Reynolds–averaged Navier–Stokes (RANS) simulations with sub-models of turbulence, chemistry, fluid-surface interaction, and radiation of the internal ballistics of a 1000 N paraffin-oxygen breadboard are performed in this work. Firstly, the effects of the pre-chamber and post-chamber cavities at the initial, average, and final diameter of a reference burn are assessed to be negligible. Then, numerical simulations modeling the fuel shape change in space and time are compared to simulations performed at uniform port radius. The latter provide reasonable regression rate, pressure, and final grain profile predictions with reduced computational cost. On the other hand, the more computationally expensive fuel shape change simulations raise the model prediction capabilities and ensure a more accurate comparison with experimental data. The fuel shape change approach is finally applied with success to simulations of a throttled burn.

Numerical simulations of fuel shape change in paraffin-oxygen hybrid rocket engines / Migliorino, M. T.; Gubernari, G.; Bianchi, D.; Nasuti, F.; Cardillo, D.; Battista, F.. - (2022). (Intervento presentato al convegno AIAA Aviation 2022 Forum tenutosi a Chicago, IL, USA) [10.2514/6.2022-3563].

Numerical simulations of fuel shape change in paraffin-oxygen hybrid rocket engines

Migliorino M. T.
;
Gubernari G.;Bianchi D.;Nasuti F.;
2022

Abstract

Reynolds–averaged Navier–Stokes (RANS) simulations with sub-models of turbulence, chemistry, fluid-surface interaction, and radiation of the internal ballistics of a 1000 N paraffin-oxygen breadboard are performed in this work. Firstly, the effects of the pre-chamber and post-chamber cavities at the initial, average, and final diameter of a reference burn are assessed to be negligible. Then, numerical simulations modeling the fuel shape change in space and time are compared to simulations performed at uniform port radius. The latter provide reasonable regression rate, pressure, and final grain profile predictions with reduced computational cost. On the other hand, the more computationally expensive fuel shape change simulations raise the model prediction capabilities and ensure a more accurate comparison with experimental data. The fuel shape change approach is finally applied with success to simulations of a throttled burn.
2022
AIAA Aviation 2022 Forum
CFD; hybrid rockets; paraffin
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Numerical simulations of fuel shape change in paraffin-oxygen hybrid rocket engines / Migliorino, M. T.; Gubernari, G.; Bianchi, D.; Nasuti, F.; Cardillo, D.; Battista, F.. - (2022). (Intervento presentato al convegno AIAA Aviation 2022 Forum tenutosi a Chicago, IL, USA) [10.2514/6.2022-3563].
File allegati a questo prodotto
File Dimensione Formato  
Migliorino_numerical-simulations_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.73 MB
Formato Adobe PDF
2.73 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1667613
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact