In this work, spectral clustering of asymmetric data is addressed. In particular, two different methods to perform clustering have been compared: the application of spectral clustering on directed graphs represented by an asymmetric matrix; and the application of the classical spectral clustering algorithm once transformed the directed graph into an undirected one. To this end, some symmetrizations are described to convert the directed graph to an undirected one.

Asymmetric spectral clustering: a comparison between symmetrizations / Di Nuzzo, Cinzia; Vicari, Donatella. - (2022), pp. 1510-1515. (Intervento presentato al convegno 51st Scientific Meeting of the Italian Statistical Society, SIS2022 tenutosi a Caserta (Italy)).

Asymmetric spectral clustering: a comparison between symmetrizations

Di Nuzzo, Cinzia
;
Vicari, Donatella
2022

Abstract

In this work, spectral clustering of asymmetric data is addressed. In particular, two different methods to perform clustering have been compared: the application of spectral clustering on directed graphs represented by an asymmetric matrix; and the application of the classical spectral clustering algorithm once transformed the directed graph into an undirected one. To this end, some symmetrizations are described to convert the directed graph to an undirected one.
2022
51st Scientific Meeting of the Italian Statistical Society, SIS2022
spectral clustering; directed graph; symmetrizations
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Asymmetric spectral clustering: a comparison between symmetrizations / Di Nuzzo, Cinzia; Vicari, Donatella. - (2022), pp. 1510-1515. (Intervento presentato al convegno 51st Scientific Meeting of the Italian Statistical Society, SIS2022 tenutosi a Caserta (Italy)).
File allegati a questo prodotto
File Dimensione Formato  
Di Nuzzo_asymmetric-spectral-clustering_2022.pdf

accesso aperto

Note: copertina, frontespizio, indice e articolo
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 10.02 MB
Formato Adobe PDF
10.02 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1661233
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact