∈ Ωi, absurdum. If ui ↔ γ′,
then f(γ′) = f(ui) implies that f is not a strong C-coloring, absurdum. Finally, g(ui) 6= g(uj)

because g(ui) = r + 1 while g(uj) ≤ r. End proof of j).

By repeatedly applying j), we obtain a strong C-coloring g satisfying 91.(1). To complete
the proof, we have to prove that g satifies 91.(2), 91.(3), 92.(2), 92.(3).

Let us assume by contradiction that 91.(2) does not hold. Then let γ ∈ Di, for some i ∈ [`],
and let γ′ 6∈ Di be such that γ ↔ γ′ and assume that g(γ) 6= i. Being γ′ 6∈ Di, then there exists
uj ∈ UpperC such that γ′ ≤ uj and i 6= j. By 94.(b), γ, γ′ are neighboring of v, for some v ∈ C,
moreover, by 94.(a), ui, uj are neighboring of v. Thus γ, ui, uj are neighboring of v, implying
that γ ↔ uj because γ ∈ Di. Finally, 86.(1) imply g(γ) 6= j, that implies |g({γ, ui, uj}| = 3,
absurdum because g is a strong C-coloring.

Let us assume that 91.(3) does not hold. Then there exist γ ∈ Di,j , γ′ ∈ Dj such that γ ↔ γ′

and g(γ) 6= i (the case in which γ′ ∈ Di and g(γ) 6= j is similar). As above, by 94.(b) and 94.(a),
it holds that γ, γ′, ui, uj are neighboring of v for some v ∈ C. Moreover, γ ↔ uj and thus 91.(2)
implies g(γ′) = j. Being g a strong C-coloring and being γ ↔ γ′, 86.(1) implies g(γ) 6= j. Thus
|g({γ, ui, uj})| = 3, absurdum.
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If 92.(2) does not hold for a γ ∈ Di,j , for some i < j ∈ [`], then γ, ui, uj would deny 86.(2).
Indeed, γ, ui, uj are neighboring of v, for each v ∈ V (γ)∩C, by 94.(a). Thus γ, ui, uj deny 86.(2)
because of 91.(1), absurdum.

Finally, 92.(3) is implied by 86.(2).

The following proposition proves the “if part” of Theorem 93.

Proposition 97. Let C be a clique separator of G. If G is strong C-colorable, then ΓC has no
full antipodal triples and G is weak C-colorable.

Proof. Let f : ΓC → [r] be a strong C-coloring. We have to find g : ΓC → [`+ 1] such that g is a
weak C-coloring and prove that there are no full antipodal triples in UpperC . First we observe
that 86.(1) and 86.(2) implies that there are no full antipodal triples in ΓC .

By Lemma 96, we can assume that f satisfies conditions 91.(1), 91.(2), 91.(3), 92.(2), 92.(3)
and that r ≥ `.

For all i ∈ [`] let Ωi = {γ ∈ Di | f(γ) 6= i}. Now, let i ∈ [`]. For all γ, γ′ ∈ Ωi it holds that
γ 6↔ γ′, indeed, if not, then f(γ) 6= f(γ′) because of 86.(1), and this implies |f({γ, γ′, ui})| = 3,
absurdum because f a strong C-coloring. Thus if we define

g(γ) =

`+ i, if γ ∈ Ωi,

f(γ), otherwise,

then g : ΓC → [2`] is a strong C-coloring because f is a strong C-coloring and we used the same
color for a class of non-antipodal elements.

For all distinct i, j ∈ [`], for all γ ∈ Ωi and γ′ ∈ Ωj , it holds that γ 6↔ γ′. Indeed, if γ ↔ γ′,
then, by assuming γ ∈ Di and γ′ ∈ Dj , condition 91.(2) implies f(γ) = i and f(γ′) = j and thus
γ 6∈ Ωi and γ′ 6∈ Ωj , absurdum. Finally, let Ω =

⋃
i∈[`] Ωi and let

h(γ) =

`+ 1, if γ ∈ Ω,

g(γ), otherwise,

it is clear that g satisfies 92.(1); moreover, 92.(1) and 92.(2) imply g : ΓC → [`+ 1]. By the same
above reasoning, g is a strong C-coloring and this finishes the proof.

Weak coloring implies strong coloring

Now we prove the “only if part” of Theorem 93.

Proposition 98. Let C be a clique separator of G. If ΓC has no full antipodal triples and G is
weak C-colorable, then G is strong C-colorable.

Proof. First we observe that if there is a full antipodal triple, then ΓC is not strong C-colorable
neither weak C-colorable. Thus we assume that there are no full antipodal triples. By Remark 90,
it holds that ΓC = D.
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Let f be a weak C-coloring of G. We have to prove that 86.(1) and 86.(2) are satisfied. Let
γ, γ′ ∈ ΓC be such that γ ↔ γ′. We want to prove that f(γ) 6= f(γ′). Let i < j ∈ [`]. Because
of the absence of full antipodal triples, then there are four cases: γ, γ′ ∈ Di (case 1), γ, γ′ ∈ Di,j

(case 2), γ ∈ Di and γ′ ∈ Di,j (case 3), γ ∈ Di and γ ∈ Dj (case 4) (there are no other cases
because of 95.(b)).

If case 1 or case 2 happens, then f(γ) 6= f(γ′), by 92.(3). If case 3 happens, then f(γ) 6= f(γ′),
by 91.(2) and 91.(3). Finally, if case 4 happens, then i = f(γ) 6= f(γ′) = j, by 91.(2). Thus 86.(1)
is satisfied.

Now it remains to prove that 86.(2) holds. Let us assume by contradiction that there exist
γ, γ′, γ′′ ∈ ΓC such that they form a neighboring triple and |f({γ, γ′, γ′′})| = 3. In (8.5) there
are all possibilities of relations between these three elements. Case (i) cannot apply because it is
a full antipodal triple. Thus we have to prove that in cases (ii),(iii),(iv),(v) |f({γ, γ′, γ′′})| < 3.

Before we examine each case, we need the following result.

k) In any case among (ii),(iii),(iv),(v) if there are η ∈ Di and η′ ∈ Dj , then f(η) = i and
f(η′) = j. Similarly, if there are µ ∈ Di,j and µ′ ∈ Di (resp., µ′ ∈ Dj), then f(µ′) = i

(resp., f(µ′) = j).

Proof of k): We note that any case among (ii),(iii),(iv),(v) is a neighboring triple. Thus condi-
tion 94.(a) and 94.(b) imply η ↔ uj and η′ ↔ ui, hence f(η) = i and f(η′) = j because of 91.(2).
The second part of the claim holds with a similar reasoning. End proof of k).

Let’s start with cases (ii) and (v). If γ ∈ Di, for some i ∈ [`], then γ′, γ′′ ∈ Di because of
transitivity of ≤, thus f({γ, γ′, γ′′}) ⊆ {i, ` + 1} by 92.(1). Else, γ ∈ Di,j , for some i < j ∈ [`],
then γ′, γ′′ ∈ Di∪Dj∪Di,j because of 95.(a), thus f({γ, γ′, γ′′}) ⊆ {i, j} by 92.(1), 92.(2) and k).

Now we deal with case (iv). For short, for any i ∈ [`], we defineDi = (
⋃
j<iDj,i)∪(

⋃
j>iDi,j).

If γ′′ ∈ Di,j , for some i < j ∈ [`], then γ, γ′ ∈ Di,j because of transitivity of ≤, thus
f({γ, γ′, γ′′}) ⊆ {i, j} by 92.(2). Else, γ′′ ∈ Di, for some i ∈ [`], then γ, γ′ ∈ Di ∪ Di be-
cause of 95.(b). There are two sub-cases: either γ, γ′, γ′′ ∈ Di, or at least one among γ, γ′ is in
Di. If the first sub-case happens, then the proof is completed by 92.(1). Otherwise, w.l.o.g., let
us assume that γ ∈ Di,j for some j > i. Thus uj ↔ γ′′, and, by 91.(2), f(γ′′) = i, implying that
f({γ, γ′, γ′′}) ⊆ {i, j}.

It remains to check case (iii). If γ′′ ∈ Di,j , for some i < j ∈ [`], then γ ∈ Di,j . By 95.(b),
γ′ ∈ Di∪Dj∪Di,j . Thus f({γ, γ′, γ′′}) ⊆ {i, j} because of 91.(2), 91.(3) and 92.(3). Else, γ′′ ∈ Di,
for some i ∈ [`], then there are two sub-cases: either γ ∈ Di, or γ ∈ Di,j , for some i < j ∈ [`]

(the sub-case γ ∈ Dj,i is similar). If the first sub-case happens, then |f({γ, γ′, γ′′})| < 3 because
f(γ′′) = f(γ) = i by 91.(2). If the second sub-case happens, then γ′ ∈ Di ∪Dj ∪Di,j by above.
Thus f({γ, γ′, γ′′}) ⊆ {i, j} by 92.(1), 92.(2) and k).

8.4 Forbidden subgraphs in attachedness graphs

In Subsection 8.3.1 we described exactly which are the obstructions to the weak coloring, thus we
can list all the obstructions of path graphs in the form of subgraphs of the C-attachedness graphs
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of a chordal graph G, and in Subsection 8.4.2 we compare our obstructions with obstructions
by Lévêque et al. [98]. Recall that the C-attachedness graph of G is the graph (ΓC ,on) with
reflexive pairs neglected—whose edges are therefore distinct pairs γγ′, γ, γ′ ∈ ΓC such that
γ on γ′. Also recall that the C-antipodality and the C-dominance graph of G factor (ΓC ,on).
Such a factorization yields a 2-edge coloring of (ΓC ,on) which models the interactions between
↔ and ≤.

In the following definition we present an uncolored version of our obstructions to path graphs.

Definition 99. – For an integer m such that m ≥ 3, the m-wheel is the graph on [m+ 1] where
the vertices in [m] induces a cycle and vertex m + 1 is adjacent to all the other vertices (see
Figure 8.2.a).
– For an integer m such that m ≥ 4, the m-fan is the graph on [m] such that [m− 1] induces a
path having extremal vertices 1 and m− 1 and vertex m is adjacent to all the other vertices (see
Figure 8.2.b).
– The m-chorded fan is the graph obtained from the m-fan by adding an edge between vertices 1

and m− 1. Note that the m-chorded fan is isomorphic to the m− 1-wheel (see Figure 8.2.c).
– For an integer m such that m ≥ 4, the m-double fan is the graph on [m] such that [m] induces
a cycle and vertices m− 1 and m are adjacent to all other vertices (see Figure 8.2.d).

(a) (b) (c) (d)

Figure 8.2: (a) 5-wheel; (b) 7-fan; (c) 7-chored-fan; (d) 9-double fan.

Figure 8.3 lists certain special 2-edge-colored graphs, obtained as 2-edge-colored versions of
the aforesaid graphs, needed in the characterization of path graphs (Theorem 102). The two
colors are represented by dotted or continuous lines, respectively.

It is convenient to settle a specific notation and terminology to present the results. An
isomorphism of edge-colored graphs is a graph isomorphism which preserves edge colors. All of
the 2-edge-colored graphs in Figure 8.3 are pairwise non isomorphic as edge-colored graphs. We
denote by F the collection they form—F stands for “forbidden”. Hence

F =
{
W

(0)
2k+1, W

(1)
2k+1, F2n+1, F̃2n+1, DF2n+1 | k ≥ 1, n ≥ 2

}
.

Also let
F0 =

{
W

(0)
2k+1,W

(1)
2k+1, F2n+1

}
.

Triangles of attachedness graphs play a special role. A triangle which is induced by a neighboring
triple the C-attachedness graph of G is called a full triangle, otherwise it is called empty. A tri-
angle whose all edges are antipodal is an antipodal triangle. Not every triangle in C-attachedness
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W
(0)
2k+1 W

(1)
2k+1

F2n+1 F̃2n+1 DF2n+1

Figure 8.3: 2-edge-colored graphs occurring in Theorem 102, k ≥ 1 and n ≥ 2.

graph of G is full, indeed, an antipodal triangle might be empty (recall the discussion right after
Lemma 94).

Unfortunately there is not a way to establish whether an antipodal triangle is full or empty,
let’s see an example. Let G be the graph F2 in Figure 8.5, G has only one separator, C, say,
let H and M be its C-antipodality and C-attachedness graphs. Hence M = H ∼= K3 and the
triangle spans a neighboring triple. However, if we denote by z the universal vertex of G, then
G − z is separated by C \ z. Again, let C ′ = C \ z be the only clique separator, it holds that
M = H ∼= K3 but the triangle does not span a neighboring triple.

We know that full antipodal triples are obstructions to strong C-colorability. Therefore,
full antipodal triangles are obstructions to membership in the class of path graphs and they
should be added to F. However, since full antipodal triangles are not just edge colored triangles
(because they have also the property of being full), we must treat such triangles separately in our
statements. To overcome this (somehow unaesthetic and noising) ambiguity we use a standard
trick.

For a graph G let G+ be the graph defined as follows. Let V (G) = V = {v1, v2, . . . , vn} and
V + be a copy of V , V + = {v+

1 , v
+
2 , . . . , v

+
n }. Let

G+ =
(
V ∪ V +, E(G) ∪ {viv+

i }
n
i=1

)
.

Lemma 100. Let G be a graph. Then G is a path graph if and only if G+ is a path graph.

Proof. Since G is an induced subgraph of G+, G is a path graph if G+ is such. Let T be a
clique path tree of G. For all v ∈ V (G), let Kv be the set of all cliques of G containing v. By
Theorem 7, Kv induces a path in T , let C̃v ∈ Kv be an extremal vertex of this path. Thus it
suffices to join vv+ to C̃v for all v ∈ V (G) to yield a clique path tree for G+.

The reason for having introduced graph G+ relies on the fact that, for each clique separator
C of G+, full antipodal triangles of G appear in C-attachedness graph of G+ as small wheels as
shown next.
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Lemma 101. Let C be a clique separator of G+ and let M be the C-attachedness graph of G+.
Then M has no full antipodal triangles and has no induced copies of W (0)

2k+1if and only if M has
no induced copies of W (0)

2k+1.

Proof. One direction is trivial. For the other direction it suffices to prove that if M has no
induced copies of W (0)

3 , then M has no full antipodal triangles. We prove the contrapositive:
if M has a full antipodal triangle, then M has an induced copy of W (0)

3 . Observe first that
C∩{v+ | v ∈ V (G)} = ∅. For if not, then C is necessarily of the form {v, v+} for some v ∈ V (G)

(note that in this case v is a cut vertex); in this case however M would contain no antipodal
edges at all and thus no full antipodal triangles. Hence v+ 6∈ C for each v ∈ C. Observe that
for each v ∈ C the graph γ+ = ({v, v+}, {vv+}) is ≤-dominated by every other neighboring
subgraph γ of v. Let {γ, γ′, γ′′} be the set of vertices of a full antipodal triangle in M . Hence,
there is some z ∈ V (G) such that γ, γ′ and γ′′ are neighboring subgraphs of z. If γz is the
subgraph of G induced by {z, z+} ∪ C, then {γz, γ, γ′, γ′′} induces a copy of W (0)

3 in M .

In the following theorem we claim our characterization by forbidden subgraphs in the at-
tachedness graphs. Note that the graphs in F are induced obstructions, while the graphs in F0

are not necessarily induced. Moreover, statements 102.(3) and 102.(5) are equivalent to 102.(2)
and 102.(4), respectively, by using G+ in place of G thanks to Lemma 100 and Lemma 101.

Theorem 102. Let G be a chordal graph. Then the following statements are equivalent:

102.(1) G is a path graph;

102.(2) for each clique separator C of G, the C-attachedness graph of G has no full antipodal
triangles and has no subgraphs isomorphic to any of the graphs in F0;

102.(3) for each clique separator C of G, the C-attachedness graph of G+ has no subgraphs
isomorphic to any of the graphs in F0;

102.(4) for each clique separator C of G, the C-attachedness graph of G has no full antipodal
triangles and has no induced subgraphs isomorphic to any of the graphs in F;

102.(5) for each clique separator C of G, the C-attachedness graph of G+ has no induced sub-
graphs isomorphic to any of the graphs in F.

The equivalences 102.(2)⇔102.(3) and 102.(4)⇔102.(5) in the theorem above follows straight-
forwardly by Lemma 100 and Lemma 101. The remaining implications in Theorem 102 (the core
of the characterization), will be the content of the next subsection.

8.4.1 Proof of Theorem 102

We prove Theorem 102 according to the schema 102.(1) Lemma 103, 104⇐=========⇒102.(2) Lemma 105⇐======⇒102.(4),
indeed, we remember that the equivalences 102.(2)⇔102.(3) and 102.(4)⇔102.(5) are implied by
Lemma 100 and Lemma 101. In particular Lemma 103 implies that every member of F0 and
every full antipodal triangle is an obstruction, Lemma 104 explains that F0 joined with a full
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antipodal triangle is a minimal set of obstruction and, finally, Lemma 105 shows the equivalence
of containing a member of F0 as subgraphs and a member of F as induced subgraph.

In what follows G is chordal graph which is not an atom.

Lemma 103. If G is a path graph, then, for each clique separator C, the C-attachedness graph
of G has neither full antipodal triangles nor copies of any of the graphs in F0 as subgraphs.

Proof. Let C be a clique separator. Let us denote byM the C-attachedness graph of G. Being G
a path graph, then C contains no full antipodal triangles by Lemma 88. Suppose by contradiction
that M contains, as a subgraph, a copy S of F2n+1 or W (0)

2k+1 or W (1)
2k+1. In all cases, S contains

a subgraph F0 on {θ0, θ1 . . . , θ2t}, for some integer t, fulfilling the following conditions:

– θiθi+1 is an antipodal edge of M , i.e., θi ↔ θi+1, for i = 1, . . . , 2t− 1;

– θ0θi is a dominance edge of M , i.e., either θi ≤ θ0 or θ0 ≤ θi, for all i = 1, . . . , 2t.

We claim that:

l) If f is any strong C-coloring of G, then f(θ1) 6= f(θ2t) and f(θ0) ∈ {f(θ1), f(θ2t)}.

Proof of l): By Lemma 94 all triangles {θ0, θi, θi+1} are full, for i = 1, . . . , 2t − 1. Hence, being
f a strong C-coloring, 86.(2) implies that |f({θ0, θi, θi+1})| = 2, for i = 1, . . . , 2t − 1. Thus if
f(θ0) = f(θ1), then f(θ2) 6= f(θ0), f(θ3) = f(θ0), . . . , f(θ2t) 6= f(θ0). Instead, if f(θ0) 6= f(θ1),
then f(θ2) = f(θ0), f(θ3) 6= f(θ0), . . . , f(θ2t) = f(θ0). Hence, in both cases, we proved the
claim. End proof of l).

We now use l) to prove a contradiction to the strong C-colorability of G. Suppose first that
S ∼= F2n+1, for some n, then let V (S) = {η, γ1, . . . , γ2n} where η is the maximum degree vertex
of S. Let F ′ be the subgraph induced by V (S) = {η, γ2, . . . , γ2n−1}. Hence F ′ ∼= F0. By l), γ2

and γ2n−1 have opposite colors and f(γη) ∈ {f(γ2), f(γ2n−1)}. Moreover, the triangles induced
by {η, γ1, γ2} and {η, γ2n−1, γ2n} are both full by Lemma 94 and at least one of them cannot be
2-colored under f .

Suppose now that S ∼= W
(0)
2k+1 or S ∼= W

(1)
2k+1 for some k. Let V (S) = {η, γ1, . . . , γ2k+1} where

η is still the maximum degree vertex of S (if S ∼= W
(1)
2k+1, then let γ1 be the only vertex such

that γ1η is an antipodal edge) and let F ′′ be the subgraph induced by V (S) = {η, γ1, . . . , γ2k}.
Clearly, F ′′ ∼= F0, as well. By l), γ1 and γ2k have opposite colors and f(η) ∈ {f(γ1), f(γ2k)}.
It holds that f(γ2k+1) 6∈ {f(γ2k), f(γ1)} because γ2k+1 ↔ γ2k and γ2k+1 ↔ γ1. Moreover, the
triangles induced by {η, γ1, γ2k+1} and {η, γ2k, γ2k+1} are both full by Lemma 94 and at least
one of them cannot be 2-colored under f . In any case a contradiction to the strong C-colorability
of is achieved.

Lemma 104. If for each clique separator C, the C-attachedness graph of G has neither full
antipodal triangles nor copies of any of the graphs in F0 as subgraphs, then G is path graph.

Proof. By Corollary 87, G is a path graph if and only if G is strong C-colorable for each clique
separator C. We prove the contrapositive statement: if G is not strong C-colorable for some
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8.4. Forbidden subgraphs in attachedness graphs

clique separator C, then the C-attachedness graph M of G contains full antipodal triangles or
some copy of a graph of F0 as subgraphs. Since each graph in F contains some graph of F0 as
subgraph, we show the statement with F in place of F0. Denote by H the C-antipodality graph
and remember that D is a partition of elements of ΓC if there are not full antipodal triple. For
D ∈ D denote by HD the subgraph of H induced by D.

By Theorem 93, G is not a path graph if one of the following apply: C contains a full antipodal
triple, C does not admits a partial C-coloring, the C partial coloring defined on UpperC ∪CrossC
cannot be extended to a weak C-coloring on ΓC . Let (u1, . . . , u`) be any ordering of UpperC .

If C contains a full antipodal triple then this full antipodal triple is also a full antipodal
triangle. If C does not admit a partial C-coloring, then 91.(3) is not be satisfiable; indeed, 91.(1)
and 91.(2) are always satisfiable. Hence there exist γ ∈ Di,j , γ′ ∈ Di and γ′′ ∈ Dj , for some i <
j ∈ [`], such that γ ↔ γ′ and γ ↔ γ′′. Now there are two cases: γ′ ↔ γ′′ or γ′ 6↔ γ′′. If the first
case applies, then {γ, γ′, γ′′, ui} induces a copy of W (1)

3 in M (refer to Lemma 94 and Lemma 95
to determine all colored edges in M). Else, the second case applies and {γ, γ′, γ′′, ui, uj} induces
a copy of DF5.

Thus it remains to study only the case in which C has no full antipodal triangles, C admits a
partial C-coloring g : UpperC ∪CrossC → [`] and g cannot be extended to a weak C-coloring on
ΓC . Being 92.(1) and 92.(2) be always satisfiable by an extension of g (as proved in Lemma 96),
then there exists D ∈ D such that every extension of g does not satifies 92.(3) on D.

Conditions 92.(1), 92.(2) and 92.(3) implies that HD is 2-colored. Only three cases can occur:

– HD is non bipartite. In this case no 2-coloring g of H exists;

– HD is bipartite but it contains a path P with an even number of vertices whose extremal
vertices have the same color under g;

– HD is bipartite but it contains a path P with an odd number of vertices whose extremal
vertices have different color under g;

In the first case, HD contains an odd cycle Q, on 2k+1 vertices, say, as subgraph. Hence, for
u ∈ UpperC ∩D, the subgraph induced by Q∪{u} in H contains a copy of W (0)

2k+1 as a subgraph.
In the second case let Θ = {θ1, . . . , θ2k} be the set of vertices of P . Suppose first that D = Di

for some i ∈ [`]. By definition of g there are γ, γ′ 6∈ Di such that γ ↔ θ1 and γ′ ↔ θ2k. It holds
that γ ↔ ui and γ′ ↔ ui by the transitivity of ≤ and the definition of Di. Now, let N be the
subgraph induced by Θ ∪ {γ, γ′, ui}. If γ = γ′ then N contains W (1)

2k+1 as subgraph. If γ 6= γ′,
then N contains either F2n+1 or F̃2n+1 according to whether γ ↔ γ′ or not. If D = Di,j , then
we obtain the same results with a similar reasoning.

The third case can apply only to D = Di,j for some i, j ∈ [`], because all the elements of
CrossC ∩Di have the same color i under g. Let Θ = {θ1, . . . , θ2k+1} be the set of vertices of P .
By the definition of g there are γ ∈ Di and γ′ ∈ Dj such that γ ↔ θ1 and γ′ ↔ θ2k+1. Then
Θ ∪ {γ, γ′, ui, uj} induces a subgraph in Hi,j that contains DF2n+1 as subgraph.

Lemma 105. Let C be a clique separator of G. If the C-attachedness graph of G has no full
antipodal triangles, then it has a copy of a graph in F0 as a subgraph if and only if it has a copy
of a graph in F as an induced subgraph.
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Proof. Since any graph in F0 is contained as subgraph in one of the graph in F, then one
direction is trivial. Let us prove the other direction. Let H and M be the C-antipodality and
C-attachedness graph of G. We have to prove that if M contains some copy of a graph of F0,
then M contains an induced copy of some graph of F. Let S be a graph of F0. For a cycle Q of
S it is convenient to distinguish between chords that are edges of the antipodality graphs, which
we call a-chords, from those that are edges of the dominance graph, which we call d-chords.

Now, let Q be an antipodal odd cycle of S on 2k + 1 vertices for some integer k ≥ 2, i.e.,
the vertex set of Q is {γ0, . . . , γ2k} and the edges are {γ0γ1, . . . , γ2k−1γ2k, γ0γ2k}, where all the
edges of Q are antipodal edges. Suppose that Q has either no a-chords, that is Q is induced in
H, or Q has precisely the a-chord γ1γ2k. We will show that each graph in F0 contains such a
cycle with possible d-chords with an extremal in γ0. The following fact about such a Q is crucial
to prove the lemma and it implies that if Q has at least one d-cords with an extremal in γ0, then
Q induces in M a copy of F2k+1, DF2k+1 or F̃2k+1.

m) If γ0γj is a d-chord of Q with, say, γj ≤ γ0, j 6∈ {1, 2k}, then Q has d-chords γ0γl with
γl ≤ γ0, for all l 6∈ {1, 2k}. Moreover,

• if Q is induced in H and Q has some other d-chord, then Q possesses either all d-
chords γ1γj with γj ≤ γ1, j 6∈ {0, 2}, or, symmetrically, all the d-chords γ2kγj , with
γj ≤ γ2k, j 6∈ {0, 2k − 1};
• if γ1γq is an a-chord of Q, then Q has no other d-chords.

Proof of m): In the first place, observe that γj−1 ↔ γj and γj+1 ↔ γj trivially imply γj−1 on γj

and γj+1 on γj hence, by Lemma 94, it holds that γ0 on γj−1 and γ0 on γj+1. Thus γ0γj−1 and
γ0γj+1 are d-chords of Q, because the unique possible a-chord is γ1γ2k. Necessarily γj−1 ≤ γ0

for, if not, then γj ≤ γ0 ≤ γj−1 would imply γj ≤ γj−1 contradicting that γj−1 ↔ γj . By the
same reasons, γj+1 ≤ γ0. A repeated application of this argument to j − 1 and j + 1 in place of
j proves the first part of the claim (see Figure 8.4(a)).

The first part of the claim is clearly invariant under automorphisms of Q. Consequently,
we deduce that if Q has another d-chord γhγ` with γ` ≤ γh and h 6∈ {1, 2k}, then Q has also
d-chords γhγ1 and γhγ2k. But this is impossible because it would imply γ2k ≤ γh ≤ γ0 while we
know that γ0 ↔ γ2k. Hence all the other possible d-chords of Q have one extremal in {γ1, γ2k}.
On the other hand Q cannot possess d-chords γ1γh and γ2kγ` for some h, ` ∈ [2k] because, by
the first part of the claim, it would possess the d-chord γ1γ2k and this would imply γ2k ≤ γ1 and
γ1 ≤ γ2k and consequently the contradiction γ1 = γ2k (see Figure 8.4(b) and Figure 8.4(c)).

It remains to prove that if γ1γ2k is an a-chord of Q, then Q has no other d-chords with one
extremal in {γ1, γ2k} (hence no other d-chords at all, as Figure 8.4(d)) shows). Suppose that Q
has a d-chord with one extremal in {γ1, γ2k}, γ1 say. Then Q has the d-chord γ1γ2k−1 by above.
Since γ2k−1 ≤ γ0, γ2k−1 ≤ γ1 and γ2k−1 ↔ γ2k, by Lemma 94 it follows that {γ0, γ1, γ2k} induces
a full antipodal triangle in M , contradicting that M has no such triangles. End proof of m).

We can now complete the proof of the lemma. Let S be a copy in M of any of the three
graphs in F0, and let S have n vertices γ0, γ1, . . . , γn−1. Observe that S possesses an odd cycle
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γ0

γ2k γ1

γ2

γ3

γ2k−1

γ2k−2

(a)

γ0

γ2k γ1

γ2

γ3

γ2k−1

γ2k−2

(b)

γ0

γ2k γ1

γ2

γ3

γ2k−1

γ2k−2

(c)

γ0

γ2k γ1

γ2

γ3

γ2k−1

γ2k−2

(d)

Figure 8.4: graphs in the proof of m). Note that the graph in (a) is isomorphic to F2k+1, while
the graphs in (b) and (c) are isomorphic to DF2k+1, and the graph in (d) is isomorphic to F̃2k+1.

R on at least n− 1 vertices; more precisely, the wheels have an odd cycle on n− 1 vertices and
the fan on n vertices. Let γ0 be the highest degree vertex in S and let HR andMR be the graphs
induced by R in H and M , respectively. Let Q be a cycle with minimum possible order among
the odd cycles of order at least 5 contained in HR. Hence either Q is an odd hole of H or Q is an
odd cycle of H with exactly one a-chord which belongs to a triangle having the other two edges
in Q, otherwise the minimality is denied. Clearly, the dominance edges of S induced by V (Q) are
d-chords of Q. Suppose first that Q has no extra d-chords other than those. In this case we are
done because, V (Q) ∪ {γ0} (possibly θ ∈ V (Q) when S is a fan) induces either a wheel or a fan
or a chorded fan. We may therefore assume that Q possesses some extra d-chord (a dominance
edge of MR which is not in S). Possibly after relabeling, Q is of the form described in m) and Q
possesses all the d-chords γ0γi, i ∈ [n− 1] by m). If Q possesses no other d-chords we are done,
because V (Q) induces either a chorded fan or a fan according to whether or not Q possesses the
unique a-chord γ1γt. If Q possesses some other d-chord, still by m), then Q possesses either all
d-chords γ1γj with γj ≤ γ1, j 6∈ {0, 2}, or all the d-chords γtγj , with γj ≤ γt, j 6∈ {0, t − 1}. In
this case V (Q) induces a double fan in M . The proof is completed.

8.4.2 Comparison with Lévêque, Maffray, and Preissmann’s characterization

We give a brief comparison of our characterization with Lévêque, Maffray, and Preissmann’s
characterization [98], whose list of minimal forbidden subgraphs of path graphs is given in Fig-
ure 8.5.

Table 8.1 gives a kind of dictionary between the two characterizations. The table reads as
follows. For each row of the table, if a chordal graph G contains an induced copy of one of the
subgraphs in the leftmost column (according to the characterization in [98]), then each of the
graphs in the rightmost column occurs as an induced copy in the C-attachedness graph of G+

for some clique separator C (according to our characterization). From the table it is apparent a
sort of coarsening of the obstructions.

We do not prove how we obtain Table 8.1 because it can be proved by enumeration, but
we report few observations. First of all, it is not necessary to build graph G+ but it suffices
to build the attacchedness graph of G, for G equal to every obstruction, and observe that a
full antipodal triangle corresponds to W (0)

3 in the attacchedness graph of G+ (see Lemma 101’s
proof). Obstructions Fi for i ∈ {1, 2, 3, 4, 6, 7, 13, 14, 15} have exactly one clique separator and
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F0(n)n≥4

F1 F2 F3 F4 F5(n)n≥7

F6 F7 F8 F9 F10(n)n≥8

F11(4k)k≥2 F12(4k)k≥2 F13(4k + 1)k≥2 F14(4k + 1)k≥2 F15(4k + 2)k≥2

F16(4k + 3)k≥2

Figure 8.5: Lévêque, Maffray and Preissmann’s exhaustive list of minimal non path graphs [98]
(bold edges form a clique).

thus there is one to one correspondence between obstructions in [98] and ours. Obstructions Fj
for j ∈ {8, 9, 11, 16} have exactly two clique separators that are symmetric, thus they generate the
same obstruction in F. The same applies on obstructions F5(n) and F10(n), where the number
of clique separators grows with n but all clique separators generate similar attacchedness graphs
that have the same obstruction.

We have to give particular attention only on F12(4k) because it has two clique separators that
generate two different attacchedness graphs, moreover, we need to distinguish the case k = 2

and the case k > 2, as we reported in Table 8.1.

Finally we remark that the obstructions in our characterization are 2-edge colored subgraphs
and that they have to be forbidden in each graph of the collection of the attachedness graph of
G+, while in Lévêque, Maffray, and Preissmann’s characterization the obstructions are forbidden
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in the input graph itself.

Family Obstruction

F1, F2, . . . , F9, F10 W
(0)
3

F11(4k)k≥2 W
(0)
2k−1

F12(4k)k≥2 W
(0)
3 , W (1)

3 , (for k = 2), F2k−1, W
(1)
2k−1 (for k > 2)

F13(4k + 1)k≥2 DF2k−1

F14(4k + 1)k≥2 F̃2k+1

F15(4k + 2)k≥2 F2k+1

F16(4k + 3)k≥2 F2k+1

Table 8.1: A dictionary between Lévêque, Maffray and Preissmann’s characterization and State-
ment 102.(4) in Theorem 102. Note that F0 is the obstruction to chordality.
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Chapter 9

A new algorithm to recognize path
graphs and directed path graphs

We present a new recognition algorithm for path graphs and directed path graphs. It has
the same time complexity as the faster recognition algorithms known so far but it does not
require complex data structures and has an easy and intuitive implementation.

9.1 Introduction

In this chapter we present a recognition algorithm that specializes for path graphs and directed
path graphs, it has O(p(m+n)) time complexity (we recall that p denotes the number of cliques).
Our algorithm is based on the characterization of directed path graphs given by Monma and
Wei [102], and the characterization of path graph described in Theorem 93.

On path graph side, our algorithm requires a treatment that is shorter than both algorithms
proposed by Schäffer [127] and Chaplick [36], its implementation is easier and it does not need
complex data structures, while Chaplick’s algorithm is based on PQR-trees and Schäffer’s one is
a complex backtracking algorithm.

On directed path graph side, to the best of our knowledge, our algorithm is the only one
that does not use results by Chaplick et al. [37], in which it is given a linear algorithm able to
establish whether a path graph is a directed path graph too (as stated in Theorem 11).

In this way, we do not improve time complexity but we unify and strictly simplify the study
of path graphs and directed path graphs from an algorithmic point of view. Main results are in
Theorem 115 and Theorem 117.

9.2 Recognition algorithm for path graphs

In this section we introduce algorithm RecognizePathGraphs, that is able to recognize path
graph. In Subsection 9.2.1 we show the algorithm and we prove its correctness. In Subsec-
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tion 9.2.2 we show its time complexity.
For convenience in the following corollary we resume all the conditions of the characterization

of path graphs described in Theorem 93, which is based on Definition 91 and Definition 92.

Corollary 106. A chordal graph G is a path graph if and only if G is an atom or for a clique
separator C each graph γ ∈ ΓC is a path graph, UpperC has no full antipodal triangles and there
exists f : ΓC → [r + 1] such that:

106.(1) for all i ∈ [r], f(ui) = i;

106.(2) for all i ∈ [r], f(Di) ⊆ {i, r + 1};

106.(3) for all i < j ∈ [r], f(Di,j) ⊆ {i, j};

106.(4) for all i ∈ [r], for all γ ∈ Di, if ∃u ∈ UpperC such that γ ↔ u, then f(γ) = i;

106.(5) for all i < j ∈ [r], for all γ ∈ Di,j such that ∃γ′ ∈ Dk, for k ∈ {i, j}, satisfying γ ↔ γ′,
then f(γ) = {i, j} \ {k};

106.(6) for all D ∈ DC , for all γ, γ′ ∈ D such that γ ↔ γ′, f(γ) 6= f(γ′).

9.2.1 The algorithm and its correctness

Now we present algorithm RecognizePathGraphs. Note that it is an implementation of Corol-
lary 106 with very small changes. W.l.o.g., we assume that G is connected, indeed, a graph G
is a path graph if and only if all its connected components are path graphs. Moreover, we can
obtain the clique path tree of G by merging arbitrarily the clique path tree of each connected
component.

Algorithm RecognizePathGraphs

Input: a graph G
Output: if G is a path graph, then return a clique path tree of G; else return FALSE

Step 1 Test if G is chordal. If not, then return FALSE.

Step 2 If G has at most two cliques, then return a clique path tree of G. Else find a clique
separator C, let ΓC = {γ1, . . . , γs}, γi = G[Vi ∪C], be the set of connected components
separated by C.

Step 3 Recursively test the graphs γ ∈ ΓC . If any one is not a path graph, then return FALSE,
otherwise, return a clique path tree Tγ for each γ ∈ ΓC .

Step 4 Compute ΓC/ ∼ and initialize f(γ) = NULL, for all γ ∈ ΓC/ ∼. Compute UpperC and
fix an order of its element, i.e., UpperC = (u1, . . . , ur), and set f(ui) = i, for all i ∈ [r].
If a full antipodal triangle in UpperC is found, then return FALSE. Compute Di, for all
i ∈ [r], and Di,j , for i < j ∈ [r].

Step 5 For all i ∈ [r], if there exist γ ∈ Di and γ′ ∈ UpperC such that γ ↔ γ′, then f(γ) = i.

Step 6 For all i ∈ [r], extend f to all elements of Di so that f(Di) ⊆ {i, r+1} and f(γ) 6= f(γ′)

for all γ, γ′ ∈ Di satisfying γ 6↔ γ′. If it is not possible, then return FALSE.
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Step 7 For all i < j ∈ [r]

• if there exist γ ∈ Di,j , γ′ ∈ Di, γ′′ ∈ Dj , such that γ ↔ γ′ and γ ↔ γ′′, then return
FALSE;

• if there exist γ ∈ Di,j and γ′ ∈ Dj such that γ ↔ γ′, then f(γ) = i;

• if there exist γ ∈ Di,j and γ′ ∈ Di such that γ ↔ γ′, then f(γ) = j.

Step 8 For all i < j ∈ [r], extend f to all elements of Di,j so that f(Di,j) ⊆ {i, j} and
f(γ) 6= f(γ′) for all γ, γ′ ∈ Di,j satisfying γ 6↔ γ′. If it is not possible, then return
FALSE.

Step 9 Convert the coloring f : ΓC/ ∼→ [r + 1] in a clique path tree of ΓC .

Theorem 107. Given a graph G, algorithm RecognizePathGraphs can establish whether G is
a path graph. If it so, algorithm RecognizePathGraphs returns a clique path tree of G.

Proof. The first three steps of algorithm RecognizePathGraphs are implied by the first part of
Corollary 106. By following Corollary 106, we have to check that there are no full antipodal
triangles in UpperC (this is made in Step 4), and we have to find f : ΓC → [r + 1] satisfy-
ing 106.(1),. . . ,106.(6), where r = |UpperC |. The latter part is done in Step 5, Step 6, Step 7
and Step 8. In particular Step 5 is implied by 106.(4), Step 7 by 106.(5), Step 6 and Step 8 both
by 106.(6). Finally, Step 9 completes the recursion started in Step 3. At the end of recursion we
have to build the clique path three on ΓC .

9.2.2 Implementation details and time complexity

In this subsection we analyze all steps of algorithm RecognizePathGraphs. We want to explain
them in details and compute the computational complexity of the algorithm. Some of these steps
are already discussed in [127], anyway, we describe them to have a complete treatment.

Step 1 and Step 2

We can recognize chordal graphs in O(m + n) time by using either an algorithm due to Rose
et al. [125], or an algorithm due to Tarjan and Yannakakis [133]. Both recognition algorithms
can be extended to an algorithm that also produces a clique tree in O(m + n) time [108]. In
particular, we can list all cliques of G. It holds that a clique in C is a separator clique if and
only if it is not a leaf of the clique tree.

Step 3

This step can be done by calling recursively algorithm RecognizePathGraphs for all γ ∈ ΓC .
Obviously, Step 1 has to be done only for G, indeed, the property to be chordal is inherited by
subgraphs.

From now on, we focus exclusively on the recursive part of algorithm RecognizePathGraphs.
Thus we suppose that G is a chordal graph that is not an atom and G is separated by a clique
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separator C. Let ΓC = {γ1, . . . , γs} be the set of connected components and we assume that all
elements in ΓC are path graphs. It holds that s ≥ 2 because C is a clique separator.

Step 4 and Step 5

We have to compute ΓC/ ∼, this problem is already solved in [127]. Thus we first report some
definitions and results in [127].

For each γ ∈ ΓC , let Tγ be the clique path tree of γ. Let nγ be the unique neighbour of C in
Tγ (its uniqueness is proved in [102], in particular, it is proved that C is a leaf of Tγ). Moreover,
let W (γ) = V (nγ) ∩ V (C).

Definition 108 ([127]). Let γ ∈ ΓC and v ∈ V (C). We define F (γ, v) as the node of Tγ
representing the clique containing v that is furthest from C. We observe that if v 6∈ W (γ), then
F (γ, v) = ∅.

By using Definition 108, one can obtain the following lemma.

Lemma 109 ([127]). Let γ, γ′ ∈ ΓC . It holds that

γ′ ≤ γ ⇔ γ ∩ γ′ 6= ∅ and F (γ, v) = F (γ, v′) for all v, v′ ∈W (γ′).

Moreover, computing if γ′ ≤ γ and/or γ′ ↔ γ costs min(|W (γ)|, |W (γ′)|).

Remark 110 ([127]). To compute F (γ, v) we do one breath-first traversal of Tγ starting at nγ.
Each time we visit a new node C ′, for each v ∈ V (C ′), if v ∈ V (C), we update F (γ, v). This
costs constant time for each pair (C ′, v) such that C ′ is a clique in γ and v ∈ V (C ′). There are
at most m+ n such pairs.

Now we return to the discussion of computing ΓC/ ∼. First, we sort all γ ∈ ΓC so that the
γi precedes γj , if |W (γi)| ≥ |W (γj)|: we compute W (γ) for all γ ∈ ΓC (it costs |W (γ)| for each
γ), then the sort can be executed in O(s) time by using bucket sort (we remember that s ≤ n).

Now, let γ, γ′, γ′′ ∈ ΓC satisfy |W (γ)| = |W (γ′)| = |W (γ′′)| and v ∈W (γ) ∩W (γ′) ∩W (γ′′),
for any v ∈ C. By Lemma 109, we check if γ ∼ γ′ in O(|W (γ)|) time. If γ 6∼ γ′, then either
(γ′′ ∼ γ or γ′′ ∼ γ′) or {γ, γ′, γ′′} is a full antipodal triangle (this follows from definition of ↔
and W ). Hence we can compute ΓC/ ∼ in O(

∑
γ∈ΓC

|W (γ)|) time, indeed, each element in ΓC

need to be checked with at most two other elements in ΓC .
To argue with the second part of Step 4, let u(v) = {γ ∈ UpperC | v ∈ W (γ)}. Note that

|u(v)| ≤ 2 for all v ∈ V (C), otherwise u(v) ⊇ {ui, uj , uk} for some v ∈ V (C), thus {ui, uj , uk} is
a full antipodal triangle. Hence, by Lemma 109, γ ∈ UpperC if and only if there does not exist
any ui ∈ UpperC such that F (ui, v) = F (ui, v

′) 6= ∅ for all v, v′ ∈ W (γ). Hence, to establish
whether γ is in UpperC it is sufficient to look at u(v) for all v ∈ W (γ). By using a similar
argument, we can compute D, for D ∈ D. Also Step 5 can be done with a similar procedure.
Hence these steps can be performed in O(

∑
γ∈ΓC

|W (γ)|) time.
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Step 6 and Step 8

We define fi(·) as f(·) after Step i requiring that in Step i algorithm RecognizePathGraphs does
not return FALSE. We will use f5, f7 and f9.

Lemma 111. The following statements hold:

111.(1) let i ∈ [r] and let γ, γ′ ∈ Di be such that γ′ ≤ γ. If f5(γ) = NULL, then f5(γ′) = NULL;

111.(2) let i < j ∈ [r] and let γ, γ′ ∈ Di,j be such that γ′ ≤ γ. If f7(γ) = NULL, then f7(γ′) =

NULL.

Proof. We prove both statements separately.

111.(1) Assume by contradiction that f5(γ′) 6= NULL and f5(γ) = NULL. By Step 5 there exists
i 6= k ∈ [r] such that uk ↔ γ′, and thus uk, γ′ are neighboring of v, for some v ∈ C. Thus
γ′ is a neighboring of v by transitivity of ≤. Hence it holds either γ ≤ uk, or uk ≤ γ, or
uk ↔ γ. Now, uk 6≤ γ because uk ∈ UpperC , γ 6≤ uk because γ ∈ Di and k 6= i. Thus
uk ↔ γ and Step 5 implies f5(γ) = i = f5(γ′), absurdum.

111.(2) Assume by contradiction that f7(γ′) 6= NULL and f7(γ) = NULL. W.l.o.g., let us assume
that f7(γ′) = i. By Step 7, there exists η ∈ Dj such that η ↔ γ′. Thus η ./ γ by
transitivity of ≤. Hence, as before, it holds either γ ≤ η, or η ≤ γ, or η ↔ γ. Now, η 6≤ γ,
otherwise η ∈ Di,j , γ 6≤ η, otherwise γ ≤ η by transitivity of ≤. Thus η ↔ γ and Step 7
implies f7(γ) = i = f7(γ′), absurdum.

Lemma 112. Step 6 and Step 8 have O(
∑

γ∈ΓC
|W (γ)|) time complexity.

Proof. It suffices to prove that Step 8 for D = Di,j can be executed in O(
∑

γ∈Di,j |W (γ)|).
Indeed, the same procedure can be applied for Step 6 for D = Di.

Let Colored be the set of elements of Di,j already colored before Step 8, i.e., Colored =

{γ ∈ Di,j | f7 6= NULL}. We first check that there are not γ, γ′ ∈ Colored such that γ ↔ γ′ and
f(γ) = f(γ′).

We sort elements of Di,j = (γ1, . . . , γ|Di,j |) so that |W (γk)| ≥ |W (γk+1)|, for k ∈ [|D| − 1]

(this can be done in Step 4 without adding cost). We visit elements in Colored by following this
order. For any v ∈ W (Di,j) we define `i(v) as the lowest γ ∈ Di,j w.r.t ≤ among all visited
element satisfying f7(γ) = i. Similarly, we define `j(v). We initialize `i(v) = `j(v) = ∅ for all
v ∈W (Di,j).

Let γ ∈ Colored, and, w.l.o.g., let us assume that f7(γ) = i. Then γ is not antipodal to
previous visited elements colored with i if `i(u) = `i(v) for all u, v ∈ W (γ). Indeed, either
`i(v) = ∅ for all v ∈ W (γ) and thus γ 6./ γ′ for all visited γ′ colored with i, or `i(v) = γ′ for all
v ∈ W (γ) and hence there cannot exist γ′′ already visited satisfying γ′′ ↔ γ because it would
imply `i(v) = γ′′ for some v ∈ γ′′.

Now we deal with uncolored elements. We define Uncolored as the set of all elements of Di,j

that have not an assigned color. We say that γ ∈ Uncolored is solved if there exist u, v ∈ W (γ)

such that `i(u) 6= `i(v) or `j(u) 6= `j(v). Note that if γ is solved, then either we can set
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(uniquely) its color or we have to return FALSE; both cases are implied by Lemma 111 and the
above reasoning done for Colored.

For all v ∈ W (Di,j) we write γ ∈ Mv if v ∈ W (γ), γ ∈ Uncolored and |W (γ)| is maximal
among all γ′ ∈ Uncolored satisfying v ∈ W (γ′). Note that |Mv| ≤ 2 for all v ∈ W (Di,j),
otherwise there would be a full antipodal triangle.

Now we describe how to set the color of elements in Uncolored. We search (in any order)
v ∈W (Di,j) such thatMv is solved. We observe that if we visitMv beforeMu, Mv is not solved,
Mu is solved and W (Mu) ∩W (Mv) 6= ∅, then Mv becomes solved after the (uniquely) choose of
the color of Mu. Moreover, if for all v ∈ W (Di,j) Mv is not solved, then for all γ ∈ Uncolored
and γ ∈ Di,j \Uncolored it holds γ 6↔ γ′ because of definition of Mi(v)’s. Thus the 2-coloration
of Di,j required in Step 8 (if it exists) it is not unique, and thus we can choose v ∈W (Di,j) and
the color of Mv arbitrarily.

In this way we visit each γ ∈ Di,j at most two times and each time we spend at most
O(|W (γ)|) time. Finally, we can update `i(v)’s and `j(v)’s each time we visit an element γ of
Colored or we set the color of γ′ in Uncolored in O(|W (γ)|) and O(|W (γ′)|) time, respectively.
We update Mv’s in O(1) time if we represent Mv as a vector; we build these vectors varying
v ∈W (Di,j) in O(

∑
γ∈Di,j |W (γ)|) time. The thesis follows.

Step 7

In the proof of the following lemma we show how to do Step 7.

Lemma 113. Step 7 has O(
∑

γ∈D |W (γ)|) time complexity.

Proof. For all k ∈ [r] let `k(v) be as defined in the proof of Lemma 112, thus we can assume that
we know `k(v) for all k ∈ [r] and v ∈ uk after Step 6. We need the following result.

n) let k ∈ {i, j}, then ∃γ′ ∈ Dk such that γ ↔ γ′ if and only if γ ↔ `k(v), for any v ∈W (γ).

Proof of n): The “only if part” is trivial. For the “if part”, let us assume by contradiction that
γ 6↔ `k(v) for all v ∈ W (γ) and that there exists γ′ ∈ Dk such that γ ↔ γ′. Let v ∈ W (γ), if
γ 6↔ `k(v), then γ ≤ `k(v), because of definitions of `k(v) and Dk. By generality of v, γ ≥ `k(v′)
for all v′ ∈ W (γ). Now, let z ∈ W (γ) ∩W (γ′). It holds that `k(z) ≤ γ′, by definition of `k(z),
hence γ ≤ γ′, absurdum. End proof of n).

Now let i < j ∈ [r]. To do Step 7 for Di,j , for all γ ∈ Di,j , by n) it suffices to choose an
arbitrary v ∈ W (γ) and check if γ ↔ `i(v) and γ ↔ `j(v). By Lemma 109, it costs O(|W (γ)|)
time. The thesis follows.

Step 9

Let C be the clique separator of G fixed at Step 2. In [102] (proof of Proposition 9) it is shown
how to build a clique path tree on the cliques in ΓC starting from a coloring satisfying 86.(1)
and 86.(2) in O(|ΓC |) time. Finally, by Theorem 107, f9 satisfies 86.(1) and 86.(2), and Lemma 89
implies that Step 9 has O(|ΓC |) time complexity.
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Time complexity

In Theorem 115 we show that algorithm RecognizePathGraphs has O(p(m+n)) time complexity
by summarizing the results of previous subsections and by using the following lemma.

Lemma 114 ([127]). For every clique separator C of G, then
∑

γ∈ΓC
(|W (γ)|) ≤ m+ n.

Theorem 115. Algorithm RecognizePathGraphs can establish whether a graph G is a path
graph in O(p(m+ n)) time.

Proof. By Theorem 107, it suffices to prove that algorithm RecognizePathGraphs can be exe-
cuted in O(p(m + n)) time. Step 1 and Step 2 have O(m + n) time complexity, while Step 3
has p times the complexity of steps 4,...,9. Let C be the clique separator in a recursive call of
Step 3. Steps 4, . . . , 8 can be executed in O(

∑
γ∈ΓC

|W (γ)|) time and Step 9 has O(|ΓC |) time
complexity. By Lemma 114 and being |ΓC | ≤ n for all clique separators C, the thesis follows.

9.3 Recognition algorithm for directed path graphs

In this section we present algorithm RecognizeDirectedPathGraphs that is able to recognize
directed path graphs. It is based on Theorem 10 and on algorithm RecognizePathGraphs, both
algorithms have the same time complexity.

Thanks to Theorem 10, fixed a clique separator C, we have to check if HΓC is 2-colorable;
where HX = (X, {γγ′ | γ, γ′ ∈ X and γ ↔ γ′}) for each X ⊆ ΓC .

If HΓC is 2-colorable, then there are no antipodal triangles in ΓC . Moreover, the absence of
antipodal triangles implies the absence of full antipodal triangles. Thus, if there are no antipodal
triangles in ΓC , then Di and Di,j ’s form a partition of ΓC , as proved in Chapter 8.

We can 2-color elements of ΓC in the following order: first we 2-color UpperC , then, for all
D ∈ D, we color all elements in D that are antipodal to at least one element not in D, finally,
for all D ∈ D, we color all elements in D that are antipodal to other elements in D. This
procedure is correct even if there are more connected component in HΓC . Indeed, we note that
if u, u′ ∈ UpperC are in two distinct connected components of HUpperC , then u, u

′ are also in two
distinct connected components of HΓC because of definition of UpperC and relations ≤ and ↔.
Moreover, fixed D ∈ D, elements in D that are antipodal to elements not in D have the color
uniquely determined if the colors of UpperC are already fixed. Thus we have proved the following
theorem (note that 116.(1) implies that there are no full antipodal triangles in UpperC).

Theorem 116. A chordal graph G is a directed path graph if and only if G is an atom or for a
clique separator C each graph γ ∈ ΓC is a directed path graph and there exists f : ΓC → {0, 1}
such that:

116.(1) for all u, u′ ∈ UpperC , if u↔ u′, then f(u) 6= f(u′);

116.(2) for all i ∈ [r], for all γ ∈ Di if ∃u ∈ UpperC such that γ ↔ u, then f(γ) = f(ui);

116.(3) for all i < j ∈ [r], for all γ ∈ Di,j such that ∃γ′ ∈ Dk, for k ∈ {i, j}, satisfying γ ↔ γ′,
then f(γ) = {0, 1} \ f(uk);
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116.(4) for all D ∈ DC , for all γ, γ ∈ D such that γ ↔ γ′, f(γ) 6= f(γ′).

Theorem 116 implies algorithm RecognizeDirectedPathGraphs. For a proof of its correct-
ness, we remind to Theorem 107’s proof, by using Theorem 10 in place of Theorem 9.

Algorithm RecognizeDirectedPathGraphs

Input: a graph G
Output: if G is a directed path graph, then return a directed clique path tree of G; else

return FALSE

Step 1.D Test if G is chordal. If not, then return FALSE.

Step 2.D If G has at most two cliques, then return a directed clique path tree of G. Else find
a clique separator C, let ΓC = {γ1, . . . , γs}, γi = G(Vi ∪ C), be the set of connected
components separated by C.

Step 3.D Recursively test the graphs γ ∈ ΓC . If any one is not a directed path graph, then
return FALSE, otherwise, return a directed clique path tree Tγ for each γ ∈ ΓC .

Step 4.D Compute ΓC/ ∼ and initialize f(γ) = NULL, for all γ ∈ ΓC/ ∼. Function f has values
in {0, 1}. Compute UpperC and fix an order of its element, i.e., UpperC = (u1, . . . , ur).
Assign values of f to elements in UpperC so that antipodal elements have different
color. If it is not possible, then return FALSE. Compute Di, for all i ∈ [r], and Di,j ,
for i < j ∈ [r].

Step 5.D For all i ∈ [r]

• if there exist γ ∈ Di, u, u′ ∈ UpperC such that γ ↔ u, γ ↔ u′, f(u) 6= f(u′),
then return FALSE;
• if there exist γ ∈ Di and u ∈ UpperC such that γ ↔ u, then f(γ) 6= f(u).

Step 6.D For all i ∈ [r], extend f to all elements of Di so that f(γ) 6= f(γ′) for all γ, γ′ ∈ Di

satisfying γ 6↔ γ′. If it is not possible, then return FALSE.

Step 7.D For all i < j ∈ [r]

• if there exist γ ∈ Di,j , γ′ ∈ Di, γ′′ ∈ Dj , such that γ ↔ γ′ and γ ↔ γ′′, then
return FALSE;
• if there exist γ ∈ Di,j and γ′ ∈ Dj such that γ ↔ γ′, then f(γ) = f(ui);
• if there exist γ ∈ Di,j and γ′ ∈ Di such that γ ↔ γ′, then f(γ) = f(uj).

Step 8.D For all i < j ∈ [r], extend f to all elements of Di,j so that f(γ) 6= f(γ′) for all
γ, γ′ ∈ Di,j satisfying γ 6↔ γ′. If it is not possible, then return FALSE.

Step 9.D Convert the coloring f : ΓC → {0, 1} in a directed clique path tree of ΓC .

Every step of algorithm RecognizeDirectedPathGraphs has the same time complexity of the
corresponding step of algorithm RecognizePathGraphs. We do not need a proof of it except for
Step 4.D (the part regarding the 2-coloring of UpperC) and Step 9.D.
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For the complexity of Step 9.D we proceed as in algorithm RecognizePathGraphs. Let C
be the clique separator of G fixed at Step 3.D. In [102] (proof of Proposition 9) it is shown how
to build a directed clique path tree on the cliques in ΓC starting from a 2-coloring of HΓC in
O(|ΓC |) time. This is also the complexity of Step 9.D.

To 2-color UpperC in Step 4.D, note that u, u′ ∈ UpperC are antipodal if and only if W (u)∩
W (u′) 6= ∅. Thus Step 4.D requires O(

∑
u∈UpperC

|W (u)|) time by using the same technique
explained in Subsection 9.2.2.

Consequently, the following theorem applies.

Theorem 117. Algorithm RecognizeDirectedPathGraphs can establish whether a graph G is
a directed path graph in O(p(m+ n)) time.
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Conclusions

In this thesis we argue mainly with non-crossing shortest paths in plane graphs and path graphs
from a theoretical and algorithmic point of view.

All existing algorithms for the NCSP problem [130, 131] obtain the union of non-crossing
shortest paths but are not able neither to compute paths’ lengths nor to list a path in time
proportional to its length. In [131] both problems are solved only in the restricted case when the
union of non-crossing shortest paths is a forest but, in the general case, the union may contain
cycles. Thanks to this thesis, these drawbacks are overcome. We give a linear time algorithm
able to compute lengths of all the non-crossing shortest paths in total linear time and we succeed
in covering the union of non-crossing paths with four forests so that every path is contained in
at least one forest. In this way we can list a path in time proportional to its length by using
the result by Gabow and Tarjan [54]. Moreover, we describe several structural properties of
non-crossing shortest paths as shortcuts and their Path Covering with Forests Number, and we
also solve the NCSP problem in the unweighted case in linear time. All these results can be
easily applied in a geometric setting, where it is asked to search for paths in polygons instead of
plane graphs.

We use non-crossing shortest paths also to compute an additive guaranteed approximation
of the vitality of all edges and vertices with bounded capacity with respect to the st-max flow
in undirected planar graphs. This allows us to determine the edges and vertices with highest
vitality in time equal or close to the time currently required for the computation of the st-max
flow. Moreover, we obtain some optimal results in the integer capacity case.

We also present two new characterizations of path graphs. To the best of our knowledge,
our first characterization is the only one that directly describes a polynomial algorithm. In the
second one we give a list of local minimal forbidden subgraphs. We use our first characterization
to describe a recognition algorithm that specializes for path graphs and directed path graphs.
This algorithm does not improve the time complexity of existing recognition algorithms but we
unify and simplify both recognition problems from an algorithmic point of view.

Open problems and future work. Regarding non-crossing shortest paths in plane graphs,
we left open the problem of finding the union of non-crossing shortest paths in o(n log log k)

time also in the weighted case; such a result would also imply solving planar max flow. All our
results can be extended to the case of terminal pairs lying on two distinct faces, by the same
argument shown in [131]; we wish to investigate the case in which terminal pairs lying on a
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bounded number of faces or the case where each terminal pair contains only one vertex on the
infinite face of the plane graph.

About edge and vertex vitalities, it is still open the problem of computing the exact vitality
of all edges and vertices of an undirected planar graph within the same time bound as computing
the max flow value, as in the st-planar case.

Our approach used to characterize path graphs may be extended to rooted path graphs,
for which a list of minimal forbidden subgraphs is unknown, even if some partial results were
found [33, 65, 66].

With the introduction of the Path Covering with Forests Number, we propose an original
nuance on the classical covering problem and we would like to deal with the Path Covering with
Forests Number in a more general context. The first generalization is to ask whether the Path
Covering with Forests Number of a set of non-crossing single-touch shortest paths in a plane
graph is bounded by a constant, even if the extremal vertices of the paths are not required to lie
on the same face. We conjecture that such a constant exists for general plane graph thanks also
to the following remark, whose proof is omitted.

Remark 118. Let P be a set of non-crossing single-touch shortest paths in a plane graph G and
let v be a vertex of G. Then all paths of P containing v form a tree.

Conjecture 119. There exists ` ∈ N such that PCFN(P ) ≤ `, for any set P of non-crossing
single-touch shortest paths in a plane graph.

The Path Covering with Forests Number can be studied also for a set of paths P beyond
planar graphs, as in k-planar graphs [112], k-quasi-planar graphs [1], RAC graphs [44], fan-
crossing-free graphs [39], fan-planar graphs [84], k-gap-planar graphs [14]; a complete survey
about these graph classes can be found in [76].

It would be interesting to investigate the Path Covering with Forests Number in the case
of crossing paths in plane graphs or related graph classes. As shown in Section 7.1, for a set
of crossing paths P , its Path Covering with Forests Number may depend on |P |. To deal with
these cases it is necessary to understand “how much” the paths cross each others. In [126] several
notions about crossing, crossing number and variants are explained, thus the Path Covering with
Forests Number can be studied with respect to these measures. We note that in [126] the notions
are given for graphs, but they can be extended to sets of paths.

Clearly, the Path Covering with Forests Number can be generalized to other covering families
as done for the arboricity or the classical covering problem. Thus we can introduce, for exam-
ple, the Path Covering with Stars Number, the Path Covering with Caterpillars Number, Path
Covering with Planar Graphs Number and so on. We hope that more results on Path Covering
with Forests Number or its variants for particular graphs and paths classes could lead to more
efficient algorithms for shortest paths and distance problems.
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