We report on the thermalization of light carrying orbital angular momentum in multimode optical fibers, induced by nonlinear intermodal interactions. A generalized Rayleigh-Jeans distribution of asymptotic mode composition is obtained, based on the conservation of the angular momentum. We confirm our predictions by numerical simulations and experiments based on holographic mode decomposition of multimode beams. Our work establishes new constraints for the achievement of spatial beam self-cleaning, giving previously unforeseen insights into the underlying physical mechanisms.
Thermalization of orbital angular momentum beams in multimode optical fibers / Podivilov, E. V.; Mangini, F.; Sidelnikov, O. S.; Ferraro, M.; Gervaziev, M.; Kharenko, D. S.; Zitelli, M.; Fedoruk, M. P.; Babin, S. A.; Wabnitz, S.. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 128:24(2022), pp. 1-6. [10.1103/PhysRevLett.128.243901]
Thermalization of orbital angular momentum beams in multimode optical fibers
Mangini, F.;Ferraro, M.;Zitelli, M.;Wabnitz, S.
2022
Abstract
We report on the thermalization of light carrying orbital angular momentum in multimode optical fibers, induced by nonlinear intermodal interactions. A generalized Rayleigh-Jeans distribution of asymptotic mode composition is obtained, based on the conservation of the angular momentum. We confirm our predictions by numerical simulations and experiments based on holographic mode decomposition of multimode beams. Our work establishes new constraints for the achievement of spatial beam self-cleaning, giving previously unforeseen insights into the underlying physical mechanisms.File | Dimensione | Formato | |
---|---|---|---|
Podivilov_Thermalization_pre-print_2022.pdf
accesso aperto
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.58 MB
Formato
Adobe PDF
|
2.58 MB | Adobe PDF | |
Podivilov_Thermalization_2022.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
960.92 kB
Formato
Adobe PDF
|
960.92 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.