Setting an upper limit or detection of B-mode polarization imprinted by gravi- tational waves from Inflation is one goal of modern large angular scale cosmic microwave background (CMB) experiments around the world. A great effort is being made in the deploy- ment of many ground-based, balloon-borne and satellite experiments, using different methods to separate this faint polarized component from the incoming radiation. QUBIC exploits one of the most widely-used techniques to extract the input Stokes parameters, consisting in a rotating half-wave plate (HWP) and a linear polarizer to separate and modulate polarization components. QUBIC uses a step-by-step rotating HWP, with 15◦ steps, combined with a 0.4◦s−1 azimuth sky scan speed. The rotation is driven by a stepper motor mounted on the cryostat outer shell to avoid heat load at internal cryogenic stages. The design of this optical element is an engineering challenge due to its large 370 mm diameter and the 8 K operation temperature that are unique features of the QUBIC experiment. We present the design for a modulator mechanism for up to 370 mm, and the first optical tests by using the prototype of QUBIC HWP (180 mm diameter). The tests and results presented in this work show that the QUBIC HWP rotator can achieve a precision of 0.15◦ in position by using the stepper motor and custom-made optical encoder. The rotation induces < 5.0 mW (95% C.L) of power load on the 4K stage, resulting in no thermal issues on this stage during measurements.
QUBIC VI: Cryogenic half wave plate rotator, design and performance / D'Alessandro, G.; Mele, L.; Columbro, F.; Amico, G.; Battistelli, E. S.; de Bernardis, P.; Coppolecchia, A.; De Petris, M.; Grandsire, L.; Hamilton, J. -Ch.; Lamagna, L.; Marnieros, S.; Masi, S.; Mennella, A.; O'Sullivan, C.; Paiella, A.; Piacentini, F.; Piat, M.; Pisano, G.; Presta, G.; Tartari, A.; Torchinsky, S. A.; Voisin, F.; Zannoni, M.; Ade, P.; Alberro, J. G.; Almela, A.; Arnaldi, L. H.; Auguste, D.; Aumont, J.; Azzoni, S.; Banfi, S.; Baù, A.; Bélier, B.; Bennett, D.; Bergé, L.; Bernard, J. -Ph.; Bersanelli, M.; Bigot-Sazy, M. -A.; Bonaparte, J.; Bonis, J.; Bunn, E.; Burke, D.; Buzi, D.; Cavaliere, F.; Chanial, P.; Chapron, C.; Charlassier, R.; Cobos Cerutti, A. C.; De Gasperis, G.; De Leo, M.; Dheilly, S.; Duca, C.; Dumoulin, L.; Etchegoyen, A.; Fasciszewski, A.; Ferreyro, L. P.; Fracchia, D.; Franceschet, C.; Gamboa Lerena, M. M.; Ganga, K. M.; García, B.; García Redondo, M. E.; Gaspard, M.; Gayer, D.; Gervasi, M.; Giard, M.; Gilles, V.; Giraud-Heraud, Y.; Gómez Berisso, M.; González, M.; Gradziel, M.; Hampel, M. R.; Harari, D.; Henrot-Versillé, S.; Incardona, F.; Jules, E.; Kaplan, J.; Kristukat, C.; Loucatos, S.; Louis, T.; Maffei, B.; Marty, W.; Mattei, A.; May, A.; Mcculloch, M.; Melo, D.; Montier, L.; Mousset, L.; Mundo, L. M.; Murphy, J. A.; Murphy, J. D.; Nati, F.; Olivieri, E.; Oriol, C.; Pajot, F.; Passerini, A.; Pastoriza, H.; Pelosi, A.; Perbost, C.; Perciballi, M.; Pezzotta, F.; Piccirillo, L.; Platino, M.; Polenta, G.; Prêle, D.; Puddu, R.; Rambaud, D.; Rasztocky, E.; Ringegni, P.; Romero, G. E.; Salum, J. M.; Schillaci, A.; Scóccola, C. G.; Scully, S.; Spinelli, S.; Stankowiak, G.; Stolpovskiy, M.; Supanitsky, A. D.; Thermeau, J. -P.; Timbie, P.; Tomasi, M.; Tucker, C.; Tucker, G.; Viganò, D.; Vittorio, N.; Wicek, F.; Wright, M.; Zullo, A.. - In: JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS. - ISSN 1475-7516. - 2022:04(2022), p. 039. [10.1088/1475-7516/2022/04/039]
QUBIC VI: Cryogenic half wave plate rotator, design and performance
D'Alessandro, G.
;Mele, L.
;Columbro, F.
;Amico, G.;Battistelli, E. S.;de Bernardis, P.;Coppolecchia, A.;De Petris, M.;Lamagna, L.;Masi, S.;O'Sullivan, C.;Paiella, A.;Piacentini, F.;Pisano, G.;Presta, G.;Zannoni, M.;Bersanelli, M.;Buzi, D.;De Gasperis, G.;De Leo, M.;Gervasi, M.;Gilles, V.;Louis, T.;Nati, F.;Perciballi, M.;Polenta, G.;Puddu, R.;Schillaci, A.;Tomasi, M.;Zullo, A.
2022
Abstract
Setting an upper limit or detection of B-mode polarization imprinted by gravi- tational waves from Inflation is one goal of modern large angular scale cosmic microwave background (CMB) experiments around the world. A great effort is being made in the deploy- ment of many ground-based, balloon-borne and satellite experiments, using different methods to separate this faint polarized component from the incoming radiation. QUBIC exploits one of the most widely-used techniques to extract the input Stokes parameters, consisting in a rotating half-wave plate (HWP) and a linear polarizer to separate and modulate polarization components. QUBIC uses a step-by-step rotating HWP, with 15◦ steps, combined with a 0.4◦s−1 azimuth sky scan speed. The rotation is driven by a stepper motor mounted on the cryostat outer shell to avoid heat load at internal cryogenic stages. The design of this optical element is an engineering challenge due to its large 370 mm diameter and the 8 K operation temperature that are unique features of the QUBIC experiment. We present the design for a modulator mechanism for up to 370 mm, and the first optical tests by using the prototype of QUBIC HWP (180 mm diameter). The tests and results presented in this work show that the QUBIC HWP rotator can achieve a precision of 0.15◦ in position by using the stepper motor and custom-made optical encoder. The rotation induces < 5.0 mW (95% C.L) of power load on the 4K stage, resulting in no thermal issues on this stage during measurements.File | Dimensione | Formato | |
---|---|---|---|
D’Alessandro_QUBIC VI_2022.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
9.39 MB
Formato
Adobe PDF
|
9.39 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.