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In this work, the thermal fluctuations of fluid in metastable conditions have been theoretically investigated.
The fluid is described with a diffuse interface approach based on the Van der Waals squared-gradient theory
(SGT), where the free energy is augmented by a density square gradient term to take into account capillary
effects. By averaging physical observables on coarse-graining cells, it is found that capillarity strongly modifies
the fluctuation statistics when increasing fluid metastability. A remarkable difference with respect to simple
fluid description is also detected when approaching nanoscopic scales. Peculiarly, near spinodal loci, the
classical theory envisages a divergent behavior of density fluctuations intensity, while the SGT provides
a finite variance of the density field. The scaling behavior of density fluctuations near spinodal lines is
analytically derived and discussed. Finally, the correlation length of the capillary system is identified for
different metastabilities. Also in the latter case, the critical exponents are theoretically calculated. The
theoretical results are corroborated by Landau-Lifshitz-Navier-Stokes fluctuating hydrodynamics simulations.

I. INTRODUCTION

At the mesoscale, even in equilibrium, thermal fluc-
tuations play a relevant role. Below the micrometer
scale, a continuum description should have the memory
of matter granularity. Starting from the pioneering work
of Einstein1 several coarse-grained descriptions of fluids
have been developed to take into account thermal noise
in a continuum setting2–89,10. Landau and Lifshitz de-
veloped the “Fluctuating Hydrodynamics theory” for a
simple one-component fluid, where the standard Navier-
Stokes equations have been augmented with stochastic
fluxes to take into account thermal fluctuations in hydro-
dynamics, the Landau-Lifshitz-Navier-Stokes equations
(LLNS). In recent years there has been a substantial in-
crease in numerical algorithms to perform in-silico ex-
periments based on stochastic partial differential equa-
tions as LLNS11–16. These schemes are designed in or-
der to capture the correct statistical properties of the
fluctuating fields at a discrete level. From an exper-
imental point of view, light scattering, X-ray diffrac-
tion, and neutron scattering have been used to measure
static and dynamic structure factors5,17. Experiments
are found to be in accordance with theoretical expecta-
tions. The study of thermal fluctuations is of pivotal
importance for a plethora of physical phenomena. For
instance, the modeling of thermal fluctuations is cru-
cial in micro/nanoflows1819–22, in the study of biolog-
ical systems, such as lipid membranes2324, for Brown-
ian engines and molecular motors prototypes25, and for
reactive mixtures26,27. Molecular dynamics (MD) is a
valuable tool to address these processes, however, its rel-
evant computational cost limits the range of applicabil-
ity to the nanoscale. In addition, the typical time scale
of atom motion is significantly smaller than its hydro-
dynamic counterpart, resulting in the unenforceability of
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MD in some configurations of applicative interest. There-
fore, the development of mesoscale descriptions is funda-
mental to addressing the full-scale dynamics of physical
systems where the microscopic degree of freedoms (mod-
eled as thermal fluctuations) influence the macroscopic
scales. This is the case with multiscale phenomena where
macroscopic physical observables are inherently intercon-
nected with the microscopic ones. A relevant physical
problem with the aforementioned features is the phase
change in fluids, where the new phase originates at the
atomistic levels and develops onto macroscopic (hydro-
dynamics) scales28. Another important example is the
diffusion process of interfaces between miscible fluids. In
fact, in non-equilibrium states, e.g. in presence of macro-
scopic concentration gradients, giant fluctuations can re-
sult due to a coupling between velocity and concentration
fluctuations. This has been experimentally observed in
micro-gravity experiments for a free diffusion process29.
Recently it has been shown that thermal noise competes
with turbulent fluctuations by modifying the turbulent
kinetic energy spectrum30–33. For the description of such
systems, it seems natural to develop mesoscale methods
able to describe both the macroscopic scales of the fluid
(slow variables of the physical system) and the effects of
the microscopic degree of freedom (fast variables) mod-
eled as stochastic processes. Clearly, the statistical de-
scription of thermal fluctuations is needed for the devel-
opment of such mesoscale models.

The present work aims to identify the thermal fluctu-
ation statistics of a capillary fluid in metastable condi-
tions. A thermodynamically metastable state is repre-
sented by a local minimum of the free energy, separated
by the stable one by an energy barrier. In that condition,
the fluid can result in a “stable ”state beyond the satura-
tion conditions without experiencing the phase transfor-
mations. In fact, in that conditions, the phase change can
occur with a certain probability (related to the degree of
metastability) as a stochastic process, when the free en-
ergy barrier is surmounted due to thermal fluctuations.
In particular, an intense fluctuation event, the so-called
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“rare event ” in thermally activated processes, triggers
the incipit of phase change nucleating an embryo of the
new phase3435. In this respect, metastability can be seen
as a thermodynamic stable state, with stability limited
in time. In order to address this problem, the classi-
cal description of a one-component system (simple fluid)
should be augmented to take into account additional en-
ergy contributions, e.g. capillarity and elasticity. In the
context of phase transformations in fluids (condensations
and vaporization), surface tension plays a fundamental
role. In fact, the balance between volume forces (pressure
difference expending work in the new phase formation)
and the ”elastic reaction “ due to surface tension gov-
erns the phase transformation phenomenon36. Clearly,
the surface tension penalizes the formation of new-phase
regions and modifies the thermal noise spectrum.

In this paper, the statistical properties of thermal fluc-
tuations for a capillary fluid in metastable conditions are
theoretically investigated, both for the liquid and va-
por phases. The fluid description is given in terms of
the Van der Waals squared-gradient theory (SGT) for
the Helmholtz free-energy functional37. Contrary to the
usual thermodynamic description of simple fluids, where
the fluid energy only depends on the local value of density
and temperature fields, here a squared-gradient approx-
imation of the free energy functional is used to describe
the thermodynamic system

F [ρ, T ] =

∫

V

fb(ρ, T ) +
λ

2
∇ρ ·∇ρ dV , (1)

with fb(ρ, T ) the Helmholtz bulk free-energy density,
given in terms of density and temperature fields, and λ
is the capillary coefficient. The latter coefficient controls
both the surface tension γ ∼ λ1/2 and the liquid/vapor
interface thickness ǫ ∼ λ1/2,38. Clearly, when λ → 0,
the classical description of one-component simple fluid is
recovered.
The mesoscale description of the fluid dates back to
Van der Waals37 and can be formally derived from
the density functional theory in the limit of small den-
sity gradient39,40. Despite its simple form, the model
has proven to be an excellent descriptor of the physics
of fluids at the mesoscale, correctly describing: the
nucleation of droplets and bubbles28,40–42, the stabil-
ity limit of stretched water43,44, evaporation and con-
densation processes45–47, boiling phenomenon48, cavi-
tation collapse38,49,50, droplet dynamics51 and liquid
films52. Recently diffuse interface-based models have
been also developed to study topological transitions in
lipid membranes53 and reactive blending of polymers54.

An extended comparison between the two fluid descrip-
tions is performed, showing that the effect of capillarity
strongly changes the statistical properties of density fluc-
tuations when increasing the metastability of the fluid,
or when approaching nanometric spatial scales (the typ-
ical length of liquid-vapor interface thickness). In par-
ticular, near spinodal conditions, the simple fluid the-
ory leads to divergent behavior of density fluctuations,

while the SGT provides a finite variance of the density
field. Detailed analysis of the size of the coarse-graining
cell size is also given, highlighting that for large enough
coarse-graining volumes the effect of capillarity vanishes
whether the metastability is low. The theoretical re-
sults are corroborated by fluctuating hydrodynamics sim-
ulations, both for LLNS and Capillary Landau-Lifshitz-
Navier-Stokes (CLLNS). The latter set of equations rep-
resents the SGT version of a dynamical density functional
theory28,41,55–58. The findings highlight the importance
of considering capillarity when modeling metastable flu-
ids or, more generally, in fluids at the nanoscale.

What follows is a schematic structure of the paper. In
§II the fluctuations statistics of a capillary fluid are the-
oretically derived and compared with the ones predicted
by the classical theory (λ → 0). In order to stream-
line the narrative, some technical details are discussed
in §A. In Sec §III the statistics of the fluctuations are
discussed for metastable fluids, focusing on the density
fluctuations behavior near spinodal loci as well as on the
coarse-graining volume dependence of the density vari-
ances. In the latter section, the theoretical predictions
are also compared with numerical simulation results. The
numerical simulation details are given in §IV. Finally, §V
underlines the main results of the work.

II. THEORY

For a fluid in equilibrium conditions, the fluctuation
statistics of density ρ(x), velocity v(x), and temperature
T (x) are related to the entropy deviation with respect to
its maximum equilibrium value,1. For an isolated ther-
modynamic system, with constant mass M0, volume V ,
and constant energy E0, the entropy deviation functional
can be written as

S̃ λ[ρ̃, ṽ, T̃ ] = Sλ[ρ,u, T ]− Sλ[ρ0,0, T0] (2)

=

∫

V

s(ρ, T )− s(ρ0, T0) dV +

+ k1

(

M0 −

∫

V

ρ dV

)

+ k2

(

E0 −

∫

V

1

2
ρv · v + ub (ρ, T ) +

1

2
λ∇ρ ·∇ρ dV

)

,

with ρ̃ = ρ−ρ0, ṽ = v, T̃ = T −T0 the fluctuating fields,
and, ρ = ρ0, T = T0, v = 0 the fluid equilibrium states.
Such states are found by imposing that the first variation
of the functional in Eq. (2) is zero, i.e. δS̃λ [ρ0,0, T0] = 0,
where s(ρ, T ) and ub(ρ, T ) are the bulk entropy and
the internal energy densities, respectively. The func-
tional maximization also leads to identifying the two
Lagrange multipliers k1 and k2 enforcing mass and en-
ergy conservation. k1 = −µc 0/T0, k2 = 1/T0, where

µc 0 = δS̃λ/δρ = µb(ρ0, T0) − λ∇2ρ0 is the equilibrium
generalized chemical potential, µb = ∂ub/∂ρ−T∂s/∂ρ is
the bulk chemical potential, and δ/δρ is the functional
derivative with respect to the density. Meaning that,



Accepted to Phys. Fluids 10.1063/5.0132478

3

in equilibrium, the fluid mean temperature is constant,
as well as the generalized chemical potential. For small
fluctuations, the entropy functional can be expanded in
a Taylor series around the equilibrium value

S̃λ [ρ̃, ṽ, T̃ ] ≃ S̃λ2[ρ̃, ṽ, T̃ ] = (3)

−
1

2

∫

V

dV
c2T0

T0ρ0
ρ̃2 −

λ

T0

ρ̃
(

∇2ρ̃
)

+
ρ0
T0

ṽ · ṽ +
ρ0cv0
T 2
0

T̃ 2,

where cT0 = ∂p/∂ρ|T is the isothermal speed of sound,
p(ρ, T ) = ρµb − fb the bulk pressure and cv0 =
1/ρ ∂s/∂T |ρ the specific heat at constant volume. The
above equation can be rewritten in the form

S̃λ2[∆] = −
1

2

∫

V

∫

V

∆(x)†Hλ(x,y)∆(y) dVx dVy , (4)

where ∆ = (ρ̃, ṽ, T̃ ) is the vector of the the fluctuat-
ing fields, ∆† its adjoint, and Hλ is a diagonal, positive
definite matrix operator

Hλ =













c2T0

T0ρ0
−

λ

T0

∇2
x 0 0

0
ρ0
T0

I 0

0 0
ρ0cv0
T 2
0













δ (x− y) , (5)

with I the 3×3 identity matrix, δ (x− y) the Dirac delta
function, and ∇2

x the Laplacian operator with respect to
x. Under these assumptions, the probability distribution
functional for the fluctuating fields ∆ reads

Peq [∆] =
1

Z
exp

(

S̃λ2

kB

)

, (6)

with kB the Boltzmann constant, and Z the normalizza-
tion constant. Hence the correlation tensor is

Cλ(x,y) = 〈∆(x)⊗∆(y)†〉 (7)

=
1

Z

∫

D∆∆⊗∆† exp

(

S̃λ2

kB

)

,

where 〈〉 denotes the average operation, and it is eval-
uated in closed form by integrating the Gaussian path
integrals57. The integration of Eq. 7 allows the recon-
struction of the entire correlation tensor (see §A for
derivation details)

Cλ(x,y) = kBH
−1

λ (x,y) =





Cλ11 0 0
0 Cλ22 0
0 0 Cλ33



 ,

(8)
with

Cλ11(x − y) =
kBT0

4πλ |x− y|
exp



− |x− y|

√

c2T0

ρ0λ



 ,

(9)

Cλ22 (x− y) = 〈ṽ(x)⊗ ṽ(y)〉 =
kBT0

ρ0
Iδ (x− y) , (10)

Cλ33 (x− y) = 〈T̃ (x)T̃ (y)〉 =
kBT

2

0

ρ0cv0
δ (x− y) . (11)

The above results show that in the Gaussian approx-
imation of the probability distribution functional, the
equilibrium correlations for velocity and temperature
fields are delta-correlated in space, while the capillary
contribution to the free energy induces an exponential
decay of the density correlation. In a simple fluid, where
λ = 0, the entropy functional given in Eq. 3 reduces to

S̃02[ρ̃, ṽ, T̃ ] = (12)

−
1

2

∫

V

dV
c2T0

T0ρ0
ρ̃2 +

ρ0
T0

ṽ · ṽ +
ρ0cv0
T 2
0

T̃ 2

−
1

2

∫

V

∫

V

∆(x)†H0(x,y)∆(y) dVx dVy

with

H0 = lim
λ→0

Hλ =













c2T0

T0ρ0
0 0

0
ρ0
T0

I 0

0 0
ρ0cv0
T 2
0













δ (x− y) ,(13)

whose expression is also reported in2,5, where the fluc-
tuation statistics of a simple fluid are discussed. In
particular, the classical theory provides that the veloc-
ity and temperature fields have the same correlation
functions as in the present case (see Eq.s 10, 11), i.e.
C022 = Cλ22 , C033 = Cλ33. This can be easily deduced
since, Cλ = kBH

−1

λ , hence C0 = kBH
−1

0
. By recogniz-

ing that Hλ22 = H022 and Hλ33 = H033 one realizes that
C022 = Cλ22 , C033 = Cλ33.

It is worth stressing that the second-order expansion of
the entropy functional (Eq. 4) depends on λ only through
the density field, meaning that capillarity only affects the
density fluctuation statistics. In fact, when λ → 0 the
density field variance differs from the Eq.(9), taking the
form

C011(x− y) = kBH
−1

011
(x− y) =

kBT0ρ0
c2T0

δ(x− y) . (14)

Since the statistical properties of velocity and tempera-
ture fields are not affected by the squared-gradient ap-
proximation of the fluid free energy, this work will focus
on the role of the capillary effects on the density fluctu-
ations.

III. RESULTS AND DISCUSSIONS

In Fig.1 the pressure field p(ρ, T ) for a homogeneous
fluid is reported as a function of the mean density field
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Figure 1. The red solid line represents the pressure (p) as a
function of the mean density 〈ρ〉 for a Lennard-Jones EoS59.
The isotherm T = 1.25 is considered. The dotted green line
depicts the squared isothermal speed of sound normalized
with the density field (c2T /ρ). The other two vertical curves,
dotted black lines, indicate the liquid (〈ρ〉 = 0.4397) and va-
por (〈ρ〉 = 0.2021) spinodal densities. They are identified on
the isotherm where ∂p/∂ρ|T = c2T = 0. The density values
comprised between the spinodal ones characterize an unstable
fluid, where the isothermal speed of sound becomes a complex
number.

(red solid line). The adopted equation of state (EoS)
is the Benedict-Webb-Rubin59, mimicking a Lennard-
Jones Fluid. p is made dimensionless with the refer-
ence pressure: pref = e/σ3, where σ = 3.4 × 10−10m
and e = 1.65 × 10−21 J . The density field is dimen-
sionalized with the reference density ρref = m/σ3, with
m = 6.63× 10−26Kg. The capillary coefficient is fixed as
λ = 5.224, with its reference value as λref = σ5e/m2, to
reproduce surface tension value obtained through Monte
Carlo simulations57. The green dotted line, represents
the isothermal speed of sound, c2T = ∂p/∂ρ|T , normal-
ized with the density. The latter quantity is positive in
the stable regime and is negative in the unstable one, fur-
thermore near the spinodal region c2T → 0 leading to a di-
vergent behavior on the density fluctuations when λ → 0,
see Eq.s (14). Clearly, when considering metastable flu-
ids, where the mean density value is comprised between
the saturation density ρSAT

L/V and the spinodal one ρSPIN
L/V ,

the intensity of density fluctuations is strongly different
from the stable conditions.

In Fig.2, the variance of density fluctuations is reported
for different thermodynamic conditions. Starting from
the stable state, up to near spinodal conditions. The top
panel depicts the fluctuations of the liquid phase, while
the bottom one represents a vapor. The blue dotted lines
are the theoretical predictions for a simple fluid (λ = 0),
and the red continuum curves illustrate the squared-

<ρ>
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δρ

2 >

0.45 0.5 0.55
10-4
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<ρ> = ρL
SAT<ρ> = ρL
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Stable liquid

Metastable liquid

U
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e
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<ρ>

<
δρ

2 >
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SAT <ρ> = ρV
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Stable vapor
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U
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e
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Figure 2. Top panel: Liquid phase density fluctuation vari-
ances averaged on a volume V = 1000σ3 vs the density equi-
librium value at 〈T 〉 = 1.25. The red solid line represents the
square gradient theoretical prediction, the blue dotted curve
depicts its counterpart for a simple fluid. The symbols iden-
tify the numerical results of fluctuating hydrodynamics equa-
tions. Red squares: CLLNS. Blue circles: LLNS. The density
variance is evaluated for a stable liquid, ρ ≥ ρSAT

L = 0.5118,
for a metastable state, ρ ∈ (ρSPIN

L , ρSAT

L ); in the unstable re-
gion the density fluctuations are not defined. Bottom panel:
Vapor phase density fluctuation variances averaged on the
same volume as in the liquid case, the equilibrium tempera-
ture is 〈T 〉 = 1.25. Lines and symbols reflect the same logic
of the top panel. The density variance is evaluated for a
stable vapor, ρ ≤ ρSAT

V = 0.1394, for a metastable state,
ρ ∈ (ρSAT

V , ρSPIN

V ).

gradient theory. The theoretical predictions are com-
pared to fluctuating hydrodynamics simulations, both for
simple LLNS, and for CLLNS, see §IV for details. Nu-
merical results are indicated with blue circles when con-
sidering simple LLNS, and with red squares for CLLNS
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Figure 3. Density fluctuation variances as a function of the
metastability level ∆µlev . The average volume is V = 1000σ3,
the equilibrium temperature is 〈T 〉 = 1.25. The red solid
line and the green dashed curve indicate the square gradient
prediction for the vapor and liquid phases, respectively. The
dashed-dotted blue line (vapor) and the dotted purple one
(liquid) depict the theoretical prediction for a simple fluid.
Inset: the metastability level is reported as a function of liquid
(red solid line) and vapor (green dashed line) densities.

cases. The theoretical values are directly derived from
Eq.s (9,14), by considering an averaged value of the den-
sity on a fluid volume ∆V , as δρ = (∆V )−1

∫

∆V ρ̃(x) dV ,
leading to

〈δρ2〉0 =
1

∆V

∫

∆V

C011 dV 〈δρ2〉λ =
1

∆V

∫

∆V

Cλ11 dV .

(15)
It is worthwhile noting that, the volume ∆V over which
the fluctuating fields are averaged has the physical mean-
ing of the coarse graining cell, that can be seen as an open
system composed with a fluctuating number of molecules.
At a mesoscopic level, this microscopic system is effec-
tively modeled as the mean value of some relevant fields,
like e.g. the density, and a stochastic process having
the same statistical properties of the coarse grained field
(δρ(∆V )).

The first integral in Eq. (15) can be easily evalu-
ated due to the delta-correlated form of density fluc-
tuations when λ = 0, 〈δρ2〉0 = kBT0ρ0/(c

2
T0

∆V ), the
second one can be numerically estimated. The cell vol-
ume V = ∆x3 = (10σ)3 is adopted, with the mean equi-
librium temperature as 〈T 〉 = 1.25. The spatial scale
∆x is chosen to be the nominal liquid/vapor interface
thickness, which at this temperature is ǫ ≃ 10σ. As evi-
dent from the two panels of Fig.(2) the more the fluid
is metastable, the more density fluctuations increase,
furthermore, the squared-gradient approximation of the
fluid energy strongly changes the variances of thermal
fluctuations. Specifically, capillarity reduces the inten-

R
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δρ

2 >
B

10-1 100 101 102 10310-10

10-8

10-6

10-4

10-2

100

102

104

106 <ρ> = 0.13 SGT
<ρ> = 0.13
<ρ> = 0.17 SGT
<ρ> = 0.17
<ρ> = 0.20 SGT
<ρ> = 0.20
<ρ> = 0.44 SGT
<ρ> = 0.44
<ρ> = 0.47 SGT
<ρ> = 0.47
<ρ> = 0.52 SGT
<ρ> = 0.52
<ρ> = 0.52 CLLNS
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Figure 4. Variance of the density fluctuations (〈δρ2〉B) av-
eraged on a ball of radius R. The solid lines depict the
square gradient theoretical values (SGT), while the dotted
ones represent the theoretical prediction for a simple fluid,
where λ = 0. The different colors refer to different mean den-
sity equilibrium values. The symbols identify the numerical
values as obtained by fluctuating hydrodynamics simulations.
Circles: CLLNS. Squares: LLNS.

sity of fluctuations, since the surface tension penalizes
the formation of low-high/density regions, in other terms
λ/2|∇ρ|2 in Eq. (1) disadvantages the presence of den-
sity heterogeneity. Therefore, 〈δρ2〉λ < 〈δρ2〉0, with an
increasing difference towards the spinodal limits. This
difference culminates near the spinodal curves, where
〈δρ2〉0 → ∞, while 〈δρ2〉λ converges. The fluctuations
behavior near spinodal can be directly determined in the
case of λ = 0, by expanding c2T around liquid/vapor spin-
odal densities

c2T

(

ρSPIN
L/V

)

∼
∂2p

∂ρ2
|ρSPIN

L/V

(

〈ρ〉 − ρSPIN
L/V

)

, (16)

leading to

lim
〈ρ〉→ρSPIN

L/V

〈δρ2〉0
|〈ρ〉 − ρSPIN

L/V |α
= ℓ1(〈T 〉) < ∞ , (17)

when 〈T 〉 < TCRIT , and α = −1, with TCRIT = 1.33, the
critical temperature of the considered fluid. Hence, both
for vapor and liquid phase, near spinodal conditions, the
density fluctuations diverge with a “critical” exponent
α = −1

〈δρ2〉0 ∼ |〈ρ〉 − ρSPIN
L/V |−1 . (18)

Although the result is obtained for the adopted Benedict-
Webb-Rubin EoS, it is expected to be general under the
hypothesis that ∂2p/∂ρ2|ρSPIN

L/V
6= 0 (thermodynamic sta-

bility for sub-critical fluids). In fact, when T < TCRIT ,
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the pressure field around the spinodal lines is

p− pSPIN ∼
1

2

∂2p

∂ρ2
|ρSPIN

L/V

(

〈ρ〉 − ρSPIN
L/V

)2

(19)

coherently with Eq. 16.
In stable fluids, the classical description and the SGT

are fairly in accordance. The difference is instead re-
markable in metastable states. To quantify this discrep-
ancy, let us introduce the metastability level ∆µlev =
(µc − µSAT

cL/V )/(µ
SPIN
cL/V − µSAT

cL/V ) which is an important

parameter characterizing how metastable a fluid is60.
The latter quantity takes values in the set [0, 1], with
∆µlev → 0 when 〈ρ〉 → ρSAT

L/V and ∆µlev → 1 when

〈ρ〉 → ρSPIN
L/V , for liquids and vapors, respectively. The

inset in Fig.(3) reports the values of the parameter ∆µlev

as a function of the mean density value. The red curve
represents the vapor phase, while the green line illus-
trates the liquid state. In the main panel, the variance
of the density fluctuations is reported as a function of
the metastability level, metastable liquid and vapor are
discussed. As evident in the entire metastable range, the
SGT provides a relevant correction to the density vari-
ance when increasing the degree of metastability. Again,
near spinodal loci (∆µlev ∼ 1) the classical theory of
fluctuations provides a fluctuations divergence.

As discussed above, the scaling law of the density fluc-
tuations divergence as a function of the metastability
level can be inferred with by expanding the bulk chemical
potential around the spinodal densities

µcL/V − µSPIN
cL/V ∼

1

2ρ

∂2p

∂ρ2
|ρSPIN

L/V

(

〈ρ〉 − ρSPIN
L/V

)2

, (20)

where the thermodynamic identity ∂p/∂ρ = ρ∂µc/∂ρ has
been invoked. Please noting that, the above approxima-
tion is again universal under the hypothesis T < TCRIT

and ∂2p/∂ρ2|ρSPIN
L/V

6= 0. Hence

lim
∆µlev→1

〈δρ2〉0
|1−∆µlev |β

= ℓ2(〈T 〉) < ∞ , (21)

with β = 1/2, leading to

〈δρ2〉0 ∼ |1−∆µlev|
−1/2 . (22)

In order to infer the square gradient correction to the
density fluctuations near spinodal regions, let us consider
the density average on a ball B(R) of radius R, 〈δρ〉B =

3/(R3)
∫ R

0
ρ̃(r)r2dr, its variance is given by

〈δρ2〉Bλ =
3

4πR3

∫ R

0

Cλ
11(r)4πr

2dr = (23)

= 〈δρ2〉B0



1− exp



−R

√

c2T0

λρ0







1 +R

√

c2T0

λρ0







 ,

with 〈δρ2〉B0 = 3kBT0ρ0/(4πc
2
T0

R3) is the spherically av-
eraged variance in the case of λ = 0. At fixed R, it is
easy to realize that, when c2T0

∼ 0, one has

∆µlev

1/
R

*

0 0.2 0.4 0.6 0.8 1
10-2

10-1

100

Metastable vapor SGT
Metastable liquid SGT

X = R/R*

D

0 2 4 60

0.2

0.4

0.6

0.8

1

Figure 5. Behavior of the inverse of the reference capillary
length (1/R∗) as a function of the metastability level (∆µlev).
The red solid line corresponds to the vapor phase, while the
green dashed curve depicts the liquid state. In the inset the
function D = 〈δρ2〉λ/〈δρ

2〉0 as a function of the reduced ra-
dius X = R/R∗ is reported.

〈δρ2〉Bλ ∼
3kBT0

8πλR
, (24)

hence, near spinodal conditions, the density fluctua-
tions are only controlled by the capillary coefficient
and the mean temperature of the system. In addition,
also the scaling with the averaging volume is different,
whereas the SGT provides scaling of density fluctuations
as 〈δρ2〉Bλ ∼ R−1, instead of 〈δρ2〉B0 ∼ R−3 as predicted
for simple fluids. In Fig.4 the spherically averaged vari-
ance of the density fluctuations (〈δρ2〉B) is reported for
different thermodynamic conditions as a function of the
ball radius R. As in the previous figures, the classical
theory and the SGT are depicted. What immediately
stands out from the figure is the double scaling of the
variance of thermal fluctuations as predicted by the SGT.
Specifically, for small values of R, one has 〈δρ2〉Bλ ∼ R−1,
whereas for large values of R the two different theories
predict the same scaling as 〈δρ2〉Bλ ∼ 〈δρ2〉B0 ∼ R−3. Be-
tween the two regimes predicted by SGT, a transition
zone can be seen, whose amplitude is dictated by the de-
gree of fluid metastability. In fact, both for liquids and
vapors, for high levels of metastability (〈ρ〉B ∼ ρSPIN

L/V )

the scaling of the classical theory is achieved when con-
sidering radii of the order of hundreds of reduced lengths.
Clearly, as discussed before, when ρ → ρSPIN

L/V the exten-

sion of the transition zone diverges, see Eq. (24). It is
worth noting that for very small radii R = O(1), where
the theory of fluctuating hydrodynamics is at the limit of
applicability, the SGT predicts values of density fluctu-
ation stably below the mean value of the field. Instead,
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the classical theory leads to very large and unphysical
fluctuations. Again, the aforementioned behavior is ex-
acerbated by increasing metastability. In Fig. 4 are also
reported the numerical simulation results of fluctuating
hydrodynamics simulations, both for simple LLNS (army
green squares) and for CLLNS (army green circles). The
agreement is remarkable for all the analyzed cases.

Eq. (23), naturally introduce a physical length R∗ =
[(ρ0λ)/(c

2
T )]

1/2, a reference capillary length (correlation
length) related to the capillary coefficient and to the
isothermal speed of sound. This quantity strongly de-
pends on fluid thermodynamic conditions. In fact, since
the capillary coefficient is identified by the surface ten-
sion, R∗ varies with the metastability degree of the fluid
(see Fig. 1 to visualize the behavior of c2T /ρ0). In the
main plot of Fig. 5 the inverse of R∗ is reported as a func-
tion of the metastability level ∆µlev, for vapor (red solid
line) and liquid (green dashed line) phases. For both liq-
uid and vapor states, R∗ is an increasing function of the
metastability level, with R∗ → ∞ when ∆µlev → 1. As
discussed in the previous part of the section, the scaling
behavior of R∗ near spinodal loci can be easily deduced
since R∗ ∼ 1/cT and cT ∼ (ρ − ρSPIN

L/V )1/2 (see Eq. 16),

thus

R∗ ∼ |〈ρ〉− ρSPIN
L/V |−1/2 R∗ ∼ |1−∆µlev|

−1/4 . (25)

This peculiar behavior is similar to what is observed in
critical phenomena when approaching the critical tem-
perature where the correlation length goes to infinity as
well as the fluid compressibility, like e.g. critical opales-

cence. In addition, the critical exponent as predicted by
the mean field approximation61 when T → TCRIT for the
compressibility (kT ∼ |T − TCRIT |

−1) and for the corre-
lation length (R∗ ∼ |T − TCRIT |

−1/2) correspond to the
present case when ρ → ρSPIN

L/V .

Since R∗ plays a decay length role, in highly metastable
fluids the scaling of thermal fluctuations is only domi-
nated by capillarity effects, consistently with Eq. (24).
After introducing R∗, Eq. (23) also suggests to intro-
duce a rescaled length variable X = R/R∗, and the ratio
D(X) defined as

D =
〈δρ2〉Bλ
〈δρ2〉B

0

= 1− (1 +X) exp(−X) . (26)

The function D(X) represents the ratio between the SGT
prediction of the density fluctuations variance and its
classical counterpart. This report condenses informa-
tion about the level of metastability, the capillarity of
the fluid, and the extent of the fluid volume over which
we are averaging fluctuations. In the inset of Fig. 5,
D(X) has been reported, showing that for X > 5 − 6
one has D ∼ 1, meaning that the capillary effects do not
influence the variance of density fluctuations, hence re-
covering the classical theory. It is worth stressing that,
given the specific thermodynamic condition of the fluid,
and the capillary coefficient (surface tension) the curve
D(X) can be univocally identified.

IV. NUMERICAL SIMULATIONS

Numerical simulations are conducted by solving the
Landau-Lifshitz-Navier-Stokes equations both with cap-
illary stresses (λ 6= 0 → CLLNS ) and for a simple fluid
where capillarity is omitted (λ = 0 → LLNS). The equa-
tions describe the balance for mass, momentum, and en-
ergy, augmented with stochastic thermodynamic fluxes.

∂ρ

∂t
+∇ · (ρu) = 0 , (27)

∂ρu

∂t
+∇ · (ρu⊗ u) = −∇p+∇ ·Σλ +∇ · δΣ ,

∂E

∂t
+∇ · (uE) = ∇ · (−pu+ u ·Σλ − q) +

+ ∇ · (u · δΣ− δq) ,

where the symbol ⊗ denotes the tensor product. Con-
cerning the deterministic fluxes, non-equilibrium thermo-
dynamic arguments lead to the following expressions41

Σλ =

[

λ

2
|∇ρ|2 + ρ∇ · (λ∇ρ)

]

I − λ∇ρ⊗∇ρ+ (28)

+ µ

[

(∇u+∇uT )−
2

3
∇ · uI

]

,

qλ = λρ∇ρ∇ · u− k∇T ,

clearly, the standard description of the Newton-Fourier
laws is recovered when λ → 0.

Σ0 = µ

[

(∇u+∇uT )−
2

3
∇ · uI

]

, (29)

q0 = −k∇T .

The transport coefficients µ, k, represent the fluid viscos-
ity and thermal conductivity of the LJ fluid.

The fluctuation-dissipation balance provides an ex-
plicit form of the stochastic fluxes41

〈δq(x̂, t̂)〉 = 0 , (30)

〈δΣ(x̂, t̂)〉 = 0 ,

〈δΣ(x̂, t̂)⊗ δΣ†(x̃, t̃)〉 = QΣδ(x̂− x̃)δ(t̂− t̃) ,

〈δq(x̂, t̂)⊗ δq†(x̃, t̃)〉 = Qqδ(x̂− x̃)δ(t̂− t̃) ,

where

QΣ
αβνη = 2kBTµ(δανδβη + δαηδβν −

2

3
δαβδνη) , (31)

Qq
αβ = 2kBT

2kδαβ ,

δ the Kronecker symbol, and δΣ†, δq† the adjoint of the
stochastic fluxes. Please note that for both LLNS and
CLLNS the stochastic fluxes have the same expression.
This is related to the fact that the capillary forces have
a reversible nature, thus they do not produce entropy
and, as a consequence, they do not alter the fluctuation-
dissipation balance.

In numerical experiments, all quantities are made di-
mensionless following reference quantities: Lref = σ =
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3.4×10−10m as length, Eref = e = 1.65×10−21 J as en-
ergy, Tref = ǫ/kB as temperature, m = 6.63× 10−26Kg

as mass, Uref =
√

ǫ/m as velocity, tref = Lref/Uref as
time. The non-dimensional capillary coefficient is fixed
as λ = 5.224, with its reference value as λref = σ5e/m2,
see57 for additional details. The equations of motion
are solved with the method of lines. Concerning spa-
tial discretization, a staggered central finite differences
have been adopted. This method is particularly suit-
able when dealing with stochastic equations since it pre-
serves at a discrete level, the continuum properties of
the involved differential operators13. The temporal inte-
gration is conducted with a second-order explicit Runge-
Kutta method. All the simulations are three-dimensional
with 50 × 50 × 50 numerical cells, with periodic bound-
ary conditions. The adopted numerical time step (non-
dimensional) is ∆t = 0.1.

The numerical mean value of a generic observable O

〈O〉 =
1

Nt

1

Nc

Nt
∑

i=1

Nc
∑

j=1

Oi
j , (32)

where Oi
j is the value of the observable O in the j−th cell

at the time i. Nc = 503 is the total number of numerical
cells, and Nt = 103 is the number of independent time
instants taken in the simulations. The total simulation
time is T = 105.

V. CONCLUSIONS

In summary, the mesoscopic Van der Waals SGT has
been employed to theoretically estimate the thermal fluc-
tuation statistics of metastable fluids. The theory aug-
ments the classical thermodynamic description of simple
fluids where fluid energy only depends on the local value
of density and temperature. The SGT free energy modi-
fies the structure of the entropy functional, resulting in a
different fluctuation spectrum, which is analytically de-
rived in closed form. By averaging the relevant statistical
observables on coarse-graining volumes, it is found that
capillarity plays a relevant role in metastable fluids, or
when approaching nanometric scales. Peculiarly, near
spinodal states, the classical theory leads to divergent
behavior of density fluctuations intensity, while the SGT
provides a finite variance of the density field. For the
simple fluid, the scaling behavior of the density variance
as a function of density and chemical potential is derived.
Finally, the SGT gives access to the capillary correlation
length, also in this case its scaling behavior is discussed
for different metastabilities. The theoretical results are
validated by fluctuating hydrodynamics numerical simu-
lations. The presented results highlight the importance

of considering capillarity in metastable fluids or, more
generally, in fluids at the nanoscale.
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Appendix A: Evaluation of the correlation tensor

In the following appendix, the evaluation of the cor-
relation tensor for a Gaussian probability distribution
functional is retraced, although the explicit calculation
has been addressed in some past works41,57, the main el-
ements of the procedure are here reported for the reader’s
convenience.

The second-order approximation of the probability
equilibrium distribution in Eq. 6 takes the form

P [∆] =
1

Z
exp

(

−
1

2kB

∫

V

∫

V

∆(x)†Hλ(x,y)∆(y) dVx dVy

)

,

(A1)
where the operator Hλ(x,y) is diagonal and positive def-
inite operator defined in Eq. 13, and Z the normalization
constant defined as

Z =

∫

D∆ exp

(

−
1

2kB

∫

V

∫

V

∆(x)†Hλ(x,y)∆(y) dVx dVy

)

,

(A2)
such that

∫

D∆P [∆] = 1 , (A3)

where the integration is performed on the space of fluc-
tuating fields ∆(x). This means that the integral is eval-
uated over all possible functions ∆(x), in an infinite di-
mensional space with the measure D∆. It is worthwhile
noting that, path integrals can be evaluated in a closed
form very rarely, however, in the case of Gaussian path
integrals (the present case) exact calculations can be per-
formed. In fact, after defining P [∆], the correlation ten-
sor can be written as
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Cλ(x,y) = 〈∆(x)⊗∆(y)†〉 =

∫

D∆∆⊗∆† P [∆] (A4)

=
1

Z

∫

D∆∆⊗∆† exp

(

−
1

2kB

∫

V

∫

V

∆(x)†Hλ(x,y)∆(y) dVx dVy

)

,

and, the evaluation of the path integrals reduce to

Cλ(x,y) = kBH
−1

λ (x,y) , (A5)

where H−1

λ is the inverse of the operator Hλ, i.e. the
Green’s functions which satisfy

∫

H−1

λ (x, z) Hλ(z,y) dVz = Iδ(x − y) , (A6)

with I the 5×5 identity matrix. The complete derivation
of the above results can be found in57, here it is worth
describing the strong analogy with the finite-dimensional
case of Gaussian integrals. In fact, the correlation de-
duced from a Gaussian path integral (see Eq. A5) is
formally equivalent to the covariance matrix in multidi-
mensional Gaussian distribution. For a multidimensional
Gaussian process W ∈ R

N with probability density

P [W] =
1

√

(2πdetH−1)
N

exp

(

−
1

2
WTHW

)

, (A7)

it is well-known that the covariance matrix
C = 〈W⊗WT 〉 = H−1. Under this respect, the expres-
sion given in Eq. A5 is the infinite-dimensional extension
of the above result62.

Given the expression for H in Eq. (13), Eq. (A6) takes
the form

(

c2T0

T0ρ0
−

λ

T0

∇2

x

)

Cλ11(x,y) = kBδ(x − y) , (A8)

ρ0
T0

Cλ22(x,y) = kBIδ(x− y) , (A9)

ρ0cv0
T 2
0

Cλ33(x,y) = kBδ(x− y) , (A10)

where Cλ11, Cλ22 and Cλ33 are the correlations for den-
sity, velocity and temperature fluctuation fields. Fur-
thermore, the translational symmetry implies Cλ(x,y) =
Cλ(x − y). The Eq.s (A9, A10) can be easily solved to
identify

Cλ22 (x− y) = 〈ṽ(x)⊗ ṽ(y)〉 =
kBT0

ρ0
Iδ (x− y) ,

(A11)

Cλ33 (x− y) = 〈T̃ (x)T̃ (y)〉 =
kBT

2

0

ρ0cv0
δ (x− y) . (A12)

In order to determine the density correlation function
Cλ11(x− y) = 〈ρ̃(x)ρ̃(y)〉 it is instrumental to introduce
the Fourier transform of the density correlation

ˆ̃ρ(k) =

∫

ρ̃(x) exp (−ik · x) dVx , (A13)

so that Ĉλ11(k) = 〈 ˆ̃ρ(k)ˆ̃ρ(−k)〉, and Eq. (A8) is trans-
formed in an algebraic equation in the Fourier space as

(

c2T0

T0ρ0
+

λ

T0

|k|2
)

Ĉλ11(k) = kB , (A14)

implying that

Ĉλ11(k) =
kBT0ρ0

c2T0
+ ρ0λ|k|2

, (A15)

which is known as structure factor of the fluid. The den-
sity fluctuation correlation in the physical space is then
identified as the inverse Fourier transform of the struc-
ture factor

Cλ11(x− y) =
1

(2π)3

∫

Ĉλ11(k) exp (ik · |x− y|) dVk

=
kBT0

4πλ |x− y|
exp



− |x− y|

√

c2T0

ρ0λ



 . (A16)

It is worth noting that Ĉ011(k) is obtained from the

SGT prediction of Ĉλ11(k) as |k|2 → 0.
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