We prove the partial H\"older continuity on boundary points for minimizers of quasiconvex non-degenerate functionals \begin{equation*} \mathcal{F}({\bf u}) \colon =\int_{\Omega} f(x,{\bf u},D{\bf u})\,\mathrm{d}x, \end{equation*} where $f$ satisfies a uniform VMO condition with respect to the $x$-variable, is continuous with respect to ${\bf u}$ and has a general growth with respect to the gradient variable.
Boundary partial regularity for minimizers of discontinuous quasiconvex integrals with general growth / Ok, Jihoon; Scilla, Giovanni; Stroffolini, Bianca. - In: COMMUNICATIONS ON PURE AND APPLIED ANALYSIS. - ISSN 1534-0392. - (2022). [10.3934/cpaa.2022140]
Boundary partial regularity for minimizers of discontinuous quasiconvex integrals with general growth
Giovanni Scilla;
2022
Abstract
We prove the partial H\"older continuity on boundary points for minimizers of quasiconvex non-degenerate functionals \begin{equation*} \mathcal{F}({\bf u}) \colon =\int_{\Omega} f(x,{\bf u},D{\bf u})\,\mathrm{d}x, \end{equation*} where $f$ satisfies a uniform VMO condition with respect to the $x$-variable, is continuous with respect to ${\bf u}$ and has a general growth with respect to the gradient variable.File | Dimensione | Formato | |
---|---|---|---|
Ok_Boundary partial regularity_2022.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
649.44 kB
Formato
Adobe PDF
|
649.44 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.