We consider the model problem where a curve in R3 moves according to the mean curvature flow (the curve shortening flow). We construct a semi-Lagrangian scheme based on the Feynman-Kac representation formula of the solutions of the related level set geometric equation. The first step is to obtain an approximation of the associated codimension-1 problem formulated by Ambrosio and Soner, where the squared distance from the initial curve is used as initial condition. Since the ε-sublevel of this evolution contains the curve, the next step is to extract the curve itself by following an optimal trajectory inside each ε-sublevel. We show that this procedure is robust and accurate as long as the "fattening" phenomenon does not occur. Moreover, it can still single out the physically meaningful solution when it occurs.

A semi-Lagrangian scheme for the curve shortening flow in codimension-2 / Carlini, E.; Falcone, M.; Ferretti, R.. - In: JOURNAL OF COMPUTATIONAL PHYSICS. - ISSN 0021-9991. - 225:2(2007), pp. 1388-1408. [10.1016/j.jcp.2007.01.028]

A semi-Lagrangian scheme for the curve shortening flow in codimension-2

Abstract

We consider the model problem where a curve in R3 moves according to the mean curvature flow (the curve shortening flow). We construct a semi-Lagrangian scheme based on the Feynman-Kac representation formula of the solutions of the related level set geometric equation. The first step is to obtain an approximation of the associated codimension-1 problem formulated by Ambrosio and Soner, where the squared distance from the initial curve is used as initial condition. Since the ε-sublevel of this evolution contains the curve, the next step is to extract the curve itself by following an optimal trajectory inside each ε-sublevel. We show that this procedure is robust and accurate as long as the "fattening" phenomenon does not occur. Moreover, it can still single out the physically meaningful solution when it occurs.
Scheda breve Scheda completa
2007
Curve shortening; mean curvature motion; semi-Lagrangian scheme
01 Pubblicazione su rivista::01a Articolo in rivista
A semi-Lagrangian scheme for the curve shortening flow in codimension-2 / Carlini, E.; Falcone, M.; Ferretti, R.. - In: JOURNAL OF COMPUTATIONAL PHYSICS. - ISSN 0021-9991. - 225:2(2007), pp. 1388-1408. [10.1016/j.jcp.2007.01.028]
File allegati a questo prodotto
File
Carlini_A-semi-langrangian-scheme_2007.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/11573/1668559`