We study the semisimplicity of the category KLk for affine Lie superalgebras and provide a super analog of certain results from [8]. Let KLfin be the subcategory of KLk consisting k of ordinary modules on which a Cartan subalgebra acts semisimply. We prove that KLfin is semisimple when 1) k k is a collapsing level, 2) Wk (g, θ) is rational, 3) Wk (g, θ) is semisimple in a certain category. The analysis of the semisimplicity of KLk is subtler than in the Lie algebra case, since in super case KLk can contain indecomposable modules. We are able to prove that in many cases when KLfin is semisimple we indeed have KLfin = KLk, which kk therefore excludes indecomposable and logarithmic modules in KLk. In these cases we are able to prove that there is a conformal embedding W → V_k(g) with W semisimple (see Section 10). In particular, we prove the semisimplicity of KLk for g = sl(2|1) and k = −(m+1)/(m+2) , m ∈ Z≥0. For g = sl(m|1), we prove that KLk is semisimple for k = −1, but for k a positive integer we show that it is not semisimple by constructing indecomposable highest weight modules in KLfin

On the semisimplicity of the category KLk for affine Lie superalgebras / Adamovic, D.; Moseneder Frajria, P.; Papi, P.. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 405:(2022), p. 108493. [10.1016/j.aim.2022.108493]

On the semisimplicity of the category KLk for affine Lie superalgebras

Papi P.
2022

Abstract

We study the semisimplicity of the category KLk for affine Lie superalgebras and provide a super analog of certain results from [8]. Let KLfin be the subcategory of KLk consisting k of ordinary modules on which a Cartan subalgebra acts semisimply. We prove that KLfin is semisimple when 1) k k is a collapsing level, 2) Wk (g, θ) is rational, 3) Wk (g, θ) is semisimple in a certain category. The analysis of the semisimplicity of KLk is subtler than in the Lie algebra case, since in super case KLk can contain indecomposable modules. We are able to prove that in many cases when KLfin is semisimple we indeed have KLfin = KLk, which kk therefore excludes indecomposable and logarithmic modules in KLk. In these cases we are able to prove that there is a conformal embedding W → V_k(g) with W semisimple (see Section 10). In particular, we prove the semisimplicity of KLk for g = sl(2|1) and k = −(m+1)/(m+2) , m ∈ Z≥0. For g = sl(m|1), we prove that KLk is semisimple for k = −1, but for k a positive integer we show that it is not semisimple by constructing indecomposable highest weight modules in KLfin
2022
Vertex algebras; affine superalgebras; category KL
01 Pubblicazione su rivista::01a Articolo in rivista
On the semisimplicity of the category KLk for affine Lie superalgebras / Adamovic, D.; Moseneder Frajria, P.; Papi, P.. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - 405:(2022), p. 108493. [10.1016/j.aim.2022.108493]
File allegati a questo prodotto
File Dimensione Formato  
Adamovic_preprint_On-the-semisemplicity_2022.pdf

accesso aperto

Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 448.49 kB
Formato Adobe PDF
448.49 kB Adobe PDF
Adamovic_On-the-semisemplicity_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 605.49 kB
Formato Adobe PDF
605.49 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1666785
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact