In this work, the thermal fluctuations of fluid in metastable conditions have been theoretically investigated. The fluid is described with a diffuse interface approach based on the Van der Waals squared-gradient theory (SGT), where the free energy is augmented by a density square gradient term to take into account capillary effects. By averaging physical observables on coarse-graining cells, it is found that capillarity strongly modifies the fluctuation statistics when increasing fluid metastability. A remarkable difference with respect to simple fluid description is also detected when approaching nanoscopic scales. Peculiarly, near spinodal loci, the classical theory envisages a divergent behavior of density fluctuations intensity, while the SGT provides a finite variance of the density field. The scaling behavior of density fluctuations near spinodal lines is analytically derived and discussed. Finally, the correlation length of the capillary system is identified for different metastabilities. Also in the latter case, the critical exponents are theoretically calculated. The theoretical results are corroborated by Landau–Lifshitz–Navier–Stokes fluctuating hydrodynamics simulations.

Thermal fluctuations in metastable fluids / Gallo, M.. - In: PHYSICS OF FLUIDS. - ISSN 1070-6631. - 34:12(2022). [10.1063/5.0132478]

Thermal fluctuations in metastable fluids

M. Gallo
Primo
Conceptualization
2022

Abstract

In this work, the thermal fluctuations of fluid in metastable conditions have been theoretically investigated. The fluid is described with a diffuse interface approach based on the Van der Waals squared-gradient theory (SGT), where the free energy is augmented by a density square gradient term to take into account capillary effects. By averaging physical observables on coarse-graining cells, it is found that capillarity strongly modifies the fluctuation statistics when increasing fluid metastability. A remarkable difference with respect to simple fluid description is also detected when approaching nanoscopic scales. Peculiarly, near spinodal loci, the classical theory envisages a divergent behavior of density fluctuations intensity, while the SGT provides a finite variance of the density field. The scaling behavior of density fluctuations near spinodal lines is analytically derived and discussed. Finally, the correlation length of the capillary system is identified for different metastabilities. Also in the latter case, the critical exponents are theoretically calculated. The theoretical results are corroborated by Landau–Lifshitz–Navier–Stokes fluctuating hydrodynamics simulations.
2022
thermal fluctuations; fluctuating hydrodynamics; metastability; Landau-Lifshitz-Navier-Stokes
01 Pubblicazione su rivista::01a Articolo in rivista
Thermal fluctuations in metastable fluids / Gallo, M.. - In: PHYSICS OF FLUIDS. - ISSN 1070-6631. - 34:12(2022). [10.1063/5.0132478]
File allegati a questo prodotto
File Dimensione Formato  
Gallo_Thermal_2022.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.3 MB
Formato Adobe PDF
1.3 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1662502
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact