We show how bicomplex numbers can be exploited for computing Newton's fractals in three and four dimensions. The patterns derived from these fractals can be computed very efficiently on GPU as pixel shaders, and they are well suited for surface decoration, material masking and volumetric rendering.

Newton's fractals on surfaces via bicomplex algebra / Maggioli, F.; Baieri, D.; Melzi, S.; Rodola, E.. - (2022), pp. 1-2. (Intervento presentato al convegno Special Interest Group on Computer Graphics and Interactive Techniques Conference, SIGGRAPH '22 tenutosi a Vancouver; Canada) [10.1145/3532719.3543211].

Newton's fractals on surfaces via bicomplex algebra

Maggioli F.
Primo
;
Baieri D.
Secondo
;
Melzi S.
Penultimo
;
Rodola E.
Ultimo
2022

Abstract

We show how bicomplex numbers can be exploited for computing Newton's fractals in three and four dimensions. The patterns derived from these fractals can be computed very efficiently on GPU as pixel shaders, and they are well suited for surface decoration, material masking and volumetric rendering.
2022
9781450393614
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1656421
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact