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Abstract
We study nested variational inequalities, which are variational inequalities whose fea-
sible set is the solution set of another variational inequality. We present a projected
averaging Tikhonov algorithm requiring the weakest conditions in the literature to
guarantee the convergence to solutions of the nested variational inequality. Specifically,
we only need monotonicity of the upper- and the lower-level variational inequalities.
Also, we provide the first complexity analysis for nested variational inequalities con-
sidering optimality of both the upper- and lower-level.

Keywords Nested variational inequality · Purely hierarchical problem · Tikhonov
method · Complexity analysis

Mathematics Subject Classification 90C33 · 90C25 · 90C30 · 65K15 · 65K10

1 Introduction

We focus on solving (upper-level) variational inequalities whose feasible set is given
by the solution set of another (lower-level) variational inequality. These problems are
commonly referred to as nested variational inequalities and they represent a flexible
modelling tool when it comes to solving, for instance, problems arising in finance (see,
e.g., the most recent Lampariello et al. (2021) for an application in the multi-portfolio
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selection context) as well as several other fields (see, e.g., Facchinei et al. 2014; Scutari
et al. 2012 for resource allocation problems in communications and networking).

As far as the literature on nestedVIs is concerned, it is still in its infancy if compared
to the bilevel instance of hierarchical optimization or,more generally, bilevel structures
as in Dempe (2002), Lampariello and Sagratella (2017, 2020) and Lampariello et al.
(2019). However, there are two main solution methods that are most adopted in the
field-related literature: hybrid-like techniques (see, e.g., Lu et al. 2009; Marino and
Xu 2011; Yamada 2001) and Tikhonov-type schemes (see, e.g. Lampariello et al.
(2020) for the latest developments andKalashnikov andKalashinikova (1996) for some
earlier developments, as well as Facchinei et al. (2014) and the references therein). It
should be pointed out that hybrid-like procedures very often require particularly strong
assumptions [(e.g. demanding co-coercivity of the lower-level map as in Lu et al.
(2009), Marino and Xu (2011) and Yamada (2001)] in order to ensure convergence or
to work properly at all. Hence, we rely on the Tikhonov paradigm drawing from the
general schemes proposed in Facchinei et al. (2014) and Lampariello et al. (2020),
however asking for less stringent assumptions and combining the Tikhonov approach
with a new averaging procedure.

We widen the scope and expand the applicability of nested variational inequali-
ties by showing for the first time in related literature that solutions can be provably
computed in the more general framework of simply monotone upper- and lower-level
variational inequalities. Specifically, in Facchinei et al. (2014) and Lampariello et al.
(2020), where as far as we are aware themost advanced results are obtained, the upper-
level map is required to be monotone plus. Relying on a combination of a Tikhonov
approach with an averaging procedure, the algorithmwe propose is shown to converge
provably to a solution of a nested variational inequality where the upper-level map is
required to be just monotone.

We also obtain complexity results for our method. Except for Lampariello et al.
(2020), not only does this analysis represent the only other complexity study in the
literature of nested variational inequalities, it is also the first one in the field dealing
with upper-level optimality.

2 Problem definition andmotivation

Let us consider the nested variational inequality VI
(
G,SOL(F,Y )

)
, whereG : Rn →

R
n is the upper-level map, and SOL(F,Y ) is the solution set of the lower-level

VI(F,Y ). We recall that, given a subset Y ⊆ R
n and a mapping F : R

n → R
n ,

the variational inequality VI(F,Y ) is the problem of computing a vector x ∈ R
n such

that

x ∈ Y , F(x)T (y − x) ≥ 0, ∀ y ∈ Y . (1)

In other words, VI
(
G,SOL(F,Y )

)
is the problem of finding x ∈ R

n that solves

x ∈ SOL(F,Y ), G(x)T (y − x) ≥ 0, ∀ y ∈ SOL(F,Y ). (2)
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As it is clear from (2), the feasible set of VI
(
G,SOL(F,Y )

)
is implicitly defined as

the solution set of the lower-level VI(F,Y ). The nested variational inequality (2) we
consider has a purely hierarchical structure in that the lower-level problem (1) is non
parametric with respect to the upper-level variables, unlike the more general bilevel
structures presented in Lampariello and Sagratella (2020). Under mild conditions, VIs
equivalently reformulate NEPs so that in turn, by means of structure (2), we are able
to model well-known instances of bilevel optimization and address multi-follower
games.

We introduce the following blanket assumptions which are widely adopted in the
literature of solution methods for variational inequalities:

(A1) the upper-level map G is Lipschitz continuous with constant LG and monotone
on Y ;

(A2) the lower-level map F is Lipschitz continuous with constant LF and monotone
on Y ;

(A3) the lower-level feasible set Y is nonempty, convex and compact.

Due to (A2) and (A3), SOL(F,Y ) is a nonempty, convex, compact and not necessarily
single-valued set, see e.g. Facchinei and Pang (2003, Section 2.3). As a consequence,
the feasible set of the nested variational inequality (2) is not necessarily a singleton.
Moreover, thanks to (A1), the solution set of the nested variational inequality (2) can
include multiple points.

Notice that assumption (A1) on the upper-level map G is much less demanding
than the one required in Facchinei et al. (2014) and Lampariello et al. (2020). Specif-
ically, here we assume G to be only monotone, while in Facchinei et al. (2014) and
Lampariello et al. (2020) it must be monotone plus.

For the sake of completeness, we recall that a mapping G : Y ⊆ R
n → R

n is said
to be monotone plus on Y if both the following conditions hold:

1. G is monotone on Y , i.e. (G(x) − G(y))T (x − y) ≥ 0 ∀ x, y ∈ Y ;
2. (x − y)T (G(x) − G(y)) = 0 ⇒ G(x) = G(y) ∀ x, y ∈ Y .

Consequently, we are now able to dispose of the monotonicity plus assumption on
operator G, which inevitably represents a more stringent condition when compared
to plain monotonicity, thus hereby asking for G to be simply monotone. Indeed,
whenever the upper-level map G is nonsymmetric, requiring G to be monotone plus
is “slightly less” than assuming G to be strongly monotone (see, e.g. Bigi et al. 2021).
In fact, the main objective of this work is to define, for the first time in the field-
related literature, an algorithm (Algorithm 1) which is able to compute solutions of
the monotone nested variational inequality (2), under the weaker assumptions (A1)-
(A3), see the forthcoming Theorem 1.

In addition, we study complexity properties of Algorithm 1 in detail, see Theorems
2 and 3. We highlight that all steps in Algorithm 1 can be readily implemented and no
nontrivial computations are required, see e.g. the numerical illustration in Sect. 5.

Summarizing,

– we show that the algorithm we propose is globally (subsequential) convergent to
solutions of monotone nested variational inequalities under the weakest conditions
in the literature,
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– we provide the first complexity analysis for nested variational inequalities consid-
ering optimality of both the upper- and lower-level [instead in Lampariello et al.
(2020) just lower-level optimality is contemplated].

3 A projected averaging Tikhonov algorithm

For the sake of notation, let us introduce the following operator:

�τ (x) � F(x) + 1

τ
G(x),

which is the classical operator used to define subproblems in Tikhonov-like methods.
For any τ ∈ R++, by assumptions (A1) and (A2), �τ is monotone and Lipschitz con-
tinuous with constant L� � LF + LG on Y . Moreover, the following finite quantities
are useful in the forthcoming analysis:

H � max
y∈Y ‖G(y)‖2, R � max

y∈Y ‖F(y)‖2, D � max
v,y∈Y ‖v − y‖2.

For the sake of clarity, let us recall that, by definition, the Euclidean projection PY (x)
of a vector x ∈ R

n onto a closed convex subset Y ⊆ R
n is the unique solution of the

strongly convex (in y) problem

minimize
y

1

2
(y − x)T (y − x)

s.t. y ∈ Y .

The solution of the latter problem is a unique vector ȳ ∈ Y that is closest to x in
the Euclidean norm [see, e.g. Facchinei and Pang (2003, Th.1.5.5) for an exhaustive
overview on the Euclidean projector and its properties].

In our analysiswe rely on approximate solutions ofVIs. Specifically,we say that x ∈
K approximately solves VI(�, K ) (with � continuous and K convex and compact)
if

�(x)	(y − x) ≥ −ε, ∀ y ∈ K , (3)

where ε ≥ 0. Relation (3), for example, when VI(�, K ) defines the first-order opti-
mality conditions of a convex problem, guarantees that the problem is solved up to
accuracy ε. Relation (3), in view of assumption (A3), is equivalent to

min
y∈K �(x)	(y − x) ≥ −ε. (4)

We remark that �(x)	(y − x) is linear in y; moreover, if K is polyhedral (as, e.g., in
the multi-portfolio selection context) computing miny∈K �(x)	(y − x) amounts to
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solving a linear optimization problem. In any event, we assume this computation to
be easy to do in practice.

With the following result we relate approximate solutions of the VI subproblem

�τ (x)
	(y − x) ≥ −εsub, ∀ y ∈ Y , (5)

where εsub ≥ 0, with approximate solutions of problem (2).

Proposition 1 Assume conditions (A1)-(A3) to hold, and let x ∈ Y be a solution of the
VI subproblem (5) with τ > 0 and εsub ≥ 0. It holds that

G(x)	(y − x) ≥ −εup, ∀y ∈ SOL(F,Y ), (6)

with εup ≥ εsubτ , and

F(x)	(y − x) ≥ −εlow, ∀y ∈ Y , (7)

with εlow ≥ εsub + 1
τ
HD.

Proof We have for all y ∈ SOL(F,Y ):

−εsubτ ≤ [τ F(x) + G(x)]	 (y − x)

≤ [τ F(y) + G(x)]	 (y − x)

≤ G(x)	(y − x),

where the first inequality is due to (5), the second one comes from the monotonicity
of F , and the last one is true because x ∈ Y and then F(y)	(x − y) ≥ 0. That is (6)
is true.

Moreover, we have for all y ∈ Y :

F(x)	(y − x) = �τ (x)
	(y − x) − 1

τ
G(x)	(y − x)

≥ −εsub − 1

τ
HD,

where the inequality is due to (5). Therefore we get (7). ��

Proposition 1 suggests a way to solve, with a good degree of accuracy, the hierarchical
problem (2). That is solving the VI subproblem (5) with a big value for τ and an
εsub sufficiently small in order to make εsubτ small enough. Following this path,
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we propose a Projected Averaging Tikhonov Algorithm (PATA), see Algorithm 1, to
compute solutions of problem (2).

Algorithm 1: Projected Averaging Tikhonov Algorithm (PATA)

Data: {ε̄i } ⊆ R+, {τ̄ i } ⊆ R++, γ k ∈ (0, 1], w0 = z0 = y0 ∈ Y , i, l ← 0;

for k = 0, 1, . . . do
(S.1) εk = ε̄i , τ k = τ̄ i ;
(S.2) yk+1 = PY (yk − γ k−l�τ k (y

k));

(S.3) zk+1 =
∑k+1

j=l γ j−l y j

∑k+1
j=l γ j−l

;

(S.4) if miny∈Y �τ k (z
k+1)	(y − zk+1) ≥ −εk then

wi+1 = zk+1, i = i + 1, l = k + 1;
end

end

Some comments about PATA are in order. Index i denotes the outer iterations that
occur when the condition in step (S.4) is verified, and they correspond to solutions
wi+1 of the VI subproblems (5) with εsub = ε̄i and τ = τ̄ i . The sequence {yk} is
obtained by making classical projection steps with stepsizes γ k , see step (S.2). The
sequence {zk} consists of the inner iterations needed to compute a solution of the VI
subproblem (5), and it is obtained by performing a weighted average on the points
y j , see step (S.3). Index l is included in order to let the sequence of the stepsizes
{γ k} restart at every outer iteration and to consider only the points y j belonging to the
current subproblem to compute zk+1.

We remark that the condition in step (S.4) only requires the solution of an opti-
mization problem with a linear objective function over the convex set Y (see the
discussion about inexact solutions of VIs below relation (4)). In Sect. 5 we give a
practical implementation of PATA.

In the following section we show that Proposition 1 can be used to prove that PATA
effectively computes solutions of problem (2).

4 Main convergence properties

First of all we deal with convergence properties of PATA.

Theorem 1 Assume conditions (A1)-(A3) to hold, and let conditions

∞∑

k=0

γ k = ∞,

∑∞
k=0(γ

k)2
∑∞

k=0 γ k
= 0,

1

τ̄ i
↓ 0,

∞∑

i=0

1

τ̄ i
= ∞, ε̄i = c

(τ̄ i )β
, (8)

hold with β > 1 and c > 0. Every limit point of the sequence {wi } generated by PATA
is a solution of problem (2).

Proof First of all we show that i → ∞. Assume by contradiction that this is not true,
therefore there exists an index k̄ such that the condition in step (S.4) is violated for
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every k ≥ k̄, and either k̄ = 0 or the condition in step (S.4) is satisfied at the iteration
k̄ − 1. We denote τ̄ = τ k̄ , and observe that τ k = τ̄ for every k ≥ k̄.

For every j ∈ [k̄, k], and for any v ∈ Y , we have

‖y j+1 − v‖22 = ‖PY (y j − γ j−k̄�τ̄ (y j )) − v‖22
≤ ‖y j − γ j−k̄�τ̄ (y j ) − v‖22
= ‖y j − v‖22 + (γ j−k̄)2‖�τ̄ (y j )‖22 − 2γ j−k̄�τ̄ (y j )	(y j − v),

and, in turn,

�τ̄ (y
j )	(v − y j ) ≥ ‖y j+1 − v‖22 − ‖y j − v‖22

2γ j−k̄
− γ j−k̄

2
‖�τ̄ (y

j )‖22.

Summing, we get

∑k
j=k̄

γ j−k̄�τ̄ (y j )	(v−y j )
∑k

j=k̄
γ j−k̄

≥
∑k

j=k̄

(
‖y j+1−v‖22−‖y j−v‖22−(γ j−k̄ )2‖�τ̄ (y j )‖22

)

2
∑k

j=k̄
γ j−k̄

=
(
‖yk+1−v‖22−‖yk̄−v‖22−

∑k
j=k̄

(γ j−k̄)2‖�τ̄ (y j )‖22
)

2
∑k

j=k̄
γ j−k̄

≥ −
(
‖yk̄−v‖22+

∑k
j=k̄

(γ j−k̄ )2‖�τ̄ (y j )‖22
)

2
∑k

j=k̄
γ j−k̄

,

(9)

which implies

�τ̄ (v)	(v − zk) = 1∑k
j=k̄

γ j−k̄

∑k
j=k̄ γ j−k̄�τ̄ (v)	(v − y j )

≥ −
(
‖yk̄−v‖22+

∑k
j=k̄

(γ j−k̄ )2‖�τ̄ (y j )‖22
)

2
∑k

j=k̄
γ j−k̄

+ 1∑k
j=k̄

γ j−k̄

∑k
j=k̄ γ j−k̄(�τ̄ (v) − �τ̄ (y j ))	(v − y j )

≥ −
(
‖yk̄−v‖22+

∑k
j=k̄

(γ j−k̄ )2‖�τ̄ (y j )‖22
)

2
∑k

j=k̄
γ j−k̄

,

(10)

where the last inequality is due to themonotonicity of�τ̄ . Denoting by z ∈ Y any limit
point of the sequence {zk}, taking the limit in the latter relation and subsequencing,
the following inequality holds:

�τ̄ (v)	(v − z) ≥ −
(
‖yk̄−v‖22+

∑∞
j=k̄ (γ

j−k̄)2‖�τ̄ (y j )‖22
)

2
∑∞

j=k̄ γ j−k̄
= 0,

because
∑∞

j=k̄ γ j−k̄ = +∞ and
(∑∞

j=k̄(γ
j−k̄)2

)
/
(∑∞

j=k̄ γ j−k̄
)

= 0, and then z is

a solution of the dual problem

�τ̄ (v)	(v − z) ≥ 0, ∀v ∈ Y .
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Hence, the sequence {zk} converges to a solution of VI(Y ,�τ̄ ), see e.g. Facchinei
and Pang (2003, Theorem 2.3.5) in contradiction to miny∈Y �τ̄ (zk+1)	(y − zk+1) <

−εk = −εk̄ for every k ≥ k̄.
Therefore the algorithm produces an infinite sequence {wi } such that wi+1 ∈ Y

and

�τ̄ i (w
i+1)	(y − wi+1) ≥ − c

(τ̄ i )β
, ∀ y ∈ Y ,

that is (5) holds at wi+1 with εsub = c
(τ̄ i )β

. By Proposition 1, specifically from (6) and
(7), we obtain

G(wi+1)	(y − wi+1) ≥ − c

(τ̄ i )β−1 , ∀y ∈ SOL(F,Y ), (11)

and

F(wi+1)	(y − wi+1) ≥ − c

(τ̄ i )β
− 1

τ̄ i
H D, ∀y ∈ Y . (12)

Taking the limit i → ∞, and recalling that G and F are continuous and β > 1, we
get the desired convergence property. ��
Conditions (8) for the sequence of stepsizes {γ k} are satisfied, e.g., if we choose

γ k = min
{
1,

a

kα

}
,

with a > 0 and α ∈ (0, 1], see Proposition 4 in the Appendix. Another possible choice
of step-size rule satisfying conditions (8), as shown in Facchinei et al. (2015), is

γ k = γ k−1(1 − θγ k−1), k = 1, ...

where θ ∈ (0, 1) is a given constant, provided that γ 0 ∈ (0, 1]. Both the above
step-size rules satisfy conditions (8), needed for Theorem 1 to be valid.

We remark that, even if we require assumptions that are less stringent with respect
to related literature, we still obtain the same type of convergence as in related literature,
namely subsequential convergence to a solution of problem (2). Note that, thanks to
assumption (A3), at least a limit point of sequence {wi } generated by PATA exists. As
it is common practice when using an iterative algorithm like PATA, referring to (11)
and (12), wi+1 can be considered an approximate solution of problem (2) as soon as

c
(τ̄ i )β−1 and

(
c

(τ̄ i )β
+ 1

τ̄ i
H D

)
are small enough. Clearly, if the upper-level map G is

strongly monotone on Y , the whole sequence {wi } converges to the unique solution
of problem (2).

We consider the so-called natural residual map for VI(�, K ) (with � continuous
and K convex and compact)

U (x) � ‖PK (x − �(x)) − x‖. (13)
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As recalled in Lampariello et al. (2020), the functionU is continuous and nonnegative.
Moreover, U (x) = 0 if and only if x ∈ SOL(�, K ). Specifically, classes of problems
exist forwhich the valueU (x) also gives an actual upper-bound to the distance between
x and SOL(�, K ), see Lampariello et al. (2020) and the references therein. Therefore,
the following condition

U (x) ≤ ε̂, (14)

with ε̂ ≥ 0, is alternative to (3). However, in view of the compactness of K , relations
(3) and (14) turn out to be related to each other: we show in Appendix (Proposition 3)
that if x satisfies (3), then (14) holds with ε̂ ≥ √

ε. Vice versa, condition (14) implies
(3) with ε ≥ (
 + �)̂ε, where 
 � maxv,y∈K ‖v − y‖2 and � � maxy∈K ‖�(y)‖2.

We remark that, whenever Y is not compact, e.g. if Y = R
n , the condition in step

(S.4) of Algorithm 1 involving the classical gap function for VIs (see, e.g., Facchinei
and Pang 2003, page 88) cannot be relied upon and could be replaced by the natural
map-related relation ‖PY (zk+1 − �τ k (z

k+1)) − zk+1‖ ≤ εk , at the price of a slightly
modified convergence analysis.

In order to deal with the convergence rate analysis of our method, we consider the
natural residual map for the lower-level VI(F,Y )

V (x) � ‖PY (x − F(x)) − x‖. (15)

Clearly, the following condition

V (x) ≤ ε̂low, (16)

with ε̂low ≥ 0, is alternative to (7) to take care of the feasibility of problem (2).
In this context, we underline that the convergence rate we establish is intended

to give an upper bound to the number of iterations needed to drive both the upper-
level error εup, given in (6), and the lower-level error ε̂low, given in (16), under some
prescribed tolerances δup and δ̂low, respectively.

Theorem 2 Assume conditions (A1)-(A3) to hold and, without loss of generality,
assume L� < 1. Consider PATA. Given some precisions δup, δ̂low ∈ (0, 1), set

γ k = min

{
1, 1

2k
1
2

}
, τ̄ i = max{1, i}, and ε̄i = 1

(τ̄ i )2
. Let us define the quantity

Imax �
⌈
max

{
1

δup
,
H + 1

δ̂low

}⌉
.

Then, the upper-level approximate problem (6) is solved for x = zk+1 with εup ≤ δup
and the lower-level approximate problem (16) is solved for x = zk+1 with ε̂low ≤ δ̂low
and the condition in step (S.4) is satisfied in at most

σ � Imax

⌈

max

{

I 8max
(D + R)4

(1 − L�)2
C1, I

8
1−2η
max

(D + R)
4

1−2η

(1 − L�)
2

1−2η

C2,η

}⌉

,
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iterations k, where η > 0 is a small number, and

C1 �
(
D2 + 5

4
(R + H)2

)2

, C2,η �
(

(R + H)2

(4η)

) 2
1−2η

. (17)

Proof First of all we show that if i ≥ Imax, we reach the desired result. Specifically,
about the upper-level problem (6), we obtain

εup = ε̄i τ̄ i = 1

i
≤ δup,

where the first equality is due to Proposition 1, and the last inequality follows from
i ≥ Imax ≥ (δup)

−1.
About the lower-level problem (16), preliminarily we observe that

∥∥∥PY (wi+1 − �τ̄i (w
i+1)) − wi+1

∥∥∥
2

≤
√

ε̄i , (18)

becausewi+1 satisfies the condition in step (S.4) with ε̄i , see Proposition 3. Moreover,
we get

ε̂low ≤ 1

τ̄ i
H +

√
ε̄i = H + 1

i
≤ δ̂low,

where the first inequality is due to (26) and (18), and the last inequality follows from
i ≥ Imax ≥ (̂δlow)−1(H + 1).

Now we consider the number of inner iterations needed to satisfy the condition
in step (S.4) with the smallest error ε̄ Imax = I−2

max and for a τ > 0. Without loss of
generality, in the following developments we will assume k̄ = 0, meaning that we are
simply computing the number of inner iterations. By (10), the dual subproblem

�τ (y)
	(y − zk) ≥ −εksub_dual, ∀ y ∈ Y , (19)

is solved for εksub_dual = D2+∑k
j=0(γ

j )2(R+H)2

2
∑k

j=0 γ j
. From Lemma 1, we obtain

k∑

j=0

γ j ≥ k
1
2 ,

k∑

j=0

(γ j )2 ≤ 5

4
+ 1

4
ln(k) ≤ 5

4
+ 1

4η
kη, η > 0,

because

ln(k) =
∫ k

1
t−1dt ≤

∫ k

1
t−1+ηdt ≤ 1

η
kη.
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Therefore

εksub_dual ≤ D2+
(
5
4+ 1

4η k
η
)
(R+H)2

2k
1
2

= D2+ 5
4 (R+H)2

2k
1
2

+
1
4η k

η(R+H)2

2k
1
2

= C
1
2
1

2k
1
2

+ C
1−2η
2

2,η

2k
1−2η
2

≤ max

⎧
⎨

⎩
C

1
2
1

k
1
2

,
C

1−2η
2

2,η

k
1−2η
2

⎫
⎬

⎭
.

(20)

Now we show that

∥∥
∥PY (zk − �τ (z

k)) − zk
∥∥
∥
2

≤
√

εksub_dual√
1 − L�

. (21)

In fact, taking y = vk = PY (zk − �τ (zk)) ∈ Y in (19), we have

εksub_dual ≥ �τ (v
k)	(zk − vk)

= [zk − vk − [zk − vk − �τ (v
k)]]	(zk − vk)

= ‖zk − vk‖22 − [zk − �τ (v
k) − vk]	(zk − vk)

= ‖zk − vk‖22 − [zk − �τ (zk) − vk]	(zk − vk)

−[�τ (zk) − �τ (v
k)]	(zk − vk)

≥ (1 − L�)‖zk − vk‖22,

where the last inequality follows from the Lipschitz continuity of �τ and the charac-
teristic property of the projection.

From Proposition 3 and inequality (21), we obtain the following error for the sub-
problem

�τ (z
k)	(y − zk) ≥ − D + R√

1 − L�

√
εksub_dual, ∀ y ∈ Y , (22)

and then, by (20), the desired accuracy for the subproblem is obtained when

I−2
max = ε̄ Imax ≥ D + R√

1 − L�

max

⎧
⎪⎨

⎪⎩

C
1
4
1

k
1
4

,
C

1−2η
4

2,η

k
1−2η
4

⎫
⎪⎬

⎪⎭
,

that is

k ≥ max

{

I 8max
(D + R)4

(1 − L�)2
C1, I

8
1−2η
max

(D + R)
4

1−2η

(1 − L�)
2

1−2η

C2,η

}

.
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The thesis follows by multiplying the number of outer iterations (i ≥ Imax) for the
number of inner ones. ��

In order to provide other complexity results for our method, we consider the following
proposition, which is the dual counterpart of Proposition 1, and provides a theoretical
basis for Theorem 3.

Proposition 2 Assume conditions (A1)-(A3) to hold, and let x ∈ Y be an approximate
solution of the dual VI subproblem:

�τ (y)
	(y − x) ≥ −εsub_dual, ∀ y ∈ Y , (23)

with τ > 0 and εsub_dual ≥ 0. It holds that x turns out to be an approximate solution
for the dual formulation of problem (2), that is

G(y)	(y − x) ≥ −εup_dual, ∀y ∈ SOL(F,Y ), (24)

with εup_dual ≥ εsub_dualτ , and

F(y)	(y − x) ≥ −εlow_dual, ∀y ∈ Y , (25)

with εlow_dual ≥ εsub_dual + 1
τ
HD.

Proof We have for all y ∈ SOL(F,Y ):

−εsub_dualτ ≤ [τ F(y) + G(y)]	 (y − x)

≤ G(y)	(y − x),

where the first inequality is due to (23) and the last one is true because x ∈ Y and then
F(y)	(x − y) ≥ 0. That is (24) is true.

Moreover, we have for all y ∈ Y :

F(y)	(y − x) = �τ (y)
	(y − x) − 1

τ
G(y)	(y − x)

≥ −εsub_dual − 1

τ
HD,

where the inequality is due to (23). Therefore we get (25). ��

The following theoremconsiders a simplified version of PATA.Specifically, the param-
eter τ is right away initialized to a value sufficiently large to get the prescribed
optimality accuracy. Moreover, approximate optimality for problem (2) is consid-
ered only in its dual version. That said, the complexity bound obtained is better than
the one given by Theorem 2.
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Theorem 3 Assume conditions (A1)-(A3) to hold. Consider PATA. Given some preci-

sion δ ∈ (0, 1), set γ k = min

{
1, 1

2k
1
2

}
, τ̄ 0 = Īmax, and ε̄0 = 0 where

Īmax �
⌈
H + 1

δ

⌉
.

Then, the upper-level approximate dual problem (24) is solved for x = zk+1 with
εup_dual ≤ δ and the lower-level approximate dual problem (25) is solved for x = zk+1

with εlow_dual ≤ δ in at most

σ̄ �
⌈
max

{
Ī 4maxC1, Ī

4
1−2η
max C2,η

}⌉
,

iterations k, where η > 0 is a small number, and C1 and C2,η are given in (17).

Proof First of all we denote with εksub_dual the error with which the current iteration

solves the dual subproblem (23). Notice that as soon as εksub_dual ≤ Ī−2
max, the desired

accuracy for both the upper- and the lower-level dual problems is reached. In fact, as
done in the proof of Theorem 2, and considering Proposition 2, we have:

εup_dual = εksub_dualτ̄
0 = 1

Īmax
≤ δ

where the first equality is due to Proposition 1, and the last inequality follows from
i ≥ Īmax ≥ δ−1, and

εlow_dual ≤ H

τ̄ 0
+
√

εksub_dual = H + 1

Īmax
≤ δ.

where the first inequality is due to (26) and (18), and the last inequality follows from
i ≥ Īmax ≥ δ−1(H + 1).

By (20) we have

εksub_dual ≤ max

⎧
⎪⎨

⎪⎩

C
1
2
1

k
1
2

,
C

1−2η
2

2,η

k
1−2η
2

⎫
⎪⎬

⎪⎭
.

Therefore, εksub_dual ≤ Ī−2
max is implied by

Ī−2
max ≥ max

⎧
⎪⎨

⎪⎩

C
1
2
1

k
1
2

,
C

1−2η
2

2,η

k
1−2η
2

⎫
⎪⎬

⎪⎭
,

123



434 L. Lampariello et al.

that is

k ≥ max

{
I 4maxC1, I

4
1−2η
max C2,η

}
,

and the thesis follows. ��

5 Numerical experiments

We now tackle a practical example which is representative of the fact that, under
assumptions (A1)-(A3), PATA produces the sequence of points {zk} that is (subse-
quentially) convergent to a solution of the hierarchical problem, while the sequence
{yk} never approaches the solution set. Notice that {yk} coincides with the sequence
produced by the Tikhonov methods proposed in Lampariello et al. (2020) when no
proximal term is considered.

Let us examine the selection problem (2), where:

G(y) =
(
0 − 1

2
1
2 0

)(
y1
y2

)
, F(y) =

(
0 1

−1 0

)(
y1
y2

)
, Y = B(0, 1),

where B(0, 1) denotes the unit ball. The unique feasible point and, thus, the unique
solution of the problem is z∗ = (0, 0)T . The assumptions (A1)–(A3) are satisfied, but
notice that G does not satisfy convergence conditions of the Tikhonov-like methods
proposed in Facchinei et al. (2014) and Lampariello et al. (2020) because it is not
monotone plus.

The generic kth iteration of PATA, in this case, should read as reported below:

yk+1 = PY (yk − γ k[F(yk) + 1

τ k
G(yk)]),

where we take, for example, but without loss of generality, τ k = τ ≥ 1 and γ k = γ >

0. We remark that the unique exact solution of the VI subproblem (5) is the origin,
and then every inexact solution, with a reasonably small error, cannot be far from it.
For every k it holds that

yk+1 = PY

((
1 γ ( 1

2τ − 1)
γ (1 − 1

2τ ) 1

)(
yk1
yk2

))
,

hence ‖yk+1‖2 = min

{
1,
√
1 + γ 2( 1

2τ − 1)2 ‖yk‖2
}
. Therefore we consider

‖y0‖2 = 1 and get ‖yk‖2 = 1 for every k, because
√
1 + γ 2( 1

2τ − 1)2 > 1. There-

fore, neither does the sequence {yk} produced by PATA lead to the unique solution z∗
of problem (2), nor does it approach the inexact solution set of the VI subproblem.
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We now consider the sequence {zk} produced by PATA. In order to show that this
sequence leads us to the solution of the hierarchical problem, we analyze a numerical
implementation of the algorithm. Some further considerations are in order before
showing the actual implemented scheme.

– A general rule for the update of the variable zk is given by the following relation:

zk+1 = zkγ sum,l,k + γ k+1−l yk+1

γ sum,l,k + γ k+1−l
,

where

γ sum,l,k �
k∑

j=l

γ j−l ,

which gives us the expression of zk+1 reported in Step (S.3) in PATA. This is
done in order to avoid keeping trace of all y j , j = l, .., k, which carries a heavy
computational weight. Instead, we only need to know the current value of zk , the
sum γ sum,l,k , γ k+1−l and, last but not least, the current point yk+1. This allows us
to save 4 entities only, which is far more convenient.

– Because the feasible set Y = B(0, 1) is the unit ball of radius 1, the computation of
the projection steps (see Step (S.3)) becomes straightforward, since it is sufficient
to divide the argument by its vector norm:

PB(0,1)(w) = w

‖w‖2 ∀w : ‖w‖2 ≥ 1.

Moreover, a closed-form expression for the unique solution u of the minimum
problem at Step (S.4):

u = arg min
y∈B(0,1)

[F(zk+1) + 1

τ k
G(zk+1)]	(y − zk+1)

is achievable. On the basis that the feasible set Y = B(0, 1) becomes an active
constraint at the optimal solutionu, theKKT-multiplier associated to this constraint
is strictly positive. We, of course, do not know the value of the multiplier itself,
but we can impose that the optimal point has Euclidean norm 1, so that it belongs
to the boundary of B(0, 1):

u = − F(zk+1) + 1
τ k
G(zk+1)

‖F(zk+1) + 1
τ k
G(zk+1)‖2

.

We now show the implemented scheme in Algorithm 2.
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Algorithm 2: Practical version of PATA

Data: z0, y0 ∈ B(0, 1), i ← 1, l ← 0, kmax > 0, tol > 0, γ sum,l,k ← 0, a > 0,
α ∈ (0, 1], β > 1;

for k = 1, . . . , kmax do

(S.1) γ k = min
{
1, a

(k−l)α

}
, τ k = i , εk = 1

iβ
;

(S.2) v = yk − γ k[F(yk) + 1
τ k
G(yk)]);

(S.3) if ‖v‖2 ≥ 1 then
yk+1 = v

‖v‖2 ;
else

yk+1 = v;
end

(S.4) zk+1 = zkγ sum,l,k+γ k yk+1

γ sum,l,k+γ k ;

(S.5) u = − F(zk+1)+ 1
τk

G(zk+1)

‖F(zk+1)+ 1
τk

G(zk+1)‖2 ;

(S.6) if [F(zk+1) + 1
τ k
G(zk+1)]	(u − zk+1) ≥ −εk then

if εk ≤ tol then
break

end
i ← i + 1;
l ← k + 1;
γ sum,l,k+1 = 0;

else
γ sum,l,k+1 = γ sum,l,k + γ k ;

end
end
return zk+1.

As far as the steps of Algorithm 2 are concerned, (S.2) and (S.3) perform step (S.2)
of PATA, while (S.5) and (S.6) fulfil step (S.4) of PATA.

We set the parameters kmax = 106, tol = 10−3, a = α = 1
2 , β = 2. Table

1 summarizes the results obtained by running Algorithm 2. It is clear to see how
‖zk+1‖2 tends to 0 as the number of iterations k grows, which is what we expected,
being z∗ = (0, 0)T the unique solution of the problem.

To further reiterate the elements of novelty that PATA displays, we hereby present
some numerical experiments in which PATA performs better than Algorithm 1 pre-
sented in Lampariello et al. (2020). We do not intend to present a thorough numerical
comparison between these solution methods, we just want to show that PATA is a
fundamental solution tool when the classical Tikhonov gradient method presented in
Lampariello et al. (2020) struggles to converge.

Again, for the sake of simplicity we consider Y = B(0, 1). This time, we extend
the problem to encompass n = 100 variables and consider G(x) = MGx + bG and
F(x) = MF , with
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Table 1 Numerical experiment
for PATA

i k εk ‖zk+1‖2
1 1 1.00000 1.00e+00

2 50 0.25000 3.28e−01

3 107 0.11111 1.29e−01

4 165 0.06250 6.78e−02

5 223 0.04000 4.05e−02

6 281 0.02778 2.57e−02

7 339 0.02041 2.01e−02

8 540 0.01562 1.48e−02

9 740 0.01235 1.20e−02

10 1166 0.01000 9.73e−03

.

.

.
.
.
.

.

.

.
.
.
.

20 17691 0.00250 2.55e−03

21 21952 0.00227 2.32e−03

22 27084 0.00207 2.10e−03

23 33167 0.00189 1.92e−03

24 40281 0.00174 1.77e−03

25 48506 0.00160 1.63e−03

26 59199 0.00148 1.49e−03

27 71242 0.00137 1.39e−03

28 84715 0.00128 1.30e−03

29 99699 0.00119 1.21e−03

30 117950 0.00111 1.13e−03

31 137950 0.00104 1.06e−03

32 161698 0.00098 9.88e−04

M∗ =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

v
M∗
1

...

v
M∗
n
2

−v
M∗
n
2

...

−v
M∗
1

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

+ ζuM∗(uM∗ + 0.01wM∗)	, ∗ = G, F,

bG = ζvbG , and vMG , uMG , wMG , vMF , uMF , wMF , and vbG are randomly generated
between 0 and 1, ζ > 0. We remark that when ζ = 0 the problem is a generaliza-
tion of that in the simple example described at the beginning of this section. In our
experiments, we consider the cases ζ = 0.1 and 0.01.

As far as PATA parameters are concerned, for the purpose of the implementation
we set kmax = 5 ·104, a = 1, α = 1

4 and β = 2. As for the Tikhonov scheme proposed
in Lampariello et al. (2020), we set λ = 0.1.
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Following Proposition 1, a merit function for the nested variational inequality (2)
can be given by

optimality measure(k) � max

{
εksubτ

k, εksub + 1

τ k

}
.

We generated 3 different instances of the problem and considered 2 values for ζ , for
a total of 6 different test problems.

Figure 1 shows the evolution of the optimality measure as the number of inner
iterations k grows towards kmax, when both PATAand the classical Tikhonov algorithm
described in Lampariello et al. (2020) are applied to the 6 test problems.

It is clear to see how the practical implementation for PATA always outperforms the
classical Tikhonov in Lampariello et al. (2020), as it needs a significant smaller number
of inner iterations k to reach small values of the optimality measure. However, we
remark that computing averages, such as in step (S.3) of PATA, can be computationally
expensive. Hence, PATA becomes an essential alternative tool when other Tikhonov-
like methods, not including averaging steps, either fail to reach small values of the
optimality measure, as shown in our practical implementation (see Fig. 1), or do not
converge at all.

A similar scenario can be observed also when dealing with nonlinear problems. In
Table 2, we report the numerical results that are obtained by running Algorithm 2 to
address a nonlinear modification of the problem defined at beginning of this section:
in particular, inspired by some of the test problems in Solodov and Svaiter (1999), we
take

G(y) =
(
0 − 1

2
1
2 0

)(
y1
y2

)
, F(y) =

(
0 1

−1 0

)(
y1
y2

)
+
(
max{0, y1}2
max{0, y2}2

)
,

Y = B(0, 1).

The unique solution of this problem is again the origin. As for the previous case, PATA
seems to work well: it reaches a good approximation level of the exact solution in a
fair amount of inner iterations. Note that the nonlinear operator F is monotone on Y
but also strongly monotone on Y \ {(0, 0)}: the strong monotonicity modulus vanishes
when approaching the origin. This issue is clearly reflected in the behavior of a standard
gradient-like version of the algorithm, that is readily obtained neglecting in Algorithm
2 the averaging step, thus taking there zk+1 = yk+1 (see Table 3). Comparing Tables 2
and 3, one can observe as, for the initial outer iterations i , PATA and the non averaged
counterpart perform similarly, while, when approaching the origin, the non averaged
gradient-like procedure struggles to converge (see the number of inner iterations that
performed for each outer iterate in Table 3).
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Fig. 1 Plots a, c and e correspond to the value ζ = 0.01; plots b, d and f correspond to ζ = 0.1. Each row
is related to a different instance of the problem, namely a different seed for the random generation
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Table 2 Numerical experiment
(nonlinear case) for PATA

i k εk ‖zk+1‖2
1 1 1.00000 5.59e−01

2 12 0.25000 3.24e−01

3 32 0.11111 2.60e−01

4 70 0.06250 6.77e−02

5 120 0.04000 4.31e−02

6 174 0.02778 3.03e−02

7 233 0.02041 2.18e−02

8 436 0.01562 1.66e−02

9 489 0.01235 1.27e−02

10 1000 0.01000 1.58e−02

.

.

.
.
.
.

.

.

.
.
.
.

20 1519 0.00250 5.67e−03

21 1570 0.00227 5.93e−03

22 1621 0.00207 6.05e−03

23 1672 0.00189 6.06e−03

24 1722 0.00174 3.95e−03

25 1772 0.00160 4.49e−03

26 1823 0.00148 6.93e−03

27 1873 0.00137 4.53e−03

28 1923 0.00128 4.85e−03

29 1973 0.00119 5.10e−03

30 2023 0.00111 5.28e−03

31 2073 0.00104 5.42e−03

32 2123 0.00098 5.52e−03

6 Conclusions

We have shown that PATA is (subsequentially) convergent to solutions of mono-
tone nested variational inequalities under the weakest conditions in the literature so
far, see Theorem 1. Specifically, besides the standard convexity and monotonicity
assumptions, G is required to be just monotone, while all other papers demand the
monotonicity plus of G, see Facchinei et al. (2014) and Lampariello et al. (2020).

In addition, PATA enjoys interesting complexity properties, see Theorems 2 and
3. Notice that we have provided the first complexity analysis for nested variational
inequalities considering optimality of both the upper- and lower-level. Conversely,
authors in Lampariello et al. (2020) only handled lower-level optimality.

Although the convergence and complexity properties of the method are guaranteed
by the results in Sect. 4, we plan to test numerically PATAmore extensively (also when
addressing nonlinear problems) in order to evaluate more accurately its performances
from a practical point of view.

123



On the solution of monotone nested variational inequalities 441

Table 3 Numerical experiment
(nonlinear case) for the non
averaged gradient-like algorithm

i k εk ‖zk+1‖2
1 1 1.00000 5.59e−01

2 12 0.25000 3.11e−01

3 261 0.11111 1.29e−01

4 1104 0.06250 6.91e−02

5 3390 0.04000 4.40e−02

6 8216 0.02778 3.02e−02

7 17435 0.02041 2.21e−02

8 34201 0.01562 1.66e−02

9 62192 0.01235 1.30e−02

10 106683 0.01000 1.05e−02

11 175259 0.00826 8.68e−03

12 274823 0.00694 7.26e−03

13 415372 0.00592 6.15e−03

14 608135 0.00510 5.28e−03

15 869480 0.00444 4.61e−03

16 1213087 0.00391 4.03e−03

17 1658910 0.00346 3.57e−03

18 2230967 0.00309 3.17e−03

19 2948137 0.00277 2.85e−03

20 3844104 0.00250 2.57e−03

21 4946409 0.00227 2.32e−03

Possible future research may focus on generalizing the problem to consider quasi
variational inequalities as well as generalized variational inequalities. The first step
would be extending Proposition 1 to encompass these more complex variational prob-
lems. We leave this investigation to following works.
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Appendix

The following proposition is instrumental for the discussion regarding the natural map
V in Sect. 4.
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Proposition 3 Let x ∈ K satisfy the primal VI approximate optimality condition (3),
then the natural map approximate optimality condition (14) holds with ε̂ ≥ √

ε. Vice
versa, let x ∈ K satisfy condition (14), then (3) holds with ε ≥ (
 + �)̂ε, where

 � maxv,y∈K ‖v − y‖2 and � � maxy∈K ‖�(y)‖2.
Proof Let z = PK (x − �(x)). If (3) holds, then

−ε ≤ �(x)	(z − x) = [x − z − (x − z − �(x))]	(z − x)
= −‖x − z‖22 − (x − �(x) − z)	(z − x) ≤ −‖x − z‖22 = −U (x)2,

where the last inequality is due to the characteristic property of the projection. There-
fore, (14) holds with ε̂ ≥ √

ε.
Now we consider the case in which (14) holds. Thanks again to the characteristic

property of the projection, we have

[z − (x − �(x))]	(y − z) ≥ 0, ∀y ∈ K ,

and, thus, for all y ∈ K ,

�(x)	(y − x) ≥ (x − z)	(y − z) + �(x)	(z − x)

≥ −(‖y − z‖2 + ‖�(x)‖2)‖x − z‖2
≥ −(
 + �)U (x) ≥ −(
 + �)̂ε.

Therefore, (3) holds with ε ≥ (
 + �)̂ε. ��
The following lemma is helpful to prove Theorems 2 and 3.

Lemma 1 Let {γ k : γ k = min{1, a
kα }}, with α ∈ (0, 1] and a > 0. Setting K ∈ N,

the following upper and lower bounds hold true:

(i) α �= 1 :
∑K

k=0 γ k ≥ �a 1
α � + a

1−α
[(K + 1)1−α − �a 1

α �1−α];
(ii) α = 1 :

∑K
k=0 γ k ≥ �a� + ln

(
( K+1

�a� )a
)
;

(iii) α �= 1
2 :
∑K

k=0(γ
k)2 ≤ �a 1

α � + a2

�a 1
α �2α

+ a2
1−2α [K 1−2α − �a 1

α �1−2α];
(iv) α = 1

2 :
∑K

k=0(γ
k)2 ≤ �a2� + a2

�a2� + a2 ln( K
�a2� ).

Proof In cases (i) and (i i):

∑K
k=0 γ k = ∑K

k=0 min{1, a
kα }

= �a 1
α � +∑K

k=�a 1
α �

a
kα

≥ �a 1
α � + ∫ K+1

�a 1
α � ax

−αdx,

where the inequality is due to the integral test for Harmonic series. When α �= 1 it
follows that:

∑K
k=0 γ k ≥ �a 1

α � + a x1−α

1−α

∣∣K+1

�a 1
α �

= �a 1
α � + a

1−α
[(K + 1)1−α − �a 1

α �1−α],
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whilst, if α = 1, it follows that:

∑K
k=0 γ k ≥ �a� + a ln|x |∣∣K+1

�a�
= �a� + ln

(
( K+1

�a� )a
)

.

In cases (i i i) and (iv):

∑K
k=0(γ

k)2 = ∑K
k=0(min{1, a

kα })2
= �a 1

α � +∑K

k=�a 1
α �

a2

k2α

= �a 1
α � + a2

�a 1
α �2α

+∑K

k=�a 1
α �+1

a2

k2α

≤ �a 1
α � + a2

�a 1
α �2α

+ ∫ K

�a 1
α � a

2x−2αdx,

where, in the third equality, the first term of the series is taken out, whilst the inequality
is once again due to the integral test for Harmonic series.

When α �= 1
2 it follows that:

∑K
k=0(γ

k)2 ≤ �a 1
α � + a2

�a 1
α �2α

+ a2 x1−2α

1−2α

∣∣K
�a 1

α �
= �a 1

α � + a2

�a 1
α �2α

+ a2
1−2α [K 1−2α − �a 1

α �1−2α],

while, if α = 1
2 , it follows that:

∑K
k=0(γ

k)2 ≤ �a2� + a2

�a2� + a2 ln|x |∣∣K�a2�
= �a2� + a2

�a2� + a2 ln( K
�a2� ).

��
The following proposition enables us to use γ k = min{1, a

kα }, which is shown to
satisfy conditions (8) in Theorem 1.

Proposition 4 The sequence of stepsizes {γ k : γ k = min{1, a
kα }}, with α ∈ (0, 1] and

a > 0, satisfies both sets of hypotheses:

(i)
∑∞

k=0 γ k = ∞
(ii)

∑∞
k=0(γ

k)2∑∞
k=0 γ k = 0

needed for Theorem 1 to be valid, see conditions (8).

Proof (i) We need to examine two separate cases, i.e. when α = 1 and α < 1, when
K goes to +∞.

When α = 1:

∞∑

k=0

γ k ≥ lim
K→+∞

(
�a� + ln

((
K + 1

�a�
)a))

= +∞.
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When, instead, α < 1:

∞∑

k=0

γ k ≥ lim
K→+∞

(
�a 1

α � + a

1 − α
[(K + 1)1−α − �a 1

α �1−α]
)

= +∞.

Notice that, if α > 1, the limit would be �a 1
α � − a

1−α
�a 1

α �1−α �= +∞, hence why it
is necessary that α ≤ 1.

(i i) We first show that, if α ∈ ( 12 , 1
]
, the following relation holds:

∞∑

k=0

(γ k)2 ≤ lim
K→+∞

(

�a 1
α � + a2

�a 1
α �2α

+ a2

1 − 2α
[K 1−2α − �a 1

α �1−2α]
)

= �a 1
α � + a2

�a 1
α �2α

− a2

1 − 2α
�a 1

α �1−2α

= C,

which, in turn, implies that:

∑∞
k=0(γ

k)2
∑∞

k=0 γ k
≤ C

+∞ = 0.

When α = 1
2 , it easy to see that:

∑∞
k=0(γ

k)2
∑∞

k=0 γ k
≤ lim

K→+∞
�a2� + a2

�a2� + a2 ln
(

K
�a2�
)

�a2� + 2a[√K + 1 − �a2� 1
2 ]

= lim
K→+∞

(
a2�a2�

K

)

(
2a

2
√
K+1

)

= lim
K→+∞

a(�a2�)√K + 1

K

= lim
K→+∞ a(�a2�)

√
1

K
+ 1

K 2

= 0,

where the first equality follows from L’Hopital’s rule.
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Finally, if α ∈ (0, 1
2

)
, it is once again easy to see that:

∑∞
k=0(γ

k)2
∑∞

k=0 γ k
≤ lim

K→+∞

�a 1
α � + a2

�a 1
α �2α

+ a2
1−2α [K 1−2α − �a 1

α �1−2α]

�a 1
α � + a

1−α
[(K + 1)1−α − �a 1

α �1−α]

= lim
K→+∞

a2
1−2α (1 − 2α)K−2α

a
1−α

(1 − α)(K + 1)−α

= lim
K→+∞

aK−2α

(K + 1)−α

= lim
K→+∞

aK−α

(1 + 1
K )−α

= 0,

where the first equality follows again from L’Hopital’s rule, and the last equality is
true because α > 0. ��
This last lemma is again used in the proof of Theorem 2.

Lemma 2 The following upper bound holds for the lower-level merit function V (see
the definition (15)) at z for every positive τ :

V (z) ≤ 1

τ
‖G(z)‖2 + ‖PY (z − �τ (z)) − z‖2 . (26)

Proof The claim is a consequence of the following chain of relations:

V (z) = ‖PY (z − F(z)) − z‖2
≤ ‖PY (z − F(z)) − PY (z − (F(z) + 1

τ
G(z))‖2

+‖PY (z − (F(z) + 1
τ
G(z)) − z‖2

≤ 1
τ
‖G(z)‖2 + ‖PY (z − (F(z) + 1

τ
G(z)) − z‖2,

where the last inequality follows from the nonexpansive property of the projection
mapping. ��
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