We study nested variational inequalities, which are variational inequalities whose feasible set is the solution set of another variational inequality. We present a projected averaging Tikhonov algorithm requiring the weakest conditions in the literature to guarantee the convergence to solutions of the nested variational inequality. Specifically, we only need monotonicity of the upper- and the lower-level variational inequalities. Also, we provide the first complexity analysis for nested variational inequalities considering optimality of both the upper- and lower-level.

On the solution of monotone nested variational inequalities / Lampariello, L; Priori, G; Sagratella, S. - In: MATHEMATICAL METHODS OF OPERATIONS RESEARCH. - ISSN 1432-2994. - 96:3(2022), pp. 421-446. [10.1007/s00186-022-00799-5]

On the solution of monotone nested variational inequalities

Lampariello, L
;
Priori, G
;
Sagratella, S
2022

Abstract

We study nested variational inequalities, which are variational inequalities whose feasible set is the solution set of another variational inequality. We present a projected averaging Tikhonov algorithm requiring the weakest conditions in the literature to guarantee the convergence to solutions of the nested variational inequality. Specifically, we only need monotonicity of the upper- and the lower-level variational inequalities. Also, we provide the first complexity analysis for nested variational inequalities considering optimality of both the upper- and lower-level.
2022
nested variational inequality; purely hierarchical problem; tikhonov method; complexity analysis
01 Pubblicazione su rivista::01a Articolo in rivista
On the solution of monotone nested variational inequalities / Lampariello, L; Priori, G; Sagratella, S. - In: MATHEMATICAL METHODS OF OPERATIONS RESEARCH. - ISSN 1432-2994. - 96:3(2022), pp. 421-446. [10.1007/s00186-022-00799-5]
File allegati a questo prodotto
File Dimensione Formato  
Lampariello_On-the_2022.pdf

accesso aperto

Note: DOI https://doi.org/10.1007/s00186-022-00799-5
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 453.19 kB
Formato Adobe PDF
453.19 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1669590
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact