Biases in cognition are ubiquitous. Social psychologists suggested biases and stereotypes serve a multifarious set of cognitive goals, while at the same time stressing their potential harmfulness. Recently, biases and stereotypes became the purview of heated debates in the machine learning community too. Researchers and developers are becoming increasingly aware of the fact that some biases, like gender and race biases, are entrenched in the algorithms some AI applications rely upon. Here, taking into account several existing approaches that address the problem of implicit biases and stereotypes, we propose that a strategy to cope with this phenomenon is to unmask those found in AI systems by understanding their cognitive dimension, rather than simply trying to correct algorithms. To this extent, we present a discussion bridging together findings from cognitive science and insights from machine learning that can be integrated in a state-of-the-art semantic network. Remarkably, this resource can be of assistance to scholars (e.g., cognitive and computer scientists) while at the same time contributing to refine AI regulations affecting social life. We show how only through a thorough understanding of the cognitive processes leading to biases, and through an interdisciplinary effort, we can make the best of AI technology.

Exposing implicit biases and stereotypes in human and artificial intelligence: state of the art and challenges with a focus on gender / Marinucci, L.; Mazzuca, C.; Gangemi, A.. - In: AI & SOCIETY. - ISSN 0951-5666. - 35:(2022), pp. 1-15. [10.1007/s00146-022-01474-3]

Exposing implicit biases and stereotypes in human and artificial intelligence: state of the art and challenges with a focus on gender

Mazzuca C.;
2022

Abstract

Biases in cognition are ubiquitous. Social psychologists suggested biases and stereotypes serve a multifarious set of cognitive goals, while at the same time stressing their potential harmfulness. Recently, biases and stereotypes became the purview of heated debates in the machine learning community too. Researchers and developers are becoming increasingly aware of the fact that some biases, like gender and race biases, are entrenched in the algorithms some AI applications rely upon. Here, taking into account several existing approaches that address the problem of implicit biases and stereotypes, we propose that a strategy to cope with this phenomenon is to unmask those found in AI systems by understanding their cognitive dimension, rather than simply trying to correct algorithms. To this extent, we present a discussion bridging together findings from cognitive science and insights from machine learning that can be integrated in a state-of-the-art semantic network. Remarkably, this resource can be of assistance to scholars (e.g., cognitive and computer scientists) while at the same time contributing to refine AI regulations affecting social life. We show how only through a thorough understanding of the cognitive processes leading to biases, and through an interdisciplinary effort, we can make the best of AI technology.
2022
Knowledge graph; Word embeddings; Implicit biases; Gender; Cognitive semantics
01 Pubblicazione su rivista::01a Articolo in rivista
Exposing implicit biases and stereotypes in human and artificial intelligence: state of the art and challenges with a focus on gender / Marinucci, L.; Mazzuca, C.; Gangemi, A.. - In: AI & SOCIETY. - ISSN 0951-5666. - 35:(2022), pp. 1-15. [10.1007/s00146-022-01474-3]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1669060
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 14
social impact