A data ecosystem (DE) offers a keystone-player or alliance-driven infrastructure that enables the interaction of different stakeholders and the resolution of interoperability issues among shared data. However, despite years of research in data governance and management, trustability is still affected by the absence of transparent and traceable data-driven pipelines. In this work, we focus on requirements and challenges that DEs face when ensuring data transparency. Requirements are derived from the data and organizational management, as well as from broader legal and ethical considerations. We propose a novel knowledge-driven DE architecture, providing the pillars for satisfying the analyzed requirements. We illustrate the potential of our proposal in a real-world scenario. Last, we discuss and rate the potential of the proposed architecture in the fulfillmentof these requirements.

Knowledge-Driven Data Ecosystems Toward Data Transparency / Geisler, S.; Vidal, M. -E.; Cappiello, C.; Loscio, B. F.; Gal, A.; Jarke, M.; Lenzerini, M.; Missier, P.; Otto, B.; Paja, E.; Pernici, B.; Rehof, J.. - In: ACM JOURNAL OF DATA AND INFORMATION QUALITY. - ISSN 1936-1955. - 14:1(2022), pp. 1-12. [10.1145/3467022]

Knowledge-Driven Data Ecosystems Toward Data Transparency

Lenzerini M.;
2022

Abstract

A data ecosystem (DE) offers a keystone-player or alliance-driven infrastructure that enables the interaction of different stakeholders and the resolution of interoperability issues among shared data. However, despite years of research in data governance and management, trustability is still affected by the absence of transparent and traceable data-driven pipelines. In this work, we focus on requirements and challenges that DEs face when ensuring data transparency. Requirements are derived from the data and organizational management, as well as from broader legal and ethical considerations. We propose a novel knowledge-driven DE architecture, providing the pillars for satisfying the analyzed requirements. We illustrate the potential of our proposal in a real-world scenario. Last, we discuss and rate the potential of the proposed architecture in the fulfillmentof these requirements.
2022
Data transparency; Data ecosystem; Data Management; Knowledge and data
01 Pubblicazione su rivista::01a Articolo in rivista
Knowledge-Driven Data Ecosystems Toward Data Transparency / Geisler, S.; Vidal, M. -E.; Cappiello, C.; Loscio, B. F.; Gal, A.; Jarke, M.; Lenzerini, M.; Missier, P.; Otto, B.; Paja, E.; Pernici, B.; Rehof, J.. - In: ACM JOURNAL OF DATA AND INFORMATION QUALITY. - ISSN 1936-1955. - 14:1(2022), pp. 1-12. [10.1145/3467022]
File allegati a questo prodotto
File Dimensione Formato  
Geisler_Knowledge-Driven_2021.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 910.8 kB
Formato Adobe PDF
910.8 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1670948
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 24
social impact