The underground disposal of high-level nuclear waste is a pressing issue for several countries. In Switzerland, the Opalinus Clay formation is a shale with favorable barrier properties. However, small-to-large faults intersecting the formation bring the long-term integrity of the future repositories into question. Here we present the first systematic laboratory study on the frictional strength, stability, dilatancy, and permeability of simulated Opalinus Clay gouge under typical repository conditions. Wet gouges exhibit an extremely low coefficient of friction (μ f ~0.16), velocity-strengthening behavior, and shear-enhanced dilatancy at the onset of slip, and permeability increase. Conversely, dry gouges remain weak (μ f ~0.36) but exhibit a transition from unstable to stable sliding with increasing sliding velocity. Thus, we infer that faults hosted in Opalinus Clay could be easily reactivated via aseismic creep, possibly acting as poor fluid conduits. However, if temporarily dried, the faults become potentially unstable, at least, at low sliding velocities (<~10 μm/s).

Contrasting mechanical and hydraulic properties of wet and dry fault zones in a proposed shale‐hosted nuclear waste repository / Orellana, L. F.; Giorgetti, C.; Violay, M.. - In: GEOPHYSICAL RESEARCH LETTERS. - ISSN 0094-8276. - 46:3(2019), pp. 1357-1366. [10.1029/2018GL080384]

Contrasting mechanical and hydraulic properties of wet and dry fault zones in a proposed shale‐hosted nuclear waste repository

Giorgetti C.;
2019

Abstract

The underground disposal of high-level nuclear waste is a pressing issue for several countries. In Switzerland, the Opalinus Clay formation is a shale with favorable barrier properties. However, small-to-large faults intersecting the formation bring the long-term integrity of the future repositories into question. Here we present the first systematic laboratory study on the frictional strength, stability, dilatancy, and permeability of simulated Opalinus Clay gouge under typical repository conditions. Wet gouges exhibit an extremely low coefficient of friction (μ f ~0.16), velocity-strengthening behavior, and shear-enhanced dilatancy at the onset of slip, and permeability increase. Conversely, dry gouges remain weak (μ f ~0.36) but exhibit a transition from unstable to stable sliding with increasing sliding velocity. Thus, we infer that faults hosted in Opalinus Clay could be easily reactivated via aseismic creep, possibly acting as poor fluid conduits. However, if temporarily dried, the faults become potentially unstable, at least, at low sliding velocities (<~10 μm/s).
2019
clay-rich faults; nuclear waste storage; Opalinus Clay; rock friction
01 Pubblicazione su rivista::01a Articolo in rivista
Contrasting mechanical and hydraulic properties of wet and dry fault zones in a proposed shale‐hosted nuclear waste repository / Orellana, L. F.; Giorgetti, C.; Violay, M.. - In: GEOPHYSICAL RESEARCH LETTERS. - ISSN 0094-8276. - 46:3(2019), pp. 1357-1366. [10.1029/2018GL080384]
File allegati a questo prodotto
File Dimensione Formato  
Orellana_Contrasting_2019.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.33 MB
Formato Adobe PDF
4.33 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1668155
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact