Experimental and theoretical studies have tried to gain insights into the involvement of the Temporal Parietal Junction (TPJ) in a broad range of cognitive functions like memory, attention, language, self-agency and theory of mind. Recent investigations have demonstrated the partition of the TPJ in discrete subsectors. Nonetheless, whether these subsectors play different roles or implement an overarching function remains debated. Here, based on a review of available evidence, we propose that the left TPJ codes both matches and mismatches between expected and actual sensory, motor, or cognitive events while the right TPJ codes mismatches. These operations help keeping track of statistical contingencies in personal, environmental, and conceptual space. We show that this hypothesis can account for the participation of the TPJ in disparate cognitive functions, including "humour", and explain: a) the higher incidence of spatial neglect in right brain damage; b) the different emotional reactions that follow left and right brain damage; c) the hemispheric lateralisation of optimistic bias mechanisms; d) the lateralisation of mechanisms that regulate routine and novelty behaviours. We propose that match and mismatch operations are aimed at approximating "free energy", in terms of the free energy principle of decision-making. By approximating "free energy", the match/mismatch TPJ system supports both information seeking to update one's own beliefs and the pleasure of being right in one's own' current choices. This renewed view of the TPJ has relevant clinical implications because the misfunctioning of TPJ-related "match" and "mismatch" circuits in unilateral brain damage can produce low-dimensional deficits of active-inference and predictive coding that can be associated with different neuropsychological disorders.(c) 2022 Elsevier B.V. All rights reserved.
Left and right temporal-parietal junctions (TPJs) as "match/mismatch" hedonic machines: A unifying account of TPJ function / Doricchi, Fabrizio; Lasaponara, Stefano; Pazzaglia, Mariella; Silvetti, Massimo. - In: PHYSICS OF LIFE REVIEWS. - ISSN 1571-0645. - 42:(2022), pp. 56-92. [10.1016/j.plrev.2022.07.001]
Left and right temporal-parietal junctions (TPJs) as "match/mismatch" hedonic machines: A unifying account of TPJ function
Doricchi, Fabrizio;Lasaponara, Stefano;Pazzaglia, Mariella;Silvetti, Massimo
2022
Abstract
Experimental and theoretical studies have tried to gain insights into the involvement of the Temporal Parietal Junction (TPJ) in a broad range of cognitive functions like memory, attention, language, self-agency and theory of mind. Recent investigations have demonstrated the partition of the TPJ in discrete subsectors. Nonetheless, whether these subsectors play different roles or implement an overarching function remains debated. Here, based on a review of available evidence, we propose that the left TPJ codes both matches and mismatches between expected and actual sensory, motor, or cognitive events while the right TPJ codes mismatches. These operations help keeping track of statistical contingencies in personal, environmental, and conceptual space. We show that this hypothesis can account for the participation of the TPJ in disparate cognitive functions, including "humour", and explain: a) the higher incidence of spatial neglect in right brain damage; b) the different emotional reactions that follow left and right brain damage; c) the hemispheric lateralisation of optimistic bias mechanisms; d) the lateralisation of mechanisms that regulate routine and novelty behaviours. We propose that match and mismatch operations are aimed at approximating "free energy", in terms of the free energy principle of decision-making. By approximating "free energy", the match/mismatch TPJ system supports both information seeking to update one's own beliefs and the pleasure of being right in one's own' current choices. This renewed view of the TPJ has relevant clinical implications because the misfunctioning of TPJ-related "match" and "mismatch" circuits in unilateral brain damage can produce low-dimensional deficits of active-inference and predictive coding that can be associated with different neuropsychological disorders.(c) 2022 Elsevier B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.