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Abstract. We prove the partial Hölder continuity on boundary points for minimizers of qua-

siconvex non-degenerate functionals

F(u) : =

�
Ω
f(x,u, Du) dx ,

where f satisfies a uniform VMO condition with respect to the x-variable, is continuous with

respect to u and has a general growth with respect to the gradient variable.

1. Introduction. In this paper we study the boundary partial regularity of minimizers of the
following non-autonomous integral functional

F(u) : =

�
Ω

f(x,u, Du) dx, (1)

where Ω ⊆ Rn (n ≥ 2) is an open bounded set of class C1 and u : Ω → RN with N ≥ 2 – i. e.,
we consider vectorial minimizers. We assume that the integrand f : Ω×RN ×RN×n, f(x,u,P),
satisfies a general growth and a quasiconvexity condition with an N -function φ. Moreover, we
assume that f complies with a Vanishing Mean Oscillation (VMO) with respect to the spatial
variable x, hence it can be discontinuous. The specific assumptions on the function f will be
introduced in Section 1.1.

A brief review of the literature on the topic. The regularity theory for functionals of the form (1)
and related partial differential equations are one of the classical topics in the calculus of variations.
The study of functionals/equations with general growth has been initiated by Marcellini and
developed in a series of seminal papers, for example [45, 46]. A first C1,α local regularity for
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solutions of Euler-Lagrange elliptic systems depending on the modulus of the gradient with general
growth under suitable hypotheses was obtained by Marcellini&Papi, [47].

Subsequently, for an autonomous integrand f satisfying the Uhlenbeck structure [54] - that
is, f(x,u,P) ≡ φ(|P|) and φ is sufficiently regular and convex, complying with (φ1)-(φ2) in
Section 1.1 below and such that φ′′ is Hölder continuous off the diagonal - the minimizer of (1) was
shown to be locally C1,α with an excess decay estimate, see [24]. Within this setting, we consider
it appropriate to mention the result of global Lipschitz regularity for solutions to boundary
problems for elliptic systems of Uhlenbeck-type obtained in [16], where the domain is convex and
its boundary is weaker than Lipschitz (see [16, Theorem 2.1]). Going back to integral functionals,
if f is autonomous but does not satisfy the Uhlenbeck structure, i. e., f(x,u,P) ≡ g(P), then
there are examples of regular and convex functions g whose minimizer is locally unbounded; see,
for instance, the survey paper of Mingione [48]. Therefore, only partial regularity is expected if
we consider a general non-Uhlenbeck structure. Here, “partial regularity” means the minimizer
u satisfies a desired regularity except a measure zero set.

Partial regularity results for quasi-convex functionals with p-growth, i. e., φ(t) = tp in Sec-
tion 1.1, had been first studied in [1, 14, 31] by using the blow-up technique, which yields decay
estimates for the so-called excess functional. In particular, in [1], the integrand f = f(x,u,P) is
assumed to be Hölder continuous in x and u, and the partial C1,α-regularity is proved. Later,
Foss and Mingione [32] considered the integrand f = f(x,u,P) that is only continuous in x
and u, and proved the partial Hölder regularity, which means partial C0,α-regularity for every
α ∈ (0, 1), by using a different approach. They worked with an hybrid excess functional and used
the A-harmonic approximation and Ekeland’s variational principle. The A-harmonic approxima-
tion was introduced and applied to the partial regularity in [30]. The continuity assumption for
x was extended to the VMO condition in [10].

We note that the partial regularity results mentioned above consider non-degenerate function-
als, which means that the integrand f satisfies 0 < |D2f(x,u,0)| <∞. For degenerate functionals
with p-growth, Duzaar and Mingione [28] obtained the partial C1,α-regularity in the autonomous
case by assuming an additional condition concerning the behavior of D2f(P) near 0 and using the
p-harmonic approximation [29]. Then, using the same argument, Bögelein [9] proved the partial
Hölder regularity for non-autonomous problems with the VMO condition for x. We also refer to
[36, 49, 50, 52, 7, 18] for related partial regularity results for functionals or elliptic systems with
variable growth conditions, e.g., p(x)-growth, Lp(·) logL-growth and double phase growth.

Partial regularity results for quasiconvex functionals with p-growth, including the papers men-
tioned above, deal with the superquadratic case (p ≥ 2) and the subquadratic case (1 < p < 2)
in different ways. They treat only one of the two cases, or the two cases separately, with dif-
ferent regularity assumptions on D2f and different approaches. However, in the general growth
case with φ satisfying (φ1)-(φ2), the functional can be neither superquadratic nor subquadratic
since it is possible that 1 < µ1 < 2 < µ2 in (φ2), and the blow-up technique is doomed to
failure. Therefore, a unified assumption and an approach are required in this general setting.
To this aim, Diening, Stroffolini and Verde [25] considered degenerate autonomous functionals
(i. e., f(x,u,P) ≡ g(P) in (1)) with general growth and a unified assumption on D2f(P). They
introduced the φ-harmonic approximation - i.e., the counterpart of the p-harmonic approxima-
tion in the setting of nonstandard growth - and derived excess decay estimates with a new excess
functional in terms of shifted N -functions, which implies the partial C1,α-regularity. As for the
quasiconvexity for general growth, in [23] an improved version of the A-harmonic approximation
in the Orlicz setting has been introduced by using the Lipschitz truncation technique and a du-
ality argument. In addition, they deduced via interpolation global Calderón-Zygmund estimates
in Orlicz spaces for A-harmonic maps in balls. This result has been extended to non-autonomous
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functionals in [15, 34, 53]. In particular, in [34], partial Hölder-regularity is proved for non-
autonomous functionals with general growth and VMO cefficients.

Partial C1,α-regularity on boundary points for quasiconvex functionals with p-growth when
p ≥ 2 was studied by Grotowski [35] and Hamburger [37], where they obtained the boundary
versions of A-harmonic approximation and the blow-up technique. Later, Beck [4] proved partial
Hölder regularity results by using the approach in [32], and this result was extended to elliptic
systems with superquadratic general growth, i. e., µ1 ≥ 2 in (φ2), and VMO coefficients in
[51]. Here, we point out that the previous results are concerned with the superquadratic case.
On the other hand, Beck [5] also considered partial C1,α-regularity on the boundary in both
the subquadratic and the superquadratic cases. We recall also the contribution by Campanato
[13], where assuming merely the continuity of the coefficients with respect to (x, u) without any
further structural assumptions, he proved that the weak solution u is Hölder continuous with
every exponent 0 < α < 1 up to the boundary outside a negligible set, for the low dimensional
case, n ≤ p+ 2. We also refer to [11, 12] for boundary partial regularity for parabolic systems.

As for the Hausdorff dimension of the singular set, the only known results are for integrands
f which are convex with respect to Du and Hölder continuous with respect to (x,u), [41], or
for Lipschitz minimizers of quasiconvex functionals, [42]. Regarding the boundary regularity it is
worth mentioning the paper [43] where for regular integrands strongly convex in Du it is proved
that Hn−1-almost every boundary point is regular. In addition, using the method introduced
in [41] about fractional differentiability, there are results for the general growth case in [19, 17].
Summarizing, the existence of regular boundary points so far has been proved only for special
structures [39, 27] or α-Hölder continuous coefficients with α > 1

2 , see [26, 43, 6]. Therefore,
it is still an open problem even for systems or quasiconvex functionals with Hölder continuous
coefficients with small Hölder exponents and standard p-growth. We further refer to [6, Section
6] for existence of regular boundary points.

Description of our results. In this paper, we consider partial Hölder regularity on boundary
points for quasiconvex functionals with general growth in the gradient and VMO in the x-variable
that can be neither superquadratic nor subquadratic, and characterize the set of regular boundary
points. More precisely, we prove that if the boundary and the boundary datum are of class C1

then the minimizer u of the functional (1) satisfying the general growth condition in Section 1.1
is locally Hölder continuous for every Hölder exponent α ∈ (0, 1) at any boundary point that is
Lebesgue type, in some sense, with respect to Du. Moreover, we assume that the functional is
non-degenerate, and this allows us to convert the original functional with C1 boundary datum to
a functional with the zero boundary value.

Finally we briefly comment on the strategies adopted in this paper. We consider minimizers of
functionals in half balls that have the zero values on the flat boundaries. Then we try to follow the
approach in [34], where, however, the main techniques consider balls as domains, and this does
not allow to apply directly these results to the boundary case. To overcome this difficulty, when
possible, we employ the zero and the odd extensions. Such extensions cannot be applied to the
A-harmonic approximation step in Section 2.5, since the odd extension of an A-harmonic map is
the solution to a (in general) different homogeneous linear equation with measurable coefficients
and the zero extension is more complicated. Nonetheless, simple computations show that the
method of odd reflection turns to be useful for systems with a special structure, as diagonal and
Uhlenbeck-type systems. A further issue to face is that differently to what happened in [23], global
Calderón-Zygmund type estimates for A-harmonic maps in half balls are not clearly known since
half balls are not domains of class C1 but just Lipschitz domains (see, e.g., [38, Theorem A] for
some well-known negative examples about the inhomogeneous Dirichlet problem for the Laplace
equation in Lipschitz domains). Therefore, we consider global Calderón-Zygmund estimates on
not half-balls but relevant C1-domains (see Theorem 2.7). Finally, we emphasize that in earlier
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papers singular sets were defined in terms of integrals involving shifted N -functions φa or the
vector-valued function V (see Section 2.2). Moreover, in the subquadratic case, the singular set
of boundary points had a complicated structure (see [5, Theorem 1.1]). On the contrary, in this
paper we define it in terms of L1 integrals, hence the singular set becomes more clear and smaller.
This improvement is possible by deriving the reverse Hölder type estimates in (26) and (33).

Outline of the paper. The paper is organized as follows. In Section 1.1 we specify the main
assumptions on φ and the integrand f , and we state the main result of the paper, Theorem 1.1.
In Section 2 we fix the main notation that we will use throughout the paper and recall some
basic definitions and preliminary results. Specifically, Sections 2.2-2.3 contain some facts about
N -functions and Orlicz-Sobolev spaces, while Section 2.4 collects few standard technical lemmas.
Finally, in Section 2.5, we prove the A-harmonic approximation lemma on upper half balls. In
Section 3 we derive Caccioppoli inequalities and higher integrability results for the minimizer of
our functional, and we introduce the relevant objects, as the excess functionals, that will come into
play later. With Section 4 we start with the analysis of the partial regularity for the minimizer.
In particular, in Section 4.1 we prove the necessary result of almost A-harmonicity in order to
obtain the excess decay estimate in Section 4.2. The last Section 4.3 is entirely devoted to the
proof of Theorem 1.1.

1.1. Assumptions and statement of the main result. We first list the main assumptions
on the integrand f in (1). As mentioned above, we consider a non-degenerate quasi-convexity
condition with general growth. We note that such conditions in the degenerate setting can be
found, for instance, in [23] for autonomous functionals, i.e. f(x,u,P) ≡ f(P), and in [34] for
general functionals with VMO condition in x. Here the degenerate condition can be obtained
from assumptions (F1)–(F6) by removing the “+1”. We also refer to [15, 53].

We start by introducing an N -function φ : [0,∞) → [0,∞), and we assume that φ satisfies

(φ1) φ ∈ C1([0,∞)) ∩ C2((0,∞));

(φ2) 0 < µ1 − 1 ≤ inft>0
tφ′′(t)
φ′(t) ≤ supt>0

tφ′′(t)
φ′(t) ≤ µ2 − 1, for suitable constants 1 < µ1 ≤ µ2.

Without loss of generality, we shall assume that 1 < µ1 < 2 < µ2. The properties of φ complying
with the preceding assumptions will be introduced in Section 2.

Let the integrand f : Ω × RN × RN×n → R, f = f(x,u,P), in (1) be Borel-measurable and
the partial map P → f(·, ·,P) ∈ C2(RN×n). We denote by Df and D2f the corresponding first
and second gradients, respectively, for fixed x and u. Then, with the N -function φ and some
constants 0 < ν ≤ L, f is assumed to satisfy the following conditions:

(F1) (φ-growth condition I) for every x ∈ Ω, u ∈ RN and P ∈ RN×n

νφ(|P|) + f(x,u,0) ≤ f(x,u,P) ≤ Lφ(1 + |P|) ;

(F2) (φ-growth condition II) for every x ∈ Ω, u ∈ RN and P ∈ RN×n

|Df(x,u,P)| ≤ Lφ′(1 + |P|) and |D2f(x,u,P)| ≤ Lφ′′(1 + |P|);

(F3) (φ-quasiconvexity) for every x ∈ Ω, u ∈ RN and P ∈ RN×n, and every η ∈ C∞
0 (B,RN )

with ball B ⊂ Ω,�
B

f(x,u,P+Dη(y))− f(x,u,P) dy ≥ ν

�
B

φ′′(1 + |P|+ |Dη(y)|) |Dη(y)|2 dy ;

(F4) (VMO-condition for x) with respect to the dependence on the x-variable we do not impose
a continuity condition, but we assume that the function x 7→ f(x,u,P)/φ(1 + |P|) satisfies
the following VMO type condition, uniformly with respect to (u,P) : for every u ∈ RN and
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P ∈ RN×n, and every Ωr(x0) := Ω ∩Br(x0) with x0 ∈ Ω and r ∈ (0, 1],

|f(x,u,P)− (f(·,u,P))x0,r| ≤ vx0,r(x)φ(1 + |P|) for all x ∈ Br(x0) ,

where vx0,r : Ωr(x0) → [0, 2L] are bounded functions such that

lim
ϱ→0

V(ϱ) = 0 with V(ϱ) := sup
0<r≤ϱ

sup
x0∈Ω

−
�

Ωr(x0)

vx0,r(x) dx ,

and

(f(·,u,P))x0,r :=
1

|Ωr(x0)|

�
Ωr(x0)

f(x,u,P) dx ;

(F5) (Uniform continuity for u) for every x ∈ Ω, u,u0 ∈ RN and P ∈ RN×n

|f(x,u,P)− f(x,u0,P)| ≤ Lω(|u− u0|)φ(1 + |P|) ,
where ω : [0,∞) → [0, 1] is a non-decreasing, concave modulus of continuity; i. e., limt↓0 ω(t) =
ω(0) = 0.

(F6) (Continuity of D2f for P away from 0) there exists a non-decreasing, concave function
ω1 : [0,∞) → [0, 1] with limt↓0 ω1(t) = ω1(0) = 0 such that for every x ∈ Ω and u ∈ RN ,
and every P,Q ∈ RN×n with 0 < |P| ≤ 1

2 (|Q|+ 1)

|D2f(x,u,Q)−D2f(x,u,P+Q)| ≤ Lφ′′(1 + |Q|)ω1

(
|P|

1 + |Q|

)
.

Without loss of generality, we assume that the map t 7→ ω1(t)/t is almost decreasing with
constant L ≥ 1 (see the next section for the definition of “almost decreasing”).

Note that the φ-growth and the φ-quasiconvexity conditions (F2) and (F3) imply the following
strong Legendre–Hadamard condition:

ν̃φ′′(1 + |P|)|ξ|2|ζ|2 ≤ ⟨D2f(x,u,P)ξ ⊗ ζ | ξ ⊗ ζ⟩ ≤ L̃φ′′(1 + |P|)|ξ|2|ζ|2 (2)

for all x ∈ Ω, u, ξ ∈ Rn, ζ ∈ RN and P ∈ RN×n, and for some 0 < ν̃ ≤ L̃ depending on n,N, ν, L.
In addition from the first inequality in (F2),

|f(x,u,P)− f(x,u,Q)| ≤ L|P−Q|φ′(1 + |P|+ |Q|) ≤ cφ(1 + |P|+ |Q|) . (3)

Now we state our main regularity result (for the notation, we refer to Section 2.1 below).

Theorem 1.1. Let Ω ⊂ Rn be a bounded C1 domain, g ∈ C1(Ω,RN ) and φ be an N -function

satisfying assumptions (φ1) – (φ2). Consider a minimizer u ∈ g+W 1,φ
0 (Ω,RN ) to the functional

(1) under assumptions (F1) – (F6). Then the set of regular points on the boundary ∂Ω given by

∂Ωu :=
⋂

α∈(0,1)

{x0 ∈ ∂Ω : u ∈ Cα(Ux0 ∩ Ω;RN ) for some Ux0} ,

where Ux0
is an open neighborhood of x0, satisfies ∂Ω\∂Ωu ⊂ Singu(∂Ω) where

Singu(∂Ω) :=

x0 ∈ ∂Ω : lim inf
ϱ↘0

−
�

Ωϱ(x0)

|Du− (Dνx0
u)Ωϱ(x0) ⊗ νx0

|dx > 0


∪

{
x0 ∈ ∂Ω : lim sup

ϱ↘0
(|Dνx0

u|)Ωϱ(x0) = +∞

}
.

where νx0
is the inward unit normal vector at x0 ∈ ∂Ω.

2. Preliminaries and basic results.
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2.1. Notation. We denote by Br(x0) the ball of radius r > 0 centered at x0 ∈ Rn. We also
consider the upper half ball

B+
r (x0) := {x ∈ Rn : xn > 0 , |x− x0| < r},

where x0 ∈ Rn−1 × {0}, and the part of Br(x0) in Ω

Ωr(x0) := Br(x0) ∩ Ω.

We write
Γr(x0) := {x = (x1, . . . , xn) ∈ Rn : |x− x0| < r , xn = 0}

for x0 ∈ Rn−1 × {0}. In the case x0 = 0, we will use the shorthands Br, B
+
r , Ωr and Γr in place

of Br(0), B
+
r (0), Ωr(0) and Γr(0), respectively.

For U ⊂ Rn and f ∈ L1(U,Rd) for some d ∈ N, we denote the average of f by

(f)U := −
�

U

f dx =
1

|U |

�
U

f dx and, in particular, (f)x0,r := (f)B+
r (x0)

,

where x0 ∈ Rn−1 × {0}.
We say that a function ψ : I → R, where I ⊂ R is an interval, is almost increasing, or almost

decreasing, with constant L ≥ 1, if ψ(s) ≤ Lψ(t), or ψ(t) ≤ Lψ(s), for all s, t ∈ I with s ≤ t.
In particular, when L = 1, we say f is non-decreasing, or non-increasing. Regarding the almost
decreasing condition, we introduce the following Jensen type inequality:

Lemma 2.1. Suppose ψ : [0,∞) → [0,∞) is a non-decreasing function such that ψ(t)/t is almost
decreasing in t ∈ (0,∞) with constant L, and f ∈ L1(Ω). Then

−
�

Ω

ψ(|f |) dx ≤ (L+ 1)ψ

(
−
�

Ω

|f |dx

)
.

Proof. By the same argument in the proof of [50, Lemma 2.2], there exists a concave function

such ψ̃ : [0,∞) → [0,∞) that ψ(t) ≤ ψ̃(t) ≤ (L + 1)ψ(t), for all t > 0. Therefore, applying

Jensen’s inequality to ψ̃, we have the desired inequality.

2.2. Some basic facts on N-functions. We recall basic notation and properties about Orlicz
functions. The following definitions and results can be found, e.g., in [40, 44, 8, 2].

A function φ : [0,∞) → [0,∞) is called an N -function if it is convex with φ(0) = 0 and φ

admits φ′ : [0,∞) → [0,∞) such that φ(t) =
� t
0
φ′(s) ds, where φ′ is right continuous, non-

decreasing and satisfies φ′(0) = 0, φ′(t) > 0 for t > 0, and limt→∞ φ′(t) = ∞. From now on, φ is
always an N -function.

We say that φ satisfies the ∆2-condition if φ(2t) ≤ c φ(t) for all t > 0 and for some c ≥ 1.
Here, we denote the smallest possible such constant c by ∆2(φ). Note that the ∆2-condition is
equivalent to φ(2t) ∼ φ(t) and implies φ(t) ∼ t φ′(t) uniformly in t ≥ 0.

We define by the right inverse of φ′

(φ′)−1(t) := sup{s ∈ [0,∞) : φ′(s) ≤ t}, t ≥ 0,

which is well-defined by the definition of N -function. If φ′ is strictly increasing (φ′)−1 is the usual
inverse of φ′. We further define the Young-Fenchel-Yosida conjugate function of φ by

φ∗(t) :=

� t

0

(φ′)−1(s) ds, t ≥ 0.

Then φ∗ is again an N -function with (φ∗)′(t) = (φ′)−1(t), (φ∗)∗ = φ and

φ∗(t) = sup
a≥0

(at− φ(a)).
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For convenience, ∆2(φ,φ
∗) stands for ∆2(φ) and ∆2(φ

∗), and ∆2(φ,φ
∗) < ∞ means φ and φ∗

satisfy the ∆2-condition. If ∆2(φ,φ
∗) < ∞, we have φ∗(φ′(t)) ∼ φ(t) uniformly in t ≥ 0 and,

from the last identity above, the following Young’s inequality: for any δ > 0 there exists cδ > 0
depending on ∆2(φ,φ

∗) and δ such that

at ≤ δ φ(t) + cδ φ
∗(a) for all t, a ≥ 0.

In particular, if δ = 1, we can take cδ = 1.
Now, we consider an N -function φ satisfying (φ1) – (φ2). We recall [34, Proposition 2.1] that

collects elementary properties of such φ.

Proposition 1. Let φ be an N -function complying with (φ1) – (φ2). Then

(i): it holds that

(µ1 − 1)φ′(t) ≤ t φ′′(t) ≤ (µ2 − 1)φ′(t) ⇐⇒ φ′(t) ≈ tφ′′(t)

uniformly in t > 0. The constants µ1 and µ2 are called the characteristics of φ;
(ii): it holds that

µ1 ≤ inf
t>0

tφ′(t)

φ(t)
≤ sup

t>0

tφ′(t)

φ(t)
≤ µ2 ;

(iii): the mappings

t ∈ (0,+∞) → φ′(t)

tµ1−1
,
φ(t)

tµ1
and t ∈ (0,+∞) → φ′(t)

tµ2−1
,
φ(t)

tµ2

are non-decreasing and non-increasing, respectively;
(iv): as for the functions φ and φ′ applied to multiples of given arguments, the following inequal-

ities hold for every t ≥ 0:

aµ2φ(t) ≤ φ(at) ≤ aµ1φ(t) and aµ2−1φ′(t) ≤ φ′(at) ≤ aµ1−1φ′(t) if 0 < a ≤ 1 ;

aµ1φ(t) ≤ φ(at) ≤ aµ2φ(t) and aµ1−1φ′(t) ≤ φ′(at) ≤ aµ2−1φ′(t) if a ≥ 1 .

In particular, it follows that both φ and φ∗ satisfy the ∆2-condition with constants ∆2(φ)
and ∆2(φ

∗) determined by µ1 and µ2.

We remark from the the preceding proposition that

φ(t) ∼ φ′(t) t , φ(t) ∼ φ′′(t) t2 , φ∗(φ′(t)
)
∼ φ∗(φ(t)/t) ∼ φ(t) ,

and for every a, t > 0

min{a
1
µ1 , a

1
µ2 }φ−1(t) ≤ φ−1(at) ≤ max{a

1
µ1 , a

1
µ2 }φ−1(t).

For a given N -function φ, we define shifted N -functions φa, a ≥ 0, introduced in [19] by

φa(t) :=

� t

0

φ′
a(s) ds with φ′

a(t) := φ′(a+ t)
t

a+ t
. (4)

Note that φ0 = φ. If φ satisfies (φ1) – (φ2), then families {φa}a≥0 and {(φa)∗}a≥0 satisfy the
∆2-condition uniformly in a ≥ 0 and

φa(t) ∼ φ′
a(t) t =

φ(a+ t)

(a+ t)2
t2 ∼ φ′(a+ t)

a+ t
t2 ∼ φ′′(a+ t)t2 , (5)

φ(a+ t) ∼ [φa(t) + φ(a)] ,

min{a, (µ1 − 1)} ≤ t φ′′
a(t)

φ′
a(t)

≤ max{(µ2 − 1), a} ,

see [19]. Moreover, by [22, Corollary 26] we have the following lemma, which deals with the
change of shift for N -functions.
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Lemma 2.2. Let φ be an N -function with ∆2(φ,φ
∗) < ∞. Then for any η > 0 there exists

cη > 0, depending only on η and ∆2(φ), such that for all a,b ∈ Rd, d ∈ N, and t ≥ 0

φ|a|(t) ≤ cηφ|b|(t) + ηφ|a|(|a− b|) . (6)

We further define Va : Rm → Rm, where a ≥ 0 and m ∈ N, by

Va(Q) :=
√
φ′
a(|Q|)|Q| Q

|Q|
,

where φ′
a is defined in (4) with φ satisfying (φ1) – (φ2). We writeV(Q) = V0(Q) =

√
φ′(|Q|)|Q| Q

|Q| .

Then we have that

|Va(Q)|2 = φ′
a(|Q|)|Q| ∼ φa(|Q|)

and, by Young’s inequality,

φ′
a(|Q|)|P| ≤ φ∗

a(φ
′
a(|Q|)) + φa(|P|) ∼ φa(|Q|) + φa(|P|) ∼ |Va(Q)|2 + |Va(P)|2

uniformly in P,Q ∈ Rm and a ≥ 0. Moreover, we have from [19, Lemma 3], replacing φ with φ1,
that

|V1(P)−V1(Q)|2 ∼ φ1+|P|(|P−Q|) , P,Q ∈ Rm , (7)

and from [21, Lemma A.2], replacing V with V1, that for g ∈W 1,φ(Br(x0);Rm),

−
�

Br(x0)

|V1(g)−V1((g)Br(x0))|
2 dx ∼ −

�

Br(x0)

|V1(g)− (V1(g))Br(x0)|
2 dx . (8)

Remark 1. In recent contributions (see [20, 3]) a new definition of shifted N -function has been
devised; namely,

φa(t) :=

� t

0

φ(a ∨ s)
a ∨ s

sds, t ≥ 0 , (9)

where s1 ∨ s2 := max{s1, s2} for every s1, s2 ∈ R. The two versions of shifted N -function
share almost all properties. The main difference is that the new definition yields the equality
(φ∗)a = (φ∗)φ′(a), in place of the equivalence relation provided by the original definition (4).
Then this equality implies sharper constants in some estimates, as in the “removal of shift”
lemma, [3, Lemma 13] which improves, with the new definition (9), the result of Lemma 2.2 with
b = 0.

2.3. Orlicz-Sobolev spaces. Lφ and W 1,φ are the classical Orlicz and Orlicz-Sobolev spaces,
i. e., f ∈ Lφ iff

�
φ(|f |) dx < ∞ and f ∈ W 1,φ iff f,Df ∈ Lφ. Note that equipped with the

Luxemburg norm Lφ is a reflexive Banach space, hence so is W 1,φ. The space W 1,φ
0 (Ω;RN )

denotes the closure of C∞
0 (Ω;RN ) in W 1,φ(Ω;RN ), and for g ∈ W 1,φ(Ω,RN ), we denote g +

W 1,φ
0 (Ω,RN ) := {f + g : f ∈W 1,φ

0 (Ω;RN )}. We also introduce the following notation for W 1,φ-
functions defined on some half-ball B+

r (x0) with x0 ∈ Rn−1 ×{0} and which vanish (in the sense
of traces) on the flat part of the boundary:

W 1,φ
Γ (B+

r (x0);RN ) := {u ∈W 1,φ(B+
r (x0);RN ) : u = 0 on Γr(x0)} .

We next introduce Poincaré and Poincaré-Sobolev type inequalities in the Orlicz-Sobolev space
on Lipschitz boundaries. The first lemma is a Poincaré type inequality for Sobolev functions with
zero value on the flat boundary, that can be found in [51, Lemma 2.4]. In this case, compared
with a usual Poincaré type inequality, the gradient on the right-hand side is replaced by the
directional derivative Dnu. We also note that in [51, Lemma 2.4] the N -function φ is assumed
to satisfy (φ1) – (φ2), but the result still holds for any N -function φ satisfying ∆2(φ,φ

∗) <∞.
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Lemma 2.3. Let φ : [0,+∞) → [0,+∞) be an N -function complying with ∆2(φ,φ
∗) < ∞.

There exists c > 0 depending on n,N,∆2(φ,φ
∗) such that if u ∈ W 1,1(B+

r (x0);RN ) with u = 0
on Γr(x0), where x0 ∈ Rn−1 × {0},

−
�

B+
r (x0)

φ

(
|u|
r

)
dx ≤ c −

�

B+
r (x0)

φ (|Dnu|) dx . (10)

The second lemma is Poincaré-Sobolev type inequalities for Sobolev functions. We can deduce
these results from the standard Poincaré-Sobolev inequality in [19, Lemma 7].

Theorem 2.4. Let φ : [0,+∞) → [0,+∞) be an N -function complying with ∆2(φ,φ
∗) < ∞,

There exist α ∈ (0, 1) and c > 0 depending on n,N,∆2(φ,φ
∗) such that if u ∈W 1,1(Br;RN )

−
�

Br

φ

(
|u− (u)r|

r

)
dx ≤ c

(
−
�

Br

φα (|Du|) dx

) 1
α

; (11)

moreover, if u ∈W 1,1(Br;RN ) with u = 0 on ∂Br, or u = 0 in A ⊂ Br with |A| > 0,

−
�

Br

φ

(
|u|
r

)
dx ≤ c

(
−
�

Br

φα (|Du|) dx

) 1
α

, (12)

where in the second case, the constant c depends also on |Br|
|A| .

2.4. Some useful lemmas. The following lemma is useful in order to re-absorb certain terms
(see [33, Lemma 6.1] and also [23, Lemma 3.1]).

Lemma 2.5. Let ψ be an N -function with ∆2(ψ) < ∞. For 0 < r < ϱ, let h ∈ Lψ(Bϱ) and
g : [r, ϱ] → R be nonnegative and bounded such that for all r ≤ s < t ≤ ϱ

g(s) ≤ θg(t) +A

�
Bt

ψ

(
|h(y)|
t− s

)
dy +

B

(t− s)β
+ C ,

where A,B,C ≥ 0, β > 0 and θ ∈ [0, 1). Then, for all 0 < r < ρ,

g (r) ≤ c(θ,∆2(ψ), β)

[
A

�
Bϱ

ψ

(
|h(y)|
ϱ− r

)
dy +

B

(ϱ− r)β
+ C

]
.

We now state another useful iteration lemma (see, e.g., [33, Lemma 7.3]).

Lemma 2.6. Let ψ : (0, ϱ] → R be a positive and non-decreasing function satisfying

ψ(ϑk+1ϱ) ≤ ϑλψ(ϑkϱ) + c̃(ϑkϱ)n for every k = 0, 1, 2, . . . ,

where ϑ ∈ (0, 1), λ ∈ (0, n) and c̃ > 0. Then there exists c = c(n, ϑ, λ) > 0 such that

ψ(t) ≤ c

{(
t

ϱ

)λ
ψ(ϱ) + c̃tλ

}
for every t ∈ (0, ϱ] .

2.5. A-harmonic approximation on half balls. We introduce here a flat boundary version of
the A-harmonic approximation result in the setting of Orlicz spaces proven in [23, Theorem 14].
As remarked in the Introduction, the lack of global Calderón-Zygmund estimates in the Orlicz
spaces Lφ for A-harmonic maps in half balls leads us to adopt a trick to prove an A-harmonic
approximation lemma on half balls. The idea is to construct a suitable “smooth neighborhood”
of the upper half ball; i.e., a domain U of class C1 containing the half ball in such a way that
the flat part of the boundary be a proper subset of ∂U (see Fig. 1), and then to obtain global
Calderón-Zygmund estimates in this domain (see Theorem 2.7).
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Let A be a bilinear form on RN×n. We say that A is strongly elliptic in the sense of Legendre-
Hadamard if for all ξ ∈ RN , ζ ∈ Rn it holds that

κA|ξ|2|ζ|2 ≤ ⟨A(ξ ⊗ ζ)|(ξ ⊗ ζ)⟩ ≤ LA|ξ|2|ζ|2 (13)

for some 0 < κA ≤ LA, and φ be an N -function with ∆2(φ,φ
∗) < ∞. We say that a function

w ∈W 1,φ(Ω;RN ) is A-harmonic on Ω if it satisfies −div(ADw) = 0 in the sense of distributions;
i. e., �

Ω

⟨ADw|Dη⟩dx = 0 , for all η ∈ C∞
0 (Ω;RN ) .

Let us denote by ∂U the set of all x = (x′, xn) ∈ Rn−1 ×R = Rn such that 0 ≤ xn ≤ ϱ and x′

satisfies 
|x′|2 + x2n = ϱ2 if ϱ

3 ≤ xn ≤ ϱ,

(|x′| −
√
2ϱ
2 )2 + (xn − ϱ

4 )
2 = ϱ2

16 if 0 < xn <
ϱ
3 ,

|x′| ≤
√
2ϱ
2 if xn = 0

(see Fig. 1), and U the interior region of ∂U . Note that ∂U consists of portions of spheres with
radii ϱ and ϱ/4, and is of class C1 with C1 semi-norm depending only on n . Moreover, we also
have B+√

2ϱ/2
⊂ U ⊂ B+

ϱ , hence ∂U can be considered as a “smooth neighborhood” of B+√
2ϱ/2

with the flat part of the boundary in common with that of ∂B+√
2ϱ/2

.

xn

x′

U

ϱ

Figure 1. The smooth neighborhood U .

We then consider the Dirichlet problem{
−div(ADw) = −divF in U,

w = 0 on ∂U,
(14)

and have the following result of existence and uniqueness of weak solutions in Sobolev Orlicz
spaces (see [23, Theorem 18]).

Theorem 2.7. Let A be strongly elliptic in the sense of Legendre-Hadamard, φ be an N -function
with ∆2(φ,φ

∗) < ∞, and U ⊂ Rn as above. Then for every F ∈ Lφ(U ;RN×n), the A-harmonic

system (14) admits a unique weak solution w ∈W 1,φ
0 (U ;RN ) such that

∥Dw∥Lφ(U) ≤ c∥F∥Lφ(U)

and �
U

φ(|Dw|) dx ≤ c

�
U

φ(|F|) dx , (15)

where c depends on n,N, κA, LA and ∆2(φ,φ
∗).
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Note that the constant c in the above theorem is independent of the structure and the size of
∂U , since ∂U is constructed by connecting in a smooth way a flat region with only portions of
spheres whose radii are ϱ and ϱ/4.

We next introduce regularity estimates for the weak solution to{
−div(ADh) = 0 on B+

r

h = 0 on Γr.
(16)

We refer to [33, Section 10.2], in particular, Eq. (10.22) and Remark 10.1. Note that the condition

∆2(φ,φ
∗) < ∞ implies that W 1,φ

Γ (B+
r ;RN ) ⊂ W 1,p

Γ (B+
r ;RN ) for some p > 1. Hence, in what

follows we can take advantage of the classical regularity theory results.

Theorem 2.8. Let A be strongly elliptic in the sense of Legendre-Hadamard, and φ be an N -
function with ∆2(φ,φ

∗) < ∞. If h ∈ W 1,φ
Γ (B+

r ;RN ) is a weak solution to (16), then h ∈
W 2,∞(B+

r/2;R
N ) and we have

sup
B+

r/2

(
|Dh|+ r|D2h|

)
≤ c −

�

B+
r

|Dnh| dx. (17)

where c = c(n,N, κA, LA).

The following is a flat boundary version of the A-harmonic approximation in the setting of
Orlicz spaces in [23].

Theorem 2.9. Let A be strongly elliptic in the sense of Legendre-Hadamard, φ be an N -function
with ∆2(φ,φ

∗) < ∞, and let s > 1. Then for every ε > 0, there exists δ > 0 depending only

on n,N, κA, LA,∆2(φ,φ
∗) and s such that the following holds. Let v ∈W 1,φ

Γ (B+
ϱ ,RN ) be almost

A-harmonic in the sense that

∣∣∣∣−�
B+

ϱ

⟨ADv|Dη⟩dx
∣∣∣∣ ≤ δ −

�

B+
ϱ

|Dv|dx∥Dη∥L∞(B+
ϱ ) for all η ∈ C∞

0 (B+
ϱ ;RN ). (18)

Then there exists z ∈W 1,φ
Γ (B+

ϱ/2;R
N ) such that z is a weak solution to−div(ADz) = −div(ADv) on B+√

2ϱ
2

z = 0 on Γ√
2ϱ
2

,
(19)

and

−
�

B+
ϱ/2

φ

(
|z|
ϱ

)
dx+ −

�

B+
ϱ/2

φ(|Dz|) dx ≤ ε

((
−
�

B+
ϱ

φs(|Dv|) dx
) 1

s

+ −
�

B+
ϱ

φ(|Dv|) dx

)
.

Proof. Let U be the set constructed in the beginning of this subsection. The argument of [23,
Theorem 14] holds true (with minor changes) for U in place of B. We then prefer to omit the
details, just providing a sketch of the proof.

Our aim is to find the A-harmonic function h ∈W 1,φ(U ;RN ) with the same boundary values
as u; i. e., the solution of the problem{

−div(ADh) = 0 in U

h = u on ∂U .
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Setting z := h− v, the previous problem can be rewritten as{
−div(ADz) = −div(ADv) in U

z = 0 on ∂U
(20)

in the sense of distributions. Now, as a consequence of Theorem 2.7, there exists a unique solution
z to the equation (20) in W 1,φ

0 (U ;RN ). Note that z is also a weak solution to (19) and complies
with the estimate�

B+√
2

2
ϱ

φ(|Dz|) dx ≤
�
U

φ(|Dz|) dx ≤ c

�
U

φ(|Dv|) dx ≤ c

�
B+

ϱ

φ(|Dv|) dx .

From this point on, the proof follows exactly (with the obvious minor changes) along the lines
of [23, Theorem 14]. Indeed, [23, Lemma 20] can be applied to z in order to obtain the necessary
variational inequalities involving test functions, then one can exploit the result of Lipschitz trun-
cation in Orlicz spaces ([23, Theorem 21]), which holds for open sets Ω with Lipschitz boundary
whose Lipschitz semi-norms depend only on n, and in particular for Ω = U .

Remark 2. We will exploit the previous approximation result in a slightly modified version.
Indeed, as already remarked in [15, Lemma 2.7], under the additional assumption

−
�

B+
ϱ

φ(|Dv|) dx ≤

−
�

B+
ϱ

φs(|Dv|) dx


1
s

≤ φ(µ)

for some exponent s > 1 and for a constant µ > 0, and (18) replaced by∣∣∣∣−�
B+

ϱ

⟨ADv|Dη⟩dx
∣∣∣∣ ≤ δµ∥Dη∥L∞(B+

ϱ ) ,

it can be also seen with minor changes in the proof that the function z above satisfies

−
�

B+
ϱ/2

φ

(
|z|
ϱ

)
dx+ −

�

B+
ϱ/2

φ(|Dz|) dx ≤ εφ(µ) .

3. Caccioppoli type inequalities and higher integrability.

3.1. Caccioppoli type inequality I. We derive Caccioppoli type inequalities near the boundary
for the minimizer of the functional (1), where f : Ω → RN × RN×n → R satisfies the following
assumptions:

νφ(|P|) ≤ f(x,u,P)−f(x,u,0) ≤ Lφ(1+|P|) and |f(x,u,P)−f(x,u0,P)| ≤ Lφ(1+|P|) (21)

for all P ∈ Rn×N and u,u0 ∈ RN and for some 0 < ν ≤ L, and φ is an N -function with
∆2(φ,φ

∗) < ∞. Then, using these inequalities, we obtain higher integrability results. We note
that the assumptions (F1), (F2) and (F5) imply (21), see (3).

We first introduce a Caccioppoli inequality on a boundary region for the minimizer of (1).
This is a boundary, and also non-degenerate, counterpart of [34, Lemma 3.1].

Lemma 3.1. Suppose that Ω is a Lipschitz domain, Bϱ(x0) ̸⊂ Ω with x0 ∈ Ω, f : Ω ×
RN × RN×n → R satisfies (21) with an N -function φ complying with ∆2(φ,φ

∗) < ∞, and
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g ∈ W 1,φ(Ωϱ(x0);RN ). Let u ∈ W 1,φ(Ωϱ(x0);RN ) be a minimizer of (1), replacing Ω with
Ωϱ(x0), such that u− g = 0 on ∂Ω ∩Br(x0). Then, for every r ∈ [ϱ/2, ϱ) there holds

�
Ωr(x0)

φ(1 + |Du|) dx ≤ c

�
Ωϱ(x0)

φ

(
1 +

|u− g|
ϱ− r

)
dx+ c

�
Ωϱ(x0)

φ(|Dg|) dx (22)

for some constant c = c(L, ν,∆2(φ,φ
∗)) > 0.

Proof. We assume that x0 = 0 for simplicity. Let r < s < t < ρ, η ∈ C∞
0 (Bt) with η ≥ 0, η ≡ 1

on Bs, and |Dη| ≤ c(n)/(t − s), and set ξ := u − η(u − g). Since η(u − g) ∈ W 1,φ
0 (Ωt), by the

minimality of u and (21),
�
Ωt

φ(|Du|) dx ≤ 1

ν

�
Ωt

[f(x,u, Du)− f(x,u,0)] dx ≤ 1

ν

�
Ωt

[f(x, ξ, Dξ)− f(x,u,0)] dx

≤ 1

ν

�
Ωt

[cφ(1 + |Dξ|) + f(x, ξ,0)− f(x,u,0)] dx

≤ c0

�
Ωt\Ωs

φ(|Du|) dx+ c

�
Ωt

[
φ

(
|u− g|
t− s

)
+ φ(|Dg|) + φ(1)

]
dx.

This implies
�
Ωs

φ(1+ |Du|) dx ≤ c0
1 + c0

�
Ωt

φ(1+ |Du|) dx+c
�
Ωt

φ

(
|u− g|
t− s

)
dx+c

�
Ωϱ

[φ(|Dg|)+φ(1)] dx.

Therefore, applying Lemma 2.5, we have the desired estimate.

Using the preceding lemma, we prove the following higher integrability result up to the bound-
ary on a Lipschitz domain satisfying the following exterior uniform measure density condition:
there exist cΩ > 0 and r0 > 0 such that

|Br| ≤ cΩ|Ωc ∩Br(x0)| for all x0 ∈ ∂Ω and all r ∈ (0, r0]. (23)

Theorem 3.2. Suppose that Ω is a Lipschitz domain satisfying (23) with constants cΩ, r0 > 0,
Bϱ(x0) ̸⊂ Ω with x0 ∈ Ω and 0 ≤ ρ ≤ r0/2, f : Ω × RN × RN×n → R satisfies (21) with
an N -function φ complying with ∆2(φ,φ

∗) < ∞, and g ∈ W 1,φ(Ωϱ(x0);RN ) satisfies φ(|Dg|) ∈
Ls1(Ωϱ(x0)) for some s1 > 1. There exist an exponent s0 ∈ (1, s1) and a constant c > 0 depending
only on n,N,L, ν,∆2(φ,φ

∗), s1, cΩ such that if u ∈ W 1,φ(Ωϱ(x0);RN ) is a minimizer of (1),
replacing Ω with Ωϱ(x0), and u − g = 0 on ∂Ω ∩ Bϱ(x0), then, for every B8r(y) ⊂ Bϱ(x0) with

y ∈ Ω,

−
�

Ωr(y)

φs0(1 + |Du|) dx ≤ c

(
−
�

Ω8r(y)

φ(1 + |Du|) dx

)s0
+ c −

�

Ω8r(y)

φs0(|Dg|) dx . (24)

Proof. Fix any B8r(y) ⊂ Bϱ(x0). If B2r(y) ⊂ Ω, in view of [34, Theorem 2.7 and Lemma 3.1] we
infer that

−
�

Br(y)

φ(1 + |Du|) dx ≤ c −
�

B2r(y)

φ

(
1 +

|u− (u)B2r(y)|
r

)
dx ≤ c

(
−
�

B2r(y)

φα(1 + |Du|) dx

) 1
α

for some α = α(n,N,∆2(φ,φ
∗)) ∈ (0, 1) and c = c(n,N,L, ν,∆2(φ,φ

∗)) > 0. On the other hand,
if B2r(y) ∩ ∂Ω ̸= ∅, applying Lemma 3.1 with (ỹ, 6r, 3r) in place of (x0, ϱ, r) and (12) with u− g
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in place of u, we infer that�
Ωr(y)

φ(1 + |Du|) dx ≤
�
Ω3r(ỹ)

φ(1 + |Du|) dx

≤ c

�
Ω6r(ỹ)

φ

(
1 +

|u− g|
r

)
dx+ c

�
Ω6r(ỹ)

φ(|Dg|) dx

≤ c|Br|(1 + cΩ)

(
−
�

B6r(ỹ)

φα(|D(u− g)|) dx

) 1
α

+ c

�
Ω6r(ỹ)

φ(1 + |Dg|) dx

Here we extended u − g to Br(x0) \ Ω by 0 and used the fact that Br(y) ⊂ B3r(ỹ) ⊂ B6r(ỹ) ⊂
B8r(y). Therefore, we obtain that for every B8r(y) ⊂ Bϱ(x0),

−
�

Br(y)

φ(1 + |Du|)1Ω dx ≤ c̃

(
−
�

B8r(y)

[φ (1 + |Du|)1Ω]
α dx

) 1
α

+ c̃ −
�

B8r(y)

φ(|Dg|)1Ω dx

for some c̃ = c̃(n,N,L, ν,∆2(φ,φ
∗), cΩ) > 0, where 1Ω is the characteristic function of Ω. Then,

by virtue of Gehring’s Lemma (see e.g. [33, Theorem 6.6]) we prove (24).

From the preceding theorem with a covering argument, we derive the following two corollaries
that will be used later. The first corollary is a higher integrability result on the flat boundary.
Its interior version in the degenerate case can be found in [34, Lemma 3.2].

Corollary 1. Suppose x0 ∈ Rn−1 × {0}, and f : B+
ϱ (x0)× RN × RN×n → R satisfies (21) with

an N -function φ complying with ∆2(φ,φ
∗) < ∞. Let u ∈ W 1,φ

Γ (B+
ϱ (x0);RN ) be a minimizer of

(1) with Ω = B+
ϱ (x0). There exist an exponent s0 > 1 and a constant c > 0 depending only on

n,N,L, ν,∆2(φ,φ
∗) such that for every s ∈ (1, s0] and every radius r ∈ [ϱ/2, ϱ), one has

−
�

B+
r (x0)

φs(1 + |Du|) dx ≤ c

(
ϱ

ϱ− r

)n(s−1)
(

−
�

B+
ϱ (x0)

φ(1 + |Du|) dx

)s
. (25)

Moreover, we also have for any t ∈ (0, 1]

−
�

B+
ϱ/2

(x0)

φ(1 + |Dnu|) dx ≤ ct

(
−
�

B+
ϱ (x0)

φ(1 + |Dnu|)t dx

) 1
t

, (26)

where ct > 0 depends on n,N,L, ν,∆2(φ,φ
∗) and t.

Proof. Set Ω = Rn+. Note that Rn+ satisfies the uniform measure density condition (23) with
cΩ = 2 and any r0 > 0. By Theorem 3.2 with g ≡ 0, we infer that

−
�

B+
ϱ−r(y)

φs(1 + |Du|) dx ≤ c

(
−
�

B+
8(ϱ−r)

(y)

φ(1 + |Du|) dx

)s

for every r ∈ [ϱ/2, ϱ) and every y ∈ B+
r (x0). Therefore, by a standard covering argument, we

prove (25).
Moreover, from (25), (22) and (10) we deduce that for every 1

2 ≤ τ1 < τ2 ≤ 1
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(
−
�

B+
τ1ϱ(x0)

φ(|Dnu|)s0 dx

) 1
s0

≤ c

(τ2 − τ1)β0
−
�

B+
ϱ (x0)

φ(1 + |Dnu|) dx .

for some β0 = β0(n, s0) > 0. For t ∈ (0, 1), set θ ∈ (0, 1) such that t = s0(1−θ)
s0−θ . Then an

application of Hölder’s inequality and Young’s inequality yields(
−
�

B+
τ1ϱ(x0)

φ(|Dnu|)s0 dx

) 1
s0

≤ c

(τ2 − τ1)β0
−
�

B+
ϱ (x0)

φ(1 + |Dnu|) dx

≤ c

(τ2 − τ1)β0

(
−
�

B+
τ2ϱ(x0)

φ(1 + |Dnu|)s0 dx

) θ
s0
(

−
�

B+
τ2ϱ(x0)

φ(1 + |Dnu|)t dx

) 1−θ
t

≤ 1

2

(
−
�

B+
τ2ϱ(x0)

φ(1 + |Dnu|)s0 dx

) 1
s0

+
c

(τ2 − τ1)
β0
1−θ

(
−
�

B+
2ϱ(x0)

φ(1 + |Dnu|)t dx

) 1
t

.

Finally, applying Lemma 2.5, we have (25).

The second corollary is a global higher integrability result in an upper-half ball.

Corollary 2. Suppose that x0 ∈ Rn−1 × {0}, f : B+
ϱ (x0)× RN × RN×n → R satisfies (21) with

an N -function φ complying with ∆2(φ,φ
∗) <∞, and g ∈W 1,φ(B+

ϱ (x0),RN ) satisfies φ(|Dg|) ∈
Ls1(B+

ϱ (x0)) for some s1 > 1. There exists an exponent s0 ∈ (1, s1) and a constant c > 0

depending only on n,N,L, ν,∆2(φ,φ
∗), s1 such that if u ∈ W 1,φ(B+

ϱ (x0);RN ) is the minimizer

of (1) with Ω = B+
ϱ (x0), and u = g on ∂B+

ϱ (x0), then φ(|Du|) ∈ Ls0(B+
ϱ (x0)) with the following

estimate: for every s ∈ (1, s0]�
B+

ϱ (x0)

φs(1 + |Du|) dx ≤ c

�
B+

ϱ (x0)

φs(1 + |Dg|) dx . (27)

Proof. First, we observe that B+
ϱ (x0) satisfies the exterior measure density condition in (23) with

cΩ = 2 and r0 = ϱ; hence, we obtain (24) for all B8r(y) ⊂ Bϱ(x0) with r ≤ ϱ/16 and y ∈ Bϱ(x0).
Therefore, applying a standard covering argument and the fact that, by (21) and the minimality
of u, �

B+
ϱ (x0)

φ(|Du|) dx ≤ 1

ν

�
B+

ϱ (x0)

f(x,u, Du)− f(x,u,0) dx

≤ 1

ν

�
B+

ϱ (x0)

f(x,g, Dg)− f(x,g,0) + f(x,g,0)− f(x,u,0) dx

≤ c

�
B+

ϱ (x0)

φ(1 + |Dg|) dx ,

we obtain (27).

3.2. Caccioppoli type inequality II. Next, we derive the following Caccioppoli inequality of
second type for the minimizers of (1), where f : Ω × RN × RN×n satisfies (F1) – (F5) with an
N -function complying with (φ1) – (φ2). We note that f satisfies (21), and ∆2(φ) and ∆2(φ

∗)
are finite and depend on µ1 and µ2.
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Lemma 3.3. Suppose that x0 ∈ Rn−1×{x0}, φ satisfies (φ1) – (φ2), and f : B+
ϱ (x0)×RN×RN×n

does (F1) – (F5). Let u ∈ W 1,φ
Γ (B+

ϱ (x0)) be a minimizer of (1). Then, for every ξ ∈ RN and
every s ∈ (1, s0],

−
�

B+
ϱ/2

(x0)

φ1+|ξ|(|Du− ξ ⊗ en|) dx ≤ c −
�

B+
ϱ (x0)

φ1+|ξ|

(
|u− xnξ|

ϱ

)
dx

+ cφ(1 + |ξ|)

[
ω

(
−
�

B+
ϱ (x0)

|u|+ |u− ξxn|dx

)1− 1
s

+ V(ϱ)1− 1
s

] (28)

for some c = c(n,N, µ1, µ2, ν, L) > 0, where s0 > 1 is the constant determined in Lemma 1 with
φ and f given in the present lemma; hence it depends only on n,N, µ1, µ2, ν, L, and V and ω are
given in (F4) and (F5), respectively.

Proof. We may adapt the interior argument of [34, Lemma 3.4] to the boundary setting, with
minor modifications due to the different assumptions (F1) – (F2) therein. Assuming, without loss
of generality, that x0 = 0, we fix any ϱ

2 ≤ r < τ < t ≤ 3ϱ
4 with τ := r+t

2 , and a cut-off function

η ∈ C∞
0 (Bτ ; [0, 1]) such that η ≡ 1 on Br and |Dη| ≤ 4

t−r on Bτ . Correspondingly, we define the

test functions ζ := η(u − xnξ) ∈ W 1,φ
Γ (B+

τ ;RN ) and ψ := (1 − η)(u − xnξ) ∈ W 1,φ
Γ (B+

τ ;RN ).
From this point, the proof goes on as in [34, Lemma 3.4]. We then omit the details.

For a minimizer u ∈W 1,φ
Γ (B+

ϱ (x0);RN ) of (1) with Ω = B+
ϱ (x0) and x0 ∈ Rn−1 × {0}, we set

Θ(x0, ϱ) := ϱφ−1

(
−
�

B+
ϱ (x0)

φ(1 + |Dnu|) dx

)
. (29)

Then, we obtain some upper bounds for the remainder term inside ω in (28).

Lemma 3.4. Let φ be an N -function complying with (φ1) – (φ2), and u ∈ W 1,φ
Γ (B+

ϱ (x0);RN )

with x0 ∈ Rn−1 × {0}. Then, for every ξ ∈ RN , if the smallness assumption

−
�

B+
ϱ (x0)

φ1+|ξ|(|Du− ξ ⊗ en|) dx ≤ Λφ(1 + |ξ|) (30)

holds for some Λ > 0, then

(
−
�

B+
ϱ (x0)

|u|µ1 dx

) 1
µ1

≤ cΘ(x0, ϱ) ≤ c(1 + Λ)
1
µ2 ϱ(1 + |ξ|) (31)

for some c = c(n,N, µ1, µ2) > 0.

Proof. First, we note from (φ2) that φ(t1/µ1) is convex for t ≥ 0. Applying Jensen’s inequality,
the Poincaré type estimate in Lemma 2.3 and the change-shift formula (6) with a = 0, and using
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assumption (30), we obtain

φ

((
−
�

B+
ϱ (x0)

[
|u|
ϱ

]µ1

dx

) 1
µ1
)

≤ −
�

B+
ϱ (x0)

φ

(
|u|
ϱ

)
dx ≤ c −

�

B+
ϱ (x0)

φ(|Dnu|) dx

≤ c −
�

B+
ϱ (x0)

φ(|Du− ξ ⊗ en|) dx+ cφ(|ξ|)

≤ c −
�

B+
ϱ (x0)

φ1+|ξ|(|Du− ξ ⊗ en|) dx+ cφ(1 + |ξ|)

≤ c(1 + Λ)φ(1 + |ξ|) ,

which yields (31) up to applying φ−1 to both the sides and Proposition 1(iv).

Next, we establish an higher integrability result for φ1+|ξ|(|Du − ξ ⊗ en|) under assumption
(30).

Lemma 3.5. Suppose that x0 ∈ Rn−1 × {x0}, φ satisfies (φ1) – (φ2), and f : B+
ϱ (x0) × RN ×

RN×n does (F1) – (F5). There exist an exponent σ > 1 and a constant c > 0 depending on

n,N, µ1, µ2, ν, L such that if u ∈ W 1,φ
Γ (B+

r (x0);RN ) is a minimizer of (1) and the inequality in
(30) holds for some for some ξ ∈ RN and Λ > 0, then, for every s ∈ (1, s0],(

−
�

B+
ϱ/2

(x0)

φσ1+|ξ|(|Du− ξ ⊗ en|) dx

) 1
σ

≤ c −
�

B+
ϱ (x0)

φ1+|ξ|(|Du− ξ ⊗ en|) dx+ cφ(1 + |ξ|)
[
(1 + Λ)

1
µ2 ω (ϱ(1 + |ξ|))1−

1
s + V(ϱ)1− 1

s

]
,

(32)

where s0 > 1 is the exponent determined in Lemma 1 with φ and f given in the present lemma;
hence it depends only on n,N, µ1, µ2, ν, L, and V and ω are given in (F4) and (F5), respectively.

Moreover, we also have that for every t ∈ (0, 1](
−
�

B+
ϱ/2

(x0)

φσ1+|ξ|(|Du− ξ ⊗ en|) dx

) 1
σ

≤ ct

(
−
�

B+
ϱ (x0)

φ1+|ξ|(|Du− ξ ⊗ en|)t dx

) 1
t

+ cφ(1 + |ξ|)
[
(1 + Λ)

1
µ2 ω (ϱ(1 + |ξ|))1−

1
s + V(ϱ)1− 1

s

]
,

(33)

for some ct > 0 depending on n,N, µ1, µ2, ν, L and t.

Proof. We follow the argument in the proof of Theorem 3.2. We extend u and u − ξxn to
Bϱ(x0) \ B+

ϱ (x0) by 0, and consider any ball B8r(y) ⊂ Bϱ(x0). If B2r(y) ⊂ B+
ϱ (x0), in view of

[34, Lemma 3.4] with ϱ = 2r, x0 = y, u0 = (u)y,2r, and Q = ξ ⊗ en, we obtain

−
�

Br(y)

φ1+|ξ|(|Du− ξ ⊗ en|) dx ≤ c −
�

B2r(y)

φ1+|ξ|

(
|u− (u)y,2r − (ξ ⊗ en)(x− y)|

2r

)
dx

+ cφ(1 + |ξ|)

[
ω

(
−
�

B2r(y)

|u− (u)y,2r|+ |ξ||x− y|dx

)1− 1
s

+ V(2r)1− 1
s

]
.

(34)
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Here, we observe that

−
�

B2r(y)

|u− (u)y,2r|+ |ξ||x−y|dx ≤ c −
�

B2r(y)

|u|dx+c|ξ|r ≤ c

(
1

ϱ(1 + |ξ|)
−
�

B2r(y)

|u|dx+1

)
ϱ(1+ |ξ|)

which with the concavity of ω and ω(0) = 0, precisely, ω(ct) ≤ cω(t) when c ≥ 1, yields

ω

(
−
�

B2r(y)

|u− (u)y,2r|+ |ξ||x− y|dx

)1− 1
s

≤ c

(
1

ϱ(1 + |ξ|)
−
�

B2r(y)

|u|dx+ 1

)
ω(ϱ(1 + |ξ|))1− 1

s .

Moreover, as −
�
B2r(y)

u−(u)y,2r−(ξ⊗en)(x−y) dx = 0, by the Sobolev–Poincaré type inequality

in (11),

−
�

B2r(y)

φ1+|ξ|

(
|u− (u)y,2r − (ξ ⊗ en)(x− y)|

2r

)
dx ≤ c

(
−
�

B2r(y)

φα1+|ξ|(|Du− ξ ⊗ en|) dx

) 1
α

for some α ∈ (0, 1). Therefore, inserting the preceding two estimates into (34), we obtain

−
�

Br(y)

φ1+|ξ|(|Du− ξ ⊗ en|) dx ≤ c

(
−
�

B2r(y)

φα1+|ξ|(|Du− ξ ⊗ en|) dx

) 1
α

+ c
φ(1 + |ξ|)ω(ϱ(1 + |ξ|))1− 1

s

ϱ(1 + |ξ|)
−
�

B2r(y)

|u|dx+ cφ(1 + |ξ|)
[
ω (ϱ(1 + |ξ|))1−

1
s + V(ϱ)1− 1

s

]
.

On the other hand, if B2r(y) ∩ (Rn−1 × {0}) ̸= ∅, by Lemma 3.3, the Sobolev–Poincaré type
inequality in (12) and the same argument in the case that B2r(y) ⊂ B+

ϱ (x0) in above, we obtain

−
�

Br(y)

φ1+|ξ|(|Du− ξ ⊗ en|) dx ≤ c −
�

B+
3r(ỹ)

φ1+|ξ|(|Du− ξ ⊗ en|) dx

≤ c −
�

B+
6r(ỹ)

φ1+|ξ|

(
|u− xnξ|

6r

)
dx+ cφ(1 + |ξ|)

[
ω

(
−
�

B+
6r(ỹ)

|u|+ |ξxn|dx

)1− 1
s

+ V(6r)1− 1
s

]

≤ c

(
−
�

B8r(y)

φα1+|ξ|(|Du− ξ ⊗ en|) dx

) 1
α

+ c
φ(1 + |ξ|)ω(ϱ(1 + |ξ|))1− 1

s

ϱ(1 + |ξ|)
−
�

B8r(y)

|u|dx+ cφ(1 + |ξ|)
[
ω (ϱ(1 + |ξ|))1−

1
s + V(ϱ)1− 1

s

]
.

Here, ỹ ∈ Rn−1 × {0} is chosen to satisfy Br(y) ⊂ B3r(ỹ) ⊂ B6r(ỹ) ⊂ B8r(y).
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Consequently, since u ∈ Lµ1(Bϱ(x0)), by virtue of Gehring’s lemma there exists σ = σ(n,N, µ1, µ2, ν, L) ∈
(1, µ1) such that for every ϱ

2 ≤ r1 < r2 ≤ ϱ,(
−
�

B+
r1

(x0)

φσ1+|ξ|(|Du− ξ ⊗ en|) dx

) 1
σ

≤ c

(
r2

r2 − r1

)n(σ−1)
σ

−
�

B+
r2

(x0)

φ1+|ξ|(|Du− ξ ⊗ en|) dx

+ c
φ(1 + |ξ|)ω(ϱ(1 + |ξ|))1− 1

s

ϱ(1 + |ξ|)

(
−
�

B+
r2

(x0)

|u|σ dx

) 1
σ

+ c

(
r2

r2 − r1

)n(σ−1)
σ

φ(1 + |ξ|)
[
ω (ϱ(1 + |ξ|))1−

1
s + V(ϱ)1− 1

s

]
≤ c

(
r2

r2 − r1

)n(σ−1)
σ

−
�

B+
r2

(x0)

φ1+|ξ|(|Du− ξ ⊗ en|) dx+ c(1 + Λ)
1
µ2 φ(1 + |ξ|)ω(ϱ(1 + |ξ|))1− 1

s

+ c

(
r2

r2 − r1

)n(σ−1)
σ

φ(1 + |ξ|)
[
ω (ϱ(1 + |ξ|))1−

1
s + V(ϱ)1− 1

s

]
,

where we apply Lemma 3.4 to the last inequality. Therefore, when r2 = ϱ and r1 = ϱ, we obtain
(32). On the other hand, the estimate in (32) can be obtained by using the same argument as in
the proof of (26).

We conclude this section by introducing the excess functional and other tools useful in the
sequel. For a minimizer u ∈ W 1,φ

Γ (B+
ϱ (x0)) of (1) with Ω = B+

ϱ (x0) and x0 ∈ Rn−1 × {0}, we
define the excess functional as

Φ(x0, ϱ) := −
�

B+
ϱ (x0)

φ1+|(Dnu)x0,ϱ|(|Du− (Dnu)x0,ϱ ⊗ en|) dx (35)

and

Ψ(x0, ϱ) := −
�

B+
ϱ (x0)

φ

(
1 +

|u|
ϱ

)
dx . (36)

Moreover, we define also

H(x0, ϱ) :=
1

(1 + Λ)
1
µ2 + (2L)1−

1
s

(
(1 + Λ)

1
µ2 ω(ϱ(1 + |(Dnu)x0,ϱ|))1−

1
s + V(ϱ)1− 1

s

)
, (37)

and

H̃(x0, ϱ) :=
1

(1 + Λ)
1
µ2 + (2L)1−

1
s

(
(1 + Λ)

1
µ2 ω(Θ(x0, ϱ))

1− 1
s + V(ϱ)1− 1

s

)
, (38)

where s = s(n,N, µ1, µ2, ν, L) ∈ (1, s0) is determined in the proof of Lemma 4.2 below (see the
line above from (41)) and Θ(x0, ϱ) is the “Morrey-type” excess defined in (29). Since ω ≤ 1 and

V(ϱ) ≤ 2L, we have that H(x0, ϱ) ≤ 1, H̃(x0, ϱ) ≤ 1.
Under the assumption Φ(x0, ϱ) ≤ Λφ(1 + |(Dnu)x0,ϱ|) in (30) with Λ ∈ (0, 1], by virtue of

Lemma 3.4,

H̃(x0, ϱ) ≤ cH(x0, ϱ) .
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We can rewrite the Caccioppoli inequality (32) as

Φ(x0, ϱ/2) ≤ cΦ(x0, ϱ) + cφ(1 + |(Dnu)x0,ϱ|)H(x0, ϱ) . (39)

In the case x0 = 0, we will use the shorthands Φ(ϱ), Ψ(ϱ), Θ(ϱ), H(ϱ) and H̃(ϱ) in place of

Φ(0, ϱ), Ψ(0, ϱ), Θ(0, ϱ), H(0, ϱ) and H̃(0, ϱ), respectively.

4. Boundary partial regularity. In this section, we provide a linearization strategy for the
minimization problem along the lines of [34, Sections 3.2 and 3.3], where an analogous analysis
has been performed in the interior and degenerate setting.

Throughout this section, we always assume that f : B+
ϱ (x0)× RN × RN×n → R satisfies (F1)

– (F6) with an N -function φ complying with (φ1) – (φ2), and that u ∈ W 1,φ
Γ (B+

ϱ (x0);RN ) is a

minimizer of (1) with Ω = B+
ϱ (x0) and x0 ∈ Rn−1 × {0}.

4.1. Approximate A-harmonicity. In this subsection we show that u − (Dnu)x0,ρxn is an
almost A-harmonic function for a suitable elliptic bilinear form A, see Lemma 4.3 below. To prove
this result, we employ a suitable comparison function that is obtained by a freezing argument in
the variables (x,u) based on Ekeland’s variational principle. We recall below a version of this
classical tool, whose proof can be found, e.g., in [33, Theorem 5.6].

Lemma 4.1 (Ekeland’s principle). Let (X, d) be a complete metric space, and assume that F :
X → [0,∞] be not identically ∞ and lower semicontinuous with respect to the metric topology on
X. If for some u ∈ X and some κ > 0, there holds

F (u) ≤ inf
X
F + κ ,

then there exists v ∈ X with the properties

d(u, v) ≤ 1 and F (v) ≤ F (w) + κd(v, w) ∀w ∈ X .

We start with setting

g(ξ) ≡ gx0,ϱ(ξ) := (f(·,0, ξ ⊗ en))x0,ϱ for all ξ ∈ RN

and

K(x0, ϱ) := H̃(x0, ϱ)Ψ(x0, ϱ) ,

where H̃(x0, ϱ) and Ψ(x0, ϱ) are defined as in (38) and (36), respectively. Then, we introduce the

following metric d in X := u+W 1,φ
0 (B+

ϱ/2(x0);R
N ):

d(w1,w2) :=
1

c∗φ−1(K(x0, ϱ))
−
�

B+
ϱ/2

(x0)

|Dw1 −Dw2|dx , w1,w2 ∈ u+W 1,φ
0 (B+

ϱ/2(x0);R
N ) ,

where c∗ > 0 is determined in Lemma 4.2 below. Then (X, d) is a complete metric space and the
following functional is lower semicontinuous in this metric topology:

G[w] := −
�

B+
ϱ/2

(x0)

g(Dw) dx, w ∈ u+W 1,φ
0 (B+

ϱ/2(x0);R
N ) , (40)

In the next lemma, we find a suitable comparison map v ∈ X = u +W 1,φ
0 (B+

ϱ/2(x0);R
N ) by

applying Ekeland’s variational principle.
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Lemma 4.2. Under the setting above, there exists a minimizer v ∈ u+W 1,φ
0 (B+

ϱ/2(x0);R
N ) of

the functional

G̃[w] := −
�

B+
ϱ/2

(x0)

g(Dw) dx+
K(x0, ϱ)

φ−1(K(x0, ϱ))
−
�

B+
ϱ/2

(x0)

|Dv−Dw|dx , w ∈ u+W 1,φ
0 (B+

ϱ/2(x0);R
N ) ,

that satisfies

−
�

B+
ϱ/2

(x0)

|Dv −Du|dx ≤ c∗φ
−1(K(x0, ϱ))

for some constant c∗ = c∗(n,N, µ1, µ2, ν, L) > 0. Moreover, v fulfills the following Euler-Lagrange
variational inequality:∣∣∣∣∣∣∣∣ −

�

B+
ϱ/2

(x0)

⟨Dg(Dv)|Dη⟩dx

∣∣∣∣∣∣∣∣ ≤
K(x0, ϱ)

φ−1(K(x0, ϱ))
−
�

B+
ϱ/2

(x0)

|Dη|dx

for every η ∈ C∞
0 (B+

ϱ/2(x0);R
N ).

Proof. The proof of this result can be obtained as in [34, Lemma 3.8], where its interior coun-
terpart has been proved, by also exploiting the higher integrability results in Corollary 1 and
Corollary 2 with (u,g, ϱ) in place of (ṽ,u, ϱ/2) to infer that for some s ∈ (1, s0) depending on
n,N, µ1, µ2, ν, L,(

−
�

B+
ϱ/2

φs(1 + |Dṽ|) dx

) 1
s

≤ c

(
−
�

B+
ϱ/2

φs(1 + |Du|) dx

) 1
s

≤ c −
�

B+
3ϱ/4

φ(1 + |Du|) dx ≤ cΨ(ϱ) , (41)

where ṽ ∈ X is a minimizer of the functional (40). We then omit the details.

Corollary 3. Let v ∈ u + W 1,φ
0 (B+

ϱ/2(x0);R
N ) be as in Lemma 4.2. Then there exists τ =

τ(n,N, µ1, µ2, ν, L) ∈ (0, 1) such that

−
�

B+
ϱ/4

(x0)

φ(|Du−Dv|) dx ≤ c[H̃(x0, ϱ)]
1−τΨ(x0, ϱ) (42)

for some constant c = c(n,N, µ1, µ2, ν, L) > 0.

Proof. We follow the proof of [15, Corollary 3.4]. First, we derive the following higher integrability

result for G̃: (
−
�

B+
ϱ/4

(x0)

φs(1 + |Dv|) dx

) 1
s

≤ c −
�

B+
ϱ/2

(x0)

φ(1 + |Dv|) dx+ cK(x0, ϱ) , (43)

where s > 1 and c > 0 depends on n,N, µ1, µ2, ν, L. The proof is exactly the same as the one
of Theorem 3.2 by obtaining the Caccioppoli type estimates for the functional G̃ in interior and
boundary regions. For the Caccioppoli type estimate in interior regions, we refer to [15, Step 1
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in the proof of Corollary 3.4], and, thus, obtain that for every B2r(y) ⊂ B+
ϱ (x0),

−
�

Br(y)

φ(1 + |Dv|) dx ≤ c −
�

B2r(y)

φ

(
1 +

∣∣∣∣v − (v)y,2r
r

∣∣∣∣) dx+ cK(x0, ϱ)

≤ c

(
−
�

B2r(y)

φ (1 + |Dv|)α dx

) 1
α

+ cK(x0, ϱ) .

Here, we used the Sobolev–Poincaré type inequality in (11). In a similar way (see, e.g., Lemma 3.1),
when B2r(y) ⊂ Bϱ(x0) with y ∈ Γr(x0), we also obtain the above estimate, extending v to
B2r(y) \B+

2r(y) by 0, replacing (v)y,2r with 0 and using the Sobolev–Poincaré type inequality in
(12). Therefore, by Gehring’s lemma, we obtain (43).

Then, by following [15, Step 1 in the proof of Corollary 3.4], we obtain (42), where τ ∈ (0, 1)
is explicitly defined such that

τ

s
+ (1− τ)µ2 = 1 ,

where µ2 denotes the bigger of the characteristics of φ.

We are now in the position to prove the approximate A-harmonicity of u, where

A :=
D2g((Dnu)x0,ϱ ⊗ en)

φ′′(1 + |(Dnu)x0,ϱ|)
≡

(
D2f(·,0, (Dnu)x0,ϱ ⊗ en)

)
x0,ϱ

φ′′(1 + |(Dnu)x0,ϱ|)
. (44)

We notice that, by (2), A defined above satisfies the Legendre – Hadamard condition in (13).
Before stating the next lemma, we define

ω̃1(t) := ω1(t
1/2)t1/2 , (45)

where ω1(·) is defined in (F6). Then one can see that ω1(t)/t and ω̃1(t)/t are almost decreasing
in t ∈ (0,∞) with the same constant L ≥ 1.

Lemma 4.3. Suppose that
Φ(x0, ϱ) ≤ φ(1 + |(Dnu)x0,ϱ|). (46)

Then, u is approximately A-harmonic on the upper half-ball B+
ϱ/4(x0), in the sense that there

exists β1 = β1(n,N, µ1, µ2, ν, L) ∈ (0, 12 ) such that∣∣∣∣∣ −
�

B+
ϱ/4

(x0)

⟨A(Du− (Dnu)x0,ϱ ⊗ en)|Dη⟩dx

∣∣∣∣∣ ≤ c(1 + |(Dnu)x0,ϱ|)∥Dη∥∞

×
{
H(x0, ϱ)

β1 +
Φ(x0, ϱ)

φ(1 + |(Dnu)x0,ϱ|)
+ ω̃1

(
H(x0, ϱ)

β1 +
Φ(x0, ϱ)

φ(1 + |(Dnu)x0,ϱ|)

)}
holds for every η ∈ C∞

0 (B+
ϱ/4(x0);R

N ) for some constant c = c(n,N, µ1, µ2, ν, L) > 0, where

β1 := min

{
1

µ2
, 1− 1

µ1
, 1− τ

}
<

1

2
. (47)

In (47), τ is that of Corollary 3, and µ1 and µ2 are the characteristics of φ.

Proof. The proof is exactly as in the interior setting [34, Lemma 3.9] (see also [15, Lemma 4.3]),

considering the comparison map v ∈ u +W 1,φ
0 (B+

ϱ/2,R
N ) provided by Lemma 4.2, with minor

changes due to the presence of function ω̃1 defined in (45), that was t
β0+1

2 for some β0 > 0 in
[15, 34]. For instance, we use Lemma 2.1 in the proof instead of Hölder’s inequality. We omit the
details.
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We introduce the hybrid excess functional

Φ∗(x0, ϱ) := Φ(x0, ϱ) + φ(1 + |(Dnu)x0,ϱ|)H(x0, ϱ)
β1 . (48)

where β1 is the exponent defined in (47). Since H(x0, ϱ) ≤ 1, we deduce, in particular, that
H(x0, ϱ) ≤ [H(x0, ϱ)]

β1 . Thus, the Caccioppoli inequality (39) can be re-read as

Φ(x0, ϱ/2) ≤ cΦ∗(x0, ϱ) ,

where c = c(n,N, µ1, µ2, ν, L).

4.2. The excess-decay estimate. We start by establishing excess improvement estimates. The
strategy of the proof is to approximate the given minimizer with A-harmonic functions, for which
suitable decay estimates are available from Theorem 2.9.

Lemma 4.4. For every ε ∈ (0, 1) there exist δ1, δ2 ∈ (0, 1], where δi = δi(n,N, µ1, µ2, ν, L, ω1(·), ε),
i = 1, 2, with the following property: if

Φ(x0, ϱ)

φ(1 + |(Dnu)x0,ϱ|)
≤ δ1 (49)

H(x0, ϱ)
β1 ≤ δ2 (50)

then the excess improvement estimate

Φ(x0, ϑϱ) ≤ cdecϑ
2
[
1 +

ε

ϑn+2

]
Φ∗(x0, ϱ) (51)

holds for every ϑ ∈ (0, 1) for some constant cdec = cdec(n,N, µ1, µ2, ν, L) > 0, where Φ∗ is defined
in (48).

Proof. The proof is an adaptation of [34, Lemma 3.10] to the flat boundary setting. Without loss
of generality, we assume that x0 = 0, and we set ξϱ := (Dnu)0,ϱ and Qϱ := ξϱ ⊗ en. We fix any
ϑ ∈ (0, 1

16 ]. Note that if ϑ ∈ ( 1
16 , 1), the inequality in (51) is trivial.

Step 1: A-harmonic approximation. For δ1 > 0 small enough, the assumption (46) is
satisfied. Thus, if A is defined as in (44), in view of Lemma 4.3, for every η ∈ C∞

0 (Bϱ/4;RN )
with ∥Dη∥∞ ≤ 1 we have∣∣∣∣∣∣∣∣ −

�

B+
ϱ/4

⟨A
(
Du−Qϱ

1 + |ξϱ|

)
|Dη⟩dx

∣∣∣∣∣∣∣∣
≤ c1

{(
H(ϱ)β1 +

Φ(ϱ)

φ(1 + |ξϱ|)

) 1
2

+ ω1

((
H(ϱ)β1 +

Φ(ϱ)

φ(1 + |ξϱ|)

) 1
2

)}(
Φ∗(ϱ)

φ(1 + |ξϱ|)

) 1
2

,

(52)

for some constant c1 > 0. Note that, by assumptions (49)-(50), it holds that

Φ∗(ϱ)

φ(1 + |ξϱ|)
≤ δ1 + δ2 . (53)

Now, we define the N -function

ψ(t) :=
φ1+|ξϱ|((1 + |ξϱ|)t)

φ(1 + |ξϱ|)
, t ≥ 0 ,

and taking into account the properties of φ and the fact that ψ is, actually, a shifted function
(see [15, eq. (4.2)] for details), we can show that, for a suitable constant c2 > 0,

t2 ≤ c2ψ(t) , t ∈ [0, 1] . (54)
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From Lemma 3.5, we have also(
−
�

B+
ϱ/4

ψ

(
|Du−Qϱ|
1 + |ξϱ|

)s0
dx

) 1
s0

=

(
−
�

B+
ϱ/4

[
φ1+|ξϱ|(|Du−Qϱ|)

φ(1 + |ξϱ|)

]s0
dx

) 1
s0

≤ c

φ(1 + |ξϱ|)
−
�

B+
ϱ

φ1+|ξϱ|(|Du−Qϱ|) dx+ cH(ϱ)β1

≤ c3
Φ∗(ϱ)

φ(1 + |ξϱ|)

(55)

for some constant c3 > 0. Then, with the constants c1, c2, c3 determined above and (53), by
choosing δ1 and δ2 small enough we obtain

κ := max{c1,
√
c2c3}

[
Φ∗(ϱ)

φ(1 + |ξϱ|)

] 1
2

≤ max{c1,
√
c2c3}

√
δ1 + δ2 < 1 . (56)

Now, combining (55), (56) and (54), we get(
−
�

B+
ϱ/4

ψ

(
|Du−Qϱ|
1 + |ξϱ|

)s0
dx

) 1
s0

≤ c3
κ2

max{c1,
√
c2c3}2

≤ κ2

c2
≤ ψ(κ) (57)

and, plugging (56) and (49) into (52), we infer

−
�

B+
ϱ/4

⟨A
(
Du−Qϱ

1 + |ξϱ|

)
|Dη⟩dx ≤

c1
(√
δ1 + δ2 + ω1(

√
δ1 + δ2)

)
max{c1,

√
c2c3}

κ .

Therefore, up to choosing δ1, δ2 small enough, we can apply Theorem 2.9 and the subsequent

Remark 2 to the function v :=
u− ξϱxn
1 + |ξϱ|

with s = s0 and µ = κ, so that there exists an

A-harmonic function h in B+
ϱ/2, with h = v = 0 on Γϱ/2, such that

1

φ(1 + |ξϱ|)
−
�

B+
ϱ/4

φ1+|ξϱ|(|Du−Qϱ − (1 + |ξϱ|)Dh|) dx = −
�

B+
ϱ/4

ψ(|Dv −Dh|) dx ≤ εψ(κ) . (58)

In addition, since

ψ(κ) ≤ c
φ((1 + |ξϱ|)(1 + κ))

φ(1 + |ξϱ|)(1 + κ)2
κ2 ≤ cκ2 (κ ∈ (0, 1)),

applying (56), we conclude that

−
�

B+
ϱ/4

φ1+|ξϱ|(|Du−Qϱ − (1 + |ξϱ|)Dh|) dx ≤ cεΦ∗(ϱ) . (59)

Step 2: Estimates for A-harmonic maps. From (57) and (58) we infer that

−
�

B+
ϱ/4

ψ(|Dh|) dx ≤ c −
�

B+
ϱ/4

ψ(|Dv|) dx+ c −
�

B+
ϱ/4

ψ(|Dv −Dh|) dx ≤ c(1 + ε)ψ(κ) ≤ cψ(κ) ,
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which combined with the property (17), Jensen’s inequality and (56), gives

sup
B+

ϱ/8

|Dh| ≤ cψ−1

(
−
�

B+
ϱ/4

ψ(|Dh|) dx

)
≤ cκ ≤ c

√
δ1 + δ2 ≤ 1

2
(60)

up to choose δ1 and δ2 small enough. Here, we recall ϑ ∈ (0, 1
16 ]. Taking into account (60), we

observe that

1 + |ξϱ|
2

≤ 1 + |ξϱ + (1 + |ξϱ|)(Dnh)ϑϱ| ≤
3(1 + |ξϱ|)

2
, (61)

and

(1 + |ξϱ|)(1 + (|Dnh|)ϱ/4) ≥ (1 + |ξϱ|)(1 + ϑ(|Dnh|)ϱ/4|) ≥
2

3
(1 + |ξϱ|)(1 + (|Dnh|)ϱ/4)

which together with (5) and Jensen’s inequality implies that

φ1+|ξϱ|(ϑ(1 + |ξϱ|)(|Dnh|)ϱ/4) ≤ cϑ2φ1+|ξϱ|((1 + |ξϱ|)(|Dnh|)ϱ/4)

≤ ϑ2 −
�

B+
ϱ/4

φ1+|ξϱ|((1 + |ξϱ|)|Dnh|) dx . (62)

In addition, applying the Calderón-Zygmund estimate (2.5) to h, we have

−
�

B+
ϱ/4

φ1+|ξϱ|((1 + |ξϱ|)|Dh|) dx = φ(1 + |ξϱ|) −
�

B+
ϱ/4

ψ(|Dh|) dx

≤ cφ(1 + |ξϱ|) −
�

B+
ϱ/4

ψ(|Dv|) dx ≤ cΦ(ϱ) .

(63)

Finally, since h− (Dnh)ϑϱxn is also an A-harmonic map with h− (Dnh)ϑϱxn = 0 on Γϱ/4, in
view of Theorem 2.8 together with the Poincaré inequality, we have

sup
B+

ϑϱ

|Dh− (Dnh)ϑϱ ⊗ en| ≤ c −
�

B+
2ϑϱ

|Dnh− (Dnh)ϑϱ|dx

≤ cϑϱ −
�

B+
2ϑϱ

|D2h|dx ≤ cϑϱ sup
B+

ϱ/8

|D2h| ≤ cϑ −
�

B+
ϱ/4

|Dnh|dx.
(64)

Step 3: Estimation of Φ(ϑϱ). First, we denote by u and h the odd extensions of u and h in
Bϱ/4, respectively. Then we note that, for every r ∈ (0, ϱ/4],

(Du)Br
=

(
−
�

B+
r

Dnudx

)
⊗ en = ξr ⊗ en = Qr, hence |(Du)Br

| = |(Dnu)r| = |ξr|,

and also

(Dh)Br = (Dnh)r ⊗ en .
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Now, we estimate Φ(ϑϱ). By (7) and (8) with the preceding identities, we obtain

Φ(ϑϱ) = −
�

B+
ϑϱ

φ1+|ξϑϱ|(|Du−Qϑϱ|) dx = −
�

Bϑϱ

φ1+|(Du)Bϑϱ
|(|Du− (Du)Bϑϱ

|) dx

≤ c −
�

Bϑϱ

|V1(Du)−V1((Du)Bϑϱ
)|2 dx ≤ c −

�

Bϑϱ

|V1(Du)− (V1(Du))Bϑϱ
|2 dx

≤ −
�

Bϑϱ

|V1(Du)−V1

(
(Du)Bϱ

+ (1 + |(Du)Bϱ
|)(Dh)Bϑϱ

)
|2 dx

≤ c −
�

Bϑϱ

φ1+|(Du)Bϱ+(1+|(Du)Bϱ |)(Dh)Bϑϱ
|
(∣∣Du− [(Du)Bϱ + (1 + |(Du)Bϱ |)(Dh)Bϑϱ

]
∣∣) dx

≤ c −
�

B+
ϑϱ

φ1+|ξϱ+(1+|ξϱ|)(Dnh)ϑϱ| (|Du−Qϱ − (1 + |ξϱ|)(Dnh)ϑϱ ⊗ en|) dx .

Then, from (61), we immediately infer that

Φ(ϑϱ) ≤ c −
�

B+
ϑϱ

φ1+|ξϱ| (|Du−Qϱ − (1 + |ξϱ|)(Dnh)ϑϱ ⊗ en|) dx .

Finally, by (64), (59), (62) and (63),

Φ(ϑϱ) ≤ c −
�

B+
ϑϱ

φ1+|ξϱ|(|Du−Qϱ − (1 + |ξϱ|)Dh|) dx

+ −
�

B+
ϑϱ

φ1+|ξϱ|((1 + |ξϱ|)|Dh− (Dnh)ϑϱ ⊗ en|) dx

≤ cϑ−n −
�

B+
ϱ

φ1+|ξϱ|(|Du−Qϱ − (1 + |ξϱ|)Dh|) dx+ φ1+|ξϱ|(ϑ(1 + |ξϱ|)(|Dnh|)ϱ/4)

≤ cϑ−nεΦ∗(ϱ) + cϑ2 −
�

B+
ϱ/4

φ1+|ξϱ|((1 + |ξϱ|)|Dh|) dx

≤ cϑ−nεΦ∗(ϱ) + cϑ2Φ(ϱ) ≤ cϑ2
(
1 +

ε

ϑn+2

)
Φ∗(ϱ) ,

and the proof is complete.

4.3. Proof of Theorem 1.1. We first prove the partial regularity for the minimizers u ∈
W 1,φ

Γ (B+
R) of (1) with Ω = B+

R ,

Theorem 4.5. Let φ be an N -function complying with (φ1) – (φ2), and f : B+
R×RN×RN×n → R

satisfies (F1) – (F6) with Ω = B+
R . If u ∈ W 1,φ

Γ (B+
R) is a minimizer of (1) with Ω = B+

R , then
the set of regular points on ΓR given by

Γu :=
⋂

α∈(0,1)

{
x0 ∈ ΓR : u ∈ Cα(Ux0 ∩B+

R ;R
N ) for some Ux0 ⊂ BR

}
,
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where Ux0 is an open neighborhood of x0, satisfies ΓR\Γu ⊂ Singu(ΓR) where

Singu(ΓR) :=

{
x0 ∈ ΓR : lim inf

ϱ↘0
−
�

B+
ϱ (x0)

|Du− (Dnu)x0,ϱ ⊗ en|dx > 0

}

∪

{
x0 ∈ ΓR : lim sup

ϱ↘0
(|Dnu|)x0,ϱ = +∞

}
.

Proof. We fix any α ∈ (0, 1), and set

λ := n− µ1(1− α) ∈ (n− µ1, n) . (65)

Step 1: Boundary decay estimates and Morrey type estimates. We start by fixing
various parameters. First, we choose ϑ > 0 such that

ϑ ≤ ϑ1 := min

{
(6 · 2µ2cdec)

− 1
2 ,

1

2
µ2
µ1

,
1

2
µ2

n−λ

}
< 1 , (66)

where cdec is the constant in Lemma 4.4, hence ϑ1 depends on n,N, µ1, µ2, ν, L, α. Correspond-
ingly, let δi = δi(n,N, µ1, µ2, ν, L, ω1(·), ϑ), i = 1, 2, be the constants determined in Lemma 4.4,
applied with the choice ε = ϑn+2. Then we choose ε∗ > 0 such that

ε∗ ≤ ε1 := min

{
δ1,

δ2
2
,
ϑn

2cη1
,

ϑn

2µ2+1cη2

}
, (67)

where cη1 and cη2 are the constants in the change-shift formula (6) with η1 := 1
2 and η2 := 2−µ2−1,

respectively. Finally, with a fixed ε∗, we choose constants κ1, ϱ1 > 0 so small that(
ω(κ1)

1− 1
s

1 + (2L)1−
1
s

)β1

= ε∗ and

(
V(ϱ1)1−

1
s

1 + (2L)1−
1
s

)β1

= ε∗ , (68)

where s > 1 is the exponent appearing in the definitions of H and H̃ in (37) and (38), and β1 is
given in (47). As a consequence, ε1 depends on the choice of ϑ, κ1 does on the choice of ε∗ and
ω(·), and ϱ1 on that of ε∗ and V(·).

Now, we prove that the excess-decay estimate in (51) can be iterated, as the conditions in
(49) and (50) are also satisfied on any smaller upper half-ball B+

ϑmϱ(x0) ⊂ B+
R with m ∈ N,

x0 ∈ Rn−1 × {0} and ρ ∈ (0, ρ1]. Precisely, we prove the following: if the conditions

Φ(x0, ϱ)

φ(1 + |(Dnu)x0,ϱ|)
≤ ε∗ and ϱφ−1

(
−
�

B+
ϱ (x0)

φ(1 + |Du|) dx

)
≤ κ∗ (69)

hold for some ε∗ ∈ (0, ε1], κ∗ ∈ (0, κ1] and ϱ ∈ (0, ϱ1], where Φ(x0, ϱ) is defined in (35), then

Φ(x0, ϑ
mϱ)

φ(1 + |(Dnu)x0,ϑmϱ|)
≤ ε∗ and ϑmϱφ−1

(
−
�

B+
ϑmϱ

(x0)

φ(1 + |Du|) dx

)
≤ κ∗ (70)

for every m = 0, 1, 2, . . . ..
We argue by induction on m. As usual, we omit the explicit dependence on x0. Since (70) are

trivially true for m = 0 by assumption (69), our aim is to show that if (70) holds for some m ≥ 1,
then the corresponding inequalities hold with m + 1 in place of m. We first prove the second
inequalities in (70). Applying the shift-change formula (6) with η = η1 = 1

2 , the first inequality
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in (70) at step m, and the facts that cη1ϑ
−nε∗ ≤ 1

2 from (67) and 2µ2ϑµ1 ≤ 1 from (66), and
Jensen’s inequality, we obtain

−
�

B+

ϑm+1ϱ

φ(1 + |Du|) dx ≤ 2µ2−1

(
−
�

B+

ϑm+1ϱ

φ(|Du− (Dnu)ϑmϱ ⊗ en|) dx+ φ(1 + |(Dnu)ϑmϱ|)

)

≤ 2µ2−1

(
cη1ϑ

−nΦ(ϑmϱ) +
3

2
φ(1 + |(Dnu)ϑmϱ|)

)
≤ 2µ2−1

(
cη1ϑ

−nε∗ +
3

2

)
φ(1 + |(Dnu)ϑmϱ|)

≤ 2µ2−1

(
cη1ϑ

−nε∗ +
3

2

)
−
�

B+
ϑmϱ

φ(1 + |Du|) dx

≤ 2µ2φ

(
κ∗
ϑmϱ

)
≤ 2µ2ϑµ1φ

(
κ∗

ϑm+1ϱ

)
≤ φ

(
κ∗

ϑm+1ϱ

)
(71)

which corresponds to (70) with m+ 1 in place of m.
Next, we prove the first inequality in (70) with m+ 1 in place of m. From (70) at step m and

the choices of ε∗, κ1 and ϱ1 as in (67)-(68), we have

Φ(ϑmϱ)

φ(1 + |(Dnu)ϑmϱ|)
≤ ε∗ ≤ δ1 ,

H(ϑmϱ)β1 ≤

[
ω(κ∗)

1− 1
s + V(ϱ)1− 1

s

1 + (2L)1−
1
s

]β1

≤

[
ω(κ1)

1− 1
s

1 + (2L)1−
1
s

]β1

+

[
V(ϱ1)1−

1
s

1 + (2L)1−
1
s

]β1

< 2ε∗ ≤ δ2 ,

and

Φ∗(ϑ
mϱ) = Φ(ϑmϱ) + φ(1 + |(Dnu)ϑmϱ|)[H(ϑmϱ)]β1 ≤ 3ε∗φ(1 + |(Dnu)ϑmϱ|) .

Moreover, using the shift-change formula (6) with η = η2 := 2−µ2−1, the first inequality in (70)
at step m and the fact that 2µ2−1cη2ϑ

−nε∗ ≤ 1
4 from (67),

φ(1 + |(Dnu)ϑmϱ|) ≤ 2µ2−1φ(1 + |(Dnu)ϑm+1ϱ|) + 2µ2−1 −
�

B+

ϑm+1ϱ

φ(|Dnu− (Dnu)ϑmϱ|) dx

≤ 2µ2−1φ(1 + |(Dnu)ϑm+1ϱ|) + 2µ2−1cη2ϑ
−nΦ(ϑmϱ) + 1

4φ(1 + |(Dnu)ϑmϱ|)
≤ 2µ2−1φ(1 + |(Dnu)ϑm+1ϱ|) + (2µ2−1cη2ϑ

−nε∗ +
1
4 )φ(1 + |(Dnu)ϑmϱ|)

≤ 2µ2−1φ(1 + |(Dnu)ϑm+1ϱ|) + 1
2φ(1 + |(Dnu)ϑmϱ|).

Therefore, we obtain

φ(1 + |(Dnu)ϑmϱ|) ≤ 2µ2φ(1 + |(Dnu)ϑm+1ϱ|),
hence

Φ∗(ϑ
mϱ) ≤ 3 · 2µ2ε∗φ(1 + |(Dnu)ϑm+1ϱ|) .

Finally, by virtue of Lemma 4.4, applied with radius ϑmϱ in place of ϱ, and the fact that 6 ·
2µ2cdecϑ

2 ≤ 1 from (66), we get

Φ(ϑm+1ϱ) ≤ 2cdecϑ
2Φ∗(ϑ

mϱ) ≤ 6 · 2µ2cdecε∗ϑ
2φ(1 + |(Dnu)ϑm+1ϱ|)

≤ ε∗φ(1 + |(Dnu)ϑm+1ϱ|)
which yields the first inequality in (70) with m+ 1 in place of m.
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Consequently, from (70), applying the shift-change formula (6) with η = η1 = 1
2 , (70) and (67),

we obtain

−
�

B+

ϑm+1ϱ

φ(1 + |Du|) dx ≤ 2µ2−1
(
cη1ϑ

−nΦ(ϑmϱ) + 3
2φ(1 + |(Dnu)ϑmϱ|)

)

≤
(
2µ2−1cη1ϑ

−nε∗ + 3 · 2µ2−2
)

−
�

B+
ϑmϱ

φ(1 + |Du|) dx

≤ 2µ2

(
−
�

B+
ϑmϱ

φ(1 + |Du|) dx

)
,

whence, by (66),
�
B+

ϑm+1ϱ

φ(1 + |Du|) dx ≤ 2µ2ϑn
�
B+

ϑmϱ

φ(1 + |Du|) dx ≤ ϑλ
�
B+

ϑmϱ

φ(1 + |Du|) dx .

Consequently, by iterating the above inequality for m = 0, 1, 2, . . . , we have that for every
r ∈ (0, ϱ], �

B+
r

φ(1 + |Du|) dx ≤ ϑ−λ
(
r

ϱ

)λ �
B+

ϱ

φ(1 + |Du|) dx , (72)

if the inequalities in (69) hold.
Step 2: Interior decay estimates and Morrey type estimates.

In Step 1, we derived Morrey-type estimates (72) on half balls by proving excess-decay estimates
in (70). Moreover, in the same way with minor modifications, we can also get the interior
counterpart of (72) on balls in B+

r by proving interior versions of Lemma 4.3 and the results in
Step 1. In fact, these were obtained in [34] for degenerate problems. Therefore, we only state the
interior counterpart of the results in Step 1 without proofs.

There exists a small ϑ2 = ϑ2(n,N, µ1, µ2, ν, L, α) ∈ (0, 1) such that the following holds: for any
ϑ ∈ (0, ϑ2] there exists ε2 = (n,N, µ1, µ2, ν, L, ω1(·), ϑ) such that if ε∗ ≤ ε2 and if κ∗ ∈ (0, κ2) and
Bϱ(y) ⊂ B+

R with ϱ ∈ (0, ϱ2], where κ2 and ϱ2 are the constants satisfying the interior counterpart
of (68), then

Φint(y, ϑ
mϱ)

φ(1 + |(Du)Bϑmϱ(y)|)
≤ ε∗ and ϑmϱφ−1

(
−
�

Bϑmϱ(y)

φ(1 + |Du|) dx

)
≤ κ∗ (73)

for every m = 0, 1, 2, . . . , where

Φint(y, r) := −
�

Br(y)

φ1+|(Du)Br(y)|(|Du− (Du)Br(y)|) dx ,

if (73) hold when m = 0. Moreover, (73) implies

�
Br(y)

φ(1 + |Du|) dx ≤ ϑ−λ
(
r

ϱ

)λ �
Bϱ(y)

φ(1 + |Du|) dx. (74)

Step 3: Cα-continuity. Now, we fix ϑ := min{ϑ1, ϑ2}. Then ε1 and ε2 are determined, and set
ε∗ := min{ε1, ε2}, so that also κ1, κ2, ϱ1, and ϱ2 are determined. Finally we set κ∗ := min{κ1, κ2}.
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Suppose that for B+
3ϱ0

(x0) ⊂ B+
R with 0 < ϱ0 ≤ min{ϱ1,ϱ2}

3 and x0 ∈ ΓR, the following holds:

Φ(ỹ, 2ϱ0)

φ(1 + |(Dnu)ỹ,2ϱ0 |)
≤ ϑnε∗

c1
≤ ε∗ and 2ϱ0 φ

−1

(
−
�

B+
2ϱ0

(ỹ)

φ(1 + |Du|) dx

)
≤ κ∗ (75)

for every ỹ ∈ Γϱ0(x0), where c1 ≥ 1 is determined in (77) below. Then, we prove that u ∈
Cα(B+

ϱ0(x0)).

Let u be the odd extension of u in B3ϱ0(x0), and y = (y′, yn) ∈ B+
ϱ0(x0)∪Γϱ0(x0) be arbitrary,

and set ỹ = (y′, 0). We first assume r ∈ [yn, ρ0]. Then, since Br(y) ⊂ B2r(ỹ) ⊂ B2ρ0(ỹ) ⊂
B3ρ0(x0), by (75), we have (72) with B+

2ϱ0
(ỹ) in place of B+

ϱ , hence

�
Br(y)

φ(1 + |Du|) dx ≤ 2

�
B+

2r(ỹ)

φ(1 + |Du|) dx ≤ 2ϑ−λ
(
r

ρ0

)λ �
B+

2ϱ0
(ỹ)

φ(1 + |Du|) dx

≤ c

(
r

ρ0

)λ �
B+

3ϱ0
(x0)

φ(1 + |Du|) dx for all r ∈ [yn, ρ0].

(76)

We next consider r ∈ (0, yn), when yn > 0. Note that ϑm+1ϱ ≤ yn < ϑmϱ for somem ∈ N∪{0}.
Then, by (7) and (8),

Φint(y, yn) ≤ c −
�

Byn (y)

|V1(Du)− (V1(Du))Byn (y)|2 dx

≤ cϑ−n −
�

Bϑmϱ(ỹ)

|V1(Du)− (V1(Du))Bϑmϱ(ỹ)|
2 dx

≤ cϑ−n −
�

Bϑmϱ(ỹ)

|V1(Du)−V1((Du)Bϑmϱ(ỹ))|
2 dx

≤ cϑ−n −
�

Bϑmϱ(ỹ)

φ1+|(Du)Bϑmϱ(ỹ)|(|Du− (Du)Bϑmϱ(ỹ)|) dx

≤ cϑ−n −
�

B+
ϑmϱ

(ỹ)

φ1+|(Dnu)ỹ,ϑmϱ|(|Du− (Dnu)ỹ,ϑmϱ ⊗ en|) dx

= cϑ−nΦ(ỹ, ϑmϱ) ,

where we used the fact that (Du)Bϑmϱ(ỹ) = (Dnu)ỹ,ϑmϱ ⊗ en. Moreover,

φ(1 + |(Dnu)ỹ,ϑmϱ|) ≤ 2µ2−1φ(1 + |(Dnu)Byn (y)|) + 2µ2−1 −
�

Byn (y)

φ(|Dnu− (Dnu)ỹ,ϑmϱ|) dx

≤ 2µ2−1φ(1 + |(Dnu)Byn (y)|) + 2µ2−1cη2ϑ
−nΦ(ỹ, ϑmϱ) + 1

4φ(1 + |(Dnu)ỹ,ϑmϱ|)
≤ 2µ2−1φ(1 + |(Dnu)Byn (y)|) + (2µ2−1cη2ϑ

−nε∗ +
1
4 )φ(1 + |(Dnu)ỹ,ϑmϱ|)

≤ 2µ2−1φ(1 + |(Dnu)Byn (y)|) + 1
2φ(1 + |(Dnu)ỹ,ϑmϱ|).

From the preceding two inequalities, we obtain

Φint(y, yn)

Φ(1 + |(Dnu)Byn (y)|)
≤ c1ϑ

−n Φ(ỹ, ϑmϱ)

φ(1 + |(Dnu)ỹ,ϑmϱ|)
(77)
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for some c1 = c1(n,N, µ1, µ2, ν, L) ≥ 1. Therefore, by (75), we prove that

Φint(y, yn)

Φ(1 + |(Dnu)Byn (y)|)
≤ ε∗ (78)

In addition, by arguing as for (71), we get

−
�

Byn (y)

φ(1 + |Du|) dx ≤ 2µ2−1 −
�

Byn (y)

φ(|Du− (Dnu)ỹ,ϑmϱ ⊗ en|) dx+ 2µ2−1φ(1 + |(Dnu)ỹ,ϑmϱ|)

≤ 2µ2−1

(
cηϑ

−nΦ(ỹ, ϑmϱ) +
3

2
φ(1 + |(Dnu)ỹ,ϑmϱ|)

)
≤ 2µ2−1

(
cηϑ

−nε∗ +
3

2

)
φ(1 + |(Dnu)ỹ,ϑmϱ|)

≤ 2µ2−1

(
cηϑ

−nε∗ +
3

2

)
−
�

B+
ϑmϱ

(ỹ)

φ(1 + |Du|) dx

≤ 2µ2φ

(
κ∗
ϑmϱ

)
≤ 2µ2ϑ

1
µ1 φ

(
κ∗

ϑm+1ϱ

)
≤ φ

(
κ∗
yn

)
,

which implies

yn φ
−1

(
−
�

Byn (y)

φ(1 + |Du|) dx

)
≤ κ∗ . (79)

Therefore, in view of Step 2, in particular, (74), with (78) and (79), we obtain

�
Br(y)

φ(1 + |Du|) dx ≤ ϑ−λ
(
r

yn

)λ �
Byn (y)

φ(1 + |Du|) dx , r < yn . (80)

Now, combining the previous two estimates (76) and (80), we get

−
�

Br(y)

φ(1 + |Du|) dx ≤ c

(
r

ρ0

)λ−n
−
�

B+
3ϱ0

(x0)

φ(1 + |Du|) dx for every y ∈ B+
ϱ0 and r ∈ (0, ϱ0],

where the constant c depends on n,N, µ1, µ2, ν, L, α, which together with the choice of λ in (65)
implies the Cα continuity of u in B+

ϱ (x0). Indeed, for a.e. x, y ∈ B+
ϱ with ϱ1 = |x− y|, applying
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Poincaré inequality and the last inequality above, we infer

|u(x)− u(y)| =
∞∑
i=0

|(u)B2−iϱ1
(x) − (u)B2−i+1ϱ1

(x)|+
∞∑
i=1

|(u)B2−iϱ1
(y) − (u)B2−i+1ϱ1

(y)|

+ |(u)B2ϱ1
(x) − (u)Bϱ1

(y)|

≤ c

∞∑
i=0

(
−
�

B2−i+1ϱ1
(x)

|u− (u)B2−i+1ϱ1
(x)|dz + −

�

B2−i+1ϱ1
(y)

|u− (u)B2−i+1ϱ1
(y)|dz

)

≤ c

∞∑
i=0

2−iϱ1

(
−
�

B2−i+1ϱ1
(x)

|Du|dz + −
�

B2−i+1ϱ1
(y)

|Du| ,dz

)

≤ c

∞∑
i=0

2−iϱ1φ
−1

((
2−i+1ϱ1
ρ0

)λ−n
−
�

B+
3ϱ0

(x0)

φ(1 + |Du|) dx

)

≤ c

[ ∞∑
i=0

(
2−iϱ1
ρ0

)λ−n
µ1

+1
]
ϱ0 φ

−1

(
−
�

B+
3ϱ0

(x0)

φ(1 + |Du|) dx

)

≤ c|x− y|αϱ1−α0 φ−1

(
−
�

B+
3ϱ0

(x0)

φ(1 + |Du|) dx

)
.

Step 4: Choice of regular points on the flat boundary. Finally, we prove that if x0 ∈
ΓR \ Singu(ΓR) then, for some ϱ0 ∈ (0, 12 ) satisfying ϱ0 ≤ min{ϱ1,ϱ2}

3 and B+
3ϱ(x0) ⊂ B+

R , the

inequalities in (75) hold for every ỹ ∈ Γϱ0(x0), hence x0 ∈ Γu. For this, we start with assuming
that x0 ∈ Γ satisfies

lim inf
ϱ↘0

Φ(x0, ϱ) = lim inf
ϱ↘0

−
�

B+
ϱ (x0)

φ1+|(Dnu)x0,ϱ|(|Du− (Dnu)x0,ϱ ⊗ en|) dx = 0 (81)

and

mx0
:= lim sup

ϱ↘0
(|Dnu|)x0,ϱ < +∞ . (82)

We first recall the constants ε∗, κ∗, ϱ1 and ϱ2 determined in Step 3. We then set

σ :=

(
ε∗φ(1)

2c2

)µ1

, (83)

where c2 is determined in (87) below, respectively. Then, in view of (81) and (82), we can find
ϱ0 > 0 such that

c2φ(2 +mx0
)
[
ω (ϱ0(2 +Mx0

))
1− 1

s + V(ϱ0)1−
1
s

]
≤ ε∗φ(1)

2
, (84)

ϱ0 ≤ min

{
κ∗

2φ−1
(
c3φ(mx0 + 1)

) , ϱ1
3
,
ϱ2
3

}
, (85)

where the constant c3 > 0 is determined in (88) below,

−
�

B+
14ϱ0

(x0)

|Du− (Dnu)x0,14ϱ0 ⊗ en|dx ≤ σ and (|Dnu|)x0,14ϱ0 ≤ mx0
+ 1 . (86)
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Now, we prove (75) for ỹ ∈ Γϱ0(x0). By (7) and (8), we have

Φ(ỹ, 2ϱ0) ≤ c −
�

B2ϱ0 (ỹ)

|V1(Du)− (V1(Du))B2ϱ0 (ỹ)
|2 dx

≤ c −
�

B3ϱ0
(x0)

|V1(Du)− (V1(Du))B3ϱ0 (x0)|
2 dx

≤ c −
�

B3ϱ0
(x0)

|V1(Du)−V1(ξ0 ⊗ en)|2 dx

≤ c −
�

B+
3ϱ0

(x0)

φ1+|ξ0|(|Du− ξ0 ⊗ en|) dx

for some c2 = c2(n,N, µ1, µ2) > 0, where u is the odd extension of u and ξ0 = (Dnu)x0,14ϱ0 .
Note that by Lemma 2.2, (22), (10), Lemma 2.1 we have

−
�

B+
6ϱ0

(x0)

φ1+|ξ0|(|Du− ξ0 ⊗ en|) dx ≤ c −
�

B+
6ϱ0

(x0)

φ(|Du|) dx+ cφ(1 + |ξ0|)

≤ c −
�

B+
7ϱ0

(x0)

φ(|Dnu|) dx+ cφ(1 + |ξ0|)

≤ c

(
−
�

B+
14ϱ0

(x0)

φ(|Dnu|)
1
µ2 dx

)µ2

+ cφ(1 + |ξ0|)

≤ Λφ(1 + |ξ0|)

for some Λ > 0 depending on n,N, µ1, µ2, ν, L. Therefore, from the preceding estimate, we can
exploit the reverse Hölder estimate (33) in Lemma 3.5 with t = 1

µ2
. Using this, Lemma 2.1, and

(86), we obtain

Φ(ỹ, 2ϱ0) ≤ c −
�

B+
3ϱ0

(x0)

φ1+|ξ0|(|Du− ξ0 ⊗ en|) dx

≤ cφ1+|ξ0|

(
−
�

B+
6ϱ0

(x0)

|Du− ξ0 ⊗ en|dx

)
+ cφ(1 + |ξ0|)

[
ω (ϱ0(1 + |ξ0|))1−

1
s + V(ϱ0)1−

1
s

]

≤ c2σ
µ1 + c2φ(2 +mx0

)
[
ω (ϱ0(2 +Mx0

))
1− 1

s + V(ϱ0)1−
1
s

]
,

(87)

where c2 > 0 depends only on n,N, µ1, µ2, ν,N . Then, taking into account (83) and (84), (87)
implies

Φ(ỹ, 2ϱ0)

φ(1 + |(Dnu)ỹ,2ϱ0 |)
≤ ε∗ .

This is the first inequality in (75).
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Moreover, by (22), (10), (26) with t = 1
µ2
, Lemma 2.1, (86), we have

−
�

B+
2ϱ0

(ỹ)

φ(1 + |Du|) dx ≤ c −
�

B+
3ϱ0

(x0)

φ(1 + |Du|) dx ≤ c −
�

B+
4ϱ0

(x0)

φ(1 + |Dnu|) dx

≤ c+ cφ

(
−
�

B+
8ϱ0

(x0)

|Dnu|dx

)
≤ c3φ(1 +mx0

)

(88)

for some c3 > 0 depending only on n,N, µ1, µ2, ν,Λ. Therefore, by (85) we obtain

−
�

B+
2ϱ0

(ỹ)

φ(1 + |Du|) dx ≤ φ

(
κ∗
2ϱ0

)
.

This implies the second inequality in (75), and the proof is concluded.

We are now in position to prove the main result of the paper.

Proof of Theorem 1.1.
We convert the minimizing problem in Theorem 1.1 on a boundary region near each boundary

point into the one in Theorem 4.5 by a standard flattening argument. Then Theorem 1.1 follows
from Theorem 4.5.

Since ∂Ω ∈ C1, for each x̃ ∈ ∂Ω there exist a coordinate system x = (x1, . . . , xn) with the
origin at x̃ and νx̃ = (0, . . . , 0, 1) and, in this coordinate system, a C1 function γ : Rn−1 → R
such that Br0(0) ∩ Ω = {x = (x′, xn) ∈ Br(0) : xn > γ(x′)} for some sufficiently small r0 > 0,
and γxi

(0) = 0, i = 1, 2, . . . , n − 1. Note that sup{|D′γ(x′)| : |x′| ≤ r} ≤ Mr for every x̃ ∈ Ω
with Mr > 0 satisfying that limr→0Mr = 0, where D′γ = (γx1 , . . . , γxn−1). From now on, we fix
x̃ ∈ ∂Ω, the relevant coordinate system and the C1-function γ. Note that since the functional
(1) and the assumptions in Theorem 1.1 are invariant under rotations of the coordinate system,
without loss of generality we write the relevant coordinate system as x = (x1, . . . , xn).

Then we define T : Rn → Rn by T(x′, xn) = (x′, xn − γ(x′)) and its inverse by T−1(y) =
(y′, yn+γ(y

′)). We choose sufficiently small R ∈ (0, r0/4) such that for every x ∈ B2R, y ∈ T(B2R)
and r ∈ (0, 2R],

1

4
|Br| ≤ |Ωr(x)| ; (89)

2−1 ≤ |DT(x)| ≤ 2 , hence 2−1 ≤ |DT−1(y)| ≤ 2 ; (90)

Br/2(T(x)) ⊂ T(Br(x)) ⊂ B2r(T(x)) , Br/2(T
−1(y)) ⊂ T−1(Br(y)) ⊂ Br(T

−1(y)) . (91)

Note that B+
R ⊂ T(B2R ∩ Ω), |U | ∼ |T(U)| and |V | ∼ |T−1(V )|. In addition, since DT, DT−1

and Dg are uniformly continuous, we denote

ω2(r) := sup
|x1−x2|≤r

|DT(x1)−DT(x2)|, ω3(r) := sup
|y1−y2|≤r

|DT−1(x1)−DT−1(x2)|,

ω4(r) := sup
|x1−x2|≤r

|Dg(x1)−Dg(x2)|.

Note that ω2, ω3, ω4 are non-decreasing, vanishing at 0, and, without loss of generality, assumed
to be concave. Hence, we have ωi(cr) ≤ cωi(r), i = 2, 3, 4, for all c ≥ 1 and r > 0.

Now we set
ũ(y) := u(T−1(y))− g(T−1(y))

and

f̃(y,w,Q) := |DT−1(y)| f(T−1(y),w + g(T−1(y)),QDT(T−1(y)) +Dg(T−1(y))).



BOUNDARY PARTIAL REGULARITY FOR MINIMIZERS OF DISCONTINUOUS QUASICONVEX INTEGRALS35

Then we see that ũ is a minimizer of

v ∈W 1,φ
Γ (B+

R) 7→
�
B+

R

f̃(y,v, Dv) dy .

Moreover, f̃ satisfies the analog of (F1) – (F6) in the setting of the y-coordinate system with
B+
R in place of Ω, where relevant constants ν and L depend on the ones for f , n, N , µ1, µ2, and

∥Dg∥∞. We only show that f̃ satisfies the VMO assumption (F4). The other assumptions are
relatively easy to check, since they are pointwise conditions, and we refer to [4, 51] for the proof.

Now, we start proving (F4) for f̃ . Let r ∈ (0, R] and y0, y ∈ B+
R , and set x0 := T−1(y0),

x := T−1(y),

wy := w + g(T−1(y)), Qy := QDT(T−1(y)) +Dg(T−1(y)).

ux := wT(x) = w + g(x), Px := QT(x) = QDT(x) +Dg(x).

Then we first observe that

|f̃(y,w,Q)− (f̃(·,w,Q))Br(y0)∩B+
R
|

=

∣∣∣∣|DT−1(y)| f(x,ux,Px)− −
�

Br(y0)∩B+
R

f(T−1(ỹ),wỹ,Qỹ)|DT−1(ỹ)|dỹ
∣∣∣∣

≤ ||DT−1(y)| − (|DT−1|)Br(y0)∩B+
R
||f(x,ux,Px)|

+

∣∣∣∣ −
�

Br(y0)∩B+
R

(f(x,ux,Px)− f(T−1(ỹ),ux,Px))|DT−1(ỹ)|dỹ
∣∣∣∣

+

∣∣∣∣ −
�

Br(y0)∩B+
R

(f(T−1(ỹ),ux,Px)− f(T−1(ỹ),wỹ,Qỹ))|DT−1(ỹ)|dỹ
∣∣∣∣

=: I + II + III.

We then estimate the three terms I, II, III, separately. By (F1), (90), and the definition of ω3,
we have

I ≤ c ω3(2r)φ(1 + |Q|+ ∥Dg∥∞) ≤ c(1 + ∥Dg∥∞)µ2ω3(2r)φ(1 + |Q|) .
As for II, by the change of variable x̃ = T−1(ỹ), (89) – (91) and (F4), we obtain

II =

∣∣∣∣ 1

|Br(y0) ∩B+
R |

�
T−1(Br(y0)∩B+

R)

f(x,ux,Px)− f(x̃,ux,Px) dx̃

∣∣∣∣
≤ c −

�

Ω2r(x0)

|f(x,ux,Px)− (f(·,ux,Px))Ω2r(x0)|+ |f(x̃,ux,Px)− (f(·,ux,Px))Ω2r(x0)|dx̃

≤ c

(
vx0,2r(x) + −

�

Ω2r(x0)

vx0,2r(x̃) dx̃

)
φ(1 + |Q|+ ∥Dg∥∞)

≤ c(1 + ∥Dg∥∞)µ2(vT−1(y0),2r

(
T−1(y))|DT−1(y)|+ V(2r)

)
φ(1 + |Q|) .

Finally, with the change of variable x̃ = T−1(ỹ) and a similar argument as in the preceding
inequalities for II, we get the estimate

III ≤ c −
�

Ω2r(x0)

|f(x̃,ux,Px)− f(x̃,ux̃,Px)|+ |f(x̃,ux̃,Px)− f(x̃,ux̃,Px̃)|dx̃ .



36 J. OK, G. SCILLA AND B. STROFFOLINI

Note that, by (F5), (3), (90) and the definitions of ω2 and ω4,

|f(x̃,ux,Px)− f(x̃,ux̃,Px)| ≤ cω(|g(x)− g(x̃)|)φ(1 + |Q|+ ∥Dg∥∞)

≤ c(1 + ∥Dg∥∞)µ2+1ω(r)φ(1 + |Q|) ,

and
|f(x̃,ux̃,Px)− f(x̃,ux̃,Px̃)| ≤ cφ′(|Px|+ |Px̃|)|Px −Px̃|

≤ cφ′(1 + |Q|+ ∥Dg∥∞) |Qω2(r) + ω4(r)|
≤ c(1 + ∥Dg∥∞)µ2−1(ω2(r) + ω4(r))φ(1 + |Q|) .

Combining the preceding three estimates, we then have

III ≤ c(1 + ∥Dg∥∞)µ2+1(ω(r) + ω2(r) + ω4(r))φ(1 + |Q|) .

Consequently, collecting the estimates for I, II and III, we obtain

|f̃(y,w,Q)− (f̃(·,w,Q))Br(y0)∩B+
R
| ≤ ṽy0,r(y)φ(1 + |Q|),

where

ṽy0,r(y) :=c(1 + ∥Dg∥∞)µ2+1

×
{
vT−1(y0),2r(T

−1(y))|DT−1(y)|+ V(2r) + ω(r) + ω2(r) + ω3(r) + ω4(r)
}
.

Moreover, since

−
�

Br(y0)∩B+
R

vT−1(y0),2r(T
−1(y))|DT−1(y)|dy =

1

|Br(y0) ∩B+
R |

�
T−1(Br(y0)∩B+

R)

vx0,2r(x) dx

≤ c −
�

Ω2r(x0)

vx0,2r(x) dx ≤ cV(2r) ,

for every Br(y0) with y0 ∈ B+
R ,

lim
r→0

[
sup

0<ϱ≤r
sup
y0∈B+

R

−
�

Bϱ(y0)∩B+
R

vy0,r(y) dy

]
︸ ︷︷ ︸

=:Ṽ(r)

≤ lim
r→0

c (V(2r) + ω(r) + ω2(r) + ω3(r)) = 0.

This implies the validity of assumption (F4) for f̃ . Here, we stress that ∥Dg∥∞ can be easily
handled due to the term “1+” which implies the non-degenerate condition. Within the degenerate
setting, instead, the flattening argument above seems quite unclear.

Finally, we will prove that

0 ̸∈ Singũ(∂Ω) ⇐⇒ T(0) = 0 ̸∈ Singũ(Γr) . (92)

We only show the implication “⇒”, as the other one can be obtained in a similar way. Note
that ν0 = en and T(ν0) = T(en) = en.

We first show that

lim sup
ϱ↘0

(|Dnũ|)ϱ <∞ .

For this, we preliminarily note that

(|Dnũ|)ϱ ≤ −
�

B+
ϱ

|Dnu(T
−1(y))DnT

−1(y)|dy + −
�

B+
ϱ

|Dng(T
−1(y))DnT

−1(y)|dy .
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Now, the second integral on the right hand side converges as ϱ → 0 since Dg, T−1 and DnT
−1

are continuous at 0. As for the first integral, by the change of variable x = T−1(y), we have

−
�

B+
ϱ

∣∣Dnu(T
−1(y))DnT

−1(y)
∣∣ dy ≤ c −

�

Ω2ϱ

|Dnu(x)| |DnT
−1(T(x))| |DT(x)|dx ≤ c −

�

Ω2ϱ

|Dnu(x)|dx.

Therefore, since the limsup of the right hand side above is finite as ϱ → 0, so is the limsup of
(|Dnũ|)ϱ.

We now show that

lim inf
ϱ↘0

−
�

B+
ϱ

|Dũ− (Dnũ)ϱ ⊗ en|dy = 0 .

Since ũ = 0 on ΓR, we extend ũ to BR such that ũ(y′, yn) = −ũ(y′,−yn). Then, with P0 =
QT(0) := [(Du)Ω2ϱ

− (Dg)Ω2ϱ
]DT−1(T(0)), we have

−
�

B+
ϱ

|Dũ− (Dnũ)ϱ ⊗ en|dy = −
�

Bϱ

|Dũ− (Dũ)Bϱ |dy ≤ c−
�

Bϱ

|Dũ−P0|dy = c −
�

B+
ϱ

|Dũ−P0|dy

≤ c −
�

Ω2ϱ

|[Du(x)−Dg(x)]DT−1(T(x))−P0|dx

≤ c|DT−1(T(0))| −
�

Ω2ϱ

|Du(x)− (Du)Ω2ϱ |+ |Dg(x)− (Dg)Ω2ϱ |dx

+ cω3(ϱ) −
�

Ω2ϱ

|Dg(x)|dx+ cω3(ϱ) −
�

Ω2ϱ

|Du− (Dnu)Ω2ϱ
⊗ en|dx+ cω3(ϱ)(|Dnu|)Ω2ϱ

,

where ω3 is the modulus of continuity of DT−1. Since 0 ̸∈ Singu(∂Ω) and Dg is continuous, the
liminf of the right hand side as ϱ→ 0 is zero, and so is the liminf of the left hand side.

Conclusion. Suppose x0 ̸∈ Singũ(∂Ω). We set x0 = 0. Then by (92), T(x0) = 0 ̸∈ Singũ(ΓR).
Therefore, in view of Theorem 4.5, we infer that ũ is locally C0,α at 0 for every α ∈ (0, 1) in the
y-coordinate system, which together with the C1 regularity of T and g implies that u is locally
C0,α at x0 = 0 for every α ∈ (0, 1) in the x-coordinate system, hence x0 ∈ Ωu.
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[9] V. Bögelein, Partial regularity for minimizers of discontinuous quasi-convex integrals with degeneracy, J.

Differential Equations 252 (2012), 1052 – 1100.
[10] V. Bögelein, F. Duzaar, J. Habermann, and C. Scheven, Partial Hölder continuity for discontinuous elliptic
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[21] L. Diening, P. Kaplický, and S. Schwarzacher, BMO estimates for the p-Laplacian, Nonlinear Anal. 75 (2)

(2012), 637 – 650.
[22] L. Diening and C. Kreuzer, Linear convergence of an adaptive finite element method for the p-laplacian

equation, SIAM J. Numer. Anal. 46 (2008), no. 2, 614 – 638.

[23] L. Diening, D. Lengeler, B. Stroffolini, and A. Verde, Partial regularity for minimizers of quasiconvex func-
tionals with general growth, SIAM J. Math. Anal. 44 (2012), no. 5, 3594 – 3616.

[24] L. Diening, B. Stroffolini, and A. Verde, Everywhere regularity of functionals with φ-growth, Manuscr. Math.
129 (2009), no. 4, 449 – 481.

[25] L. Diening, B. Stroffolini, and A. Verde, The φ-harmonic approximation and the regularity of φ-harmonic

maps, J. Differential Equations 253 (2012), no. 7, 1943 – 1958.
[26] F. Duzaar, J. Kristensen and G. Mingione: The existence of regular boundary points for non-linear elliptic

systems, J. Reine Angew. Math. 602 (2007) 17 – 58.
[27] F. Duzaar, J. F. Grotowsky and M. Kronz, Partial and Full Boundary Regularity for Minimizers of Functionals

with Nonquadratic Growth, J. Convex Anal. 11(2) (2004), 437 – 476.

[28] F. Duzaar and G. Mingione, Regularity for degenerate elliptic problems via p-harmonic approximation, Ann.
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[51] J. Ok, Boundary partial Hölder regularity for elliptic systems with non-standard growth, Electron. J. Differ.

Equ. 84 (2018), 1 – 25.
[52] J. Ok, Partial regularity for general systems of double phase type with continuous coefficients. Nonlinear

Anal. 177 (2018), part B, 673–698.

[53] B. Stroffolini, Partial regularity results for quasimonotone elliptic systems with general growth, Z. Anal.
Anwend. 39 (2020), 315 – 347.

[54] K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems, Acta Math. 138 (1977), 219 – 240.

E-mail address: jihoonok@sogang.ac.kr

E-mail address: giovanni.scilla@uniroma1.it
E-mail address: bstroffo@unina.it

mailto:jihoonok@sogang.ac.kr
mailto:giovanni.scilla@uniroma1.it
mailto:bstroffo@unina.it

	1. Introduction
	1.1. Assumptions and statement of the main result

	2. Preliminaries and basic results
	2.1. Notation
	2.2. Some basic facts on N-functions
	2.3. Orlicz-Sobolev spaces
	2.4. Some useful lemmas
	2.5. A-harmonic approximation on half balls

	3. Caccioppoli type inequalities and higher integrability
	3.1. Caccioppoli type inequality I
	3.2. Caccioppoli type inequality II

	4. Boundary partial regularity
	4.1. Approximate A-harmonicity
	4.2. The excess-decay estimate
	4.3. Proof of Theorem 1.1

	Acknowledgments
	REFERENCES

