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We present a general theory of thermalization of light in multimode optical fibers, including optical beams
with nonzero orbital angular momentum or vortex beams. A generalized Rayleigh-Jeans distribution of asymp-
totic mode composition is obtained, based on the conservation of the angular momentum. We confirm our
predictions by numerical simulations and experiments based on holographic mode decomposition of multimode
beams. This establishes new constraints for the achievement of spatial beam self-cleaning, giving previously
unforeseen insights into the underlying physical mechanisms.

Statistical physics has been traditionally and successfully
employed to describe the average properties of a large en-
semble of particles, whose interactions are governed by clas-
sical mechanics. This approach lies at the basis of thermo-
dynamics, whose laws determine the macroscopic properties
of matter, that evolve in a low-dimensional or reduced phase
space. Subsequently, the thermodynamic approach has been
extended to describe the statistical evolution of a large number
of classical electromagnetic waves, analogously to bosonic
systems, such as superconductors and superfluids [1–5].

Peculiar is the case of multimode optical fibers (MMFs),
which are an excellent study case for classical wave conden-
sation phenomena. Indeed, Bose-Einstein condensation of the
fiber modes has been demonstrated in graded-index (GRIN)
MMFs [6], and it can be theoretically described by a model
based on a weak wave turbulence approach [7]. Whereas a
general model of thermalization of light in multimode sys-
tems has been recently introduced, showing that the average
number of photons in each mode of the fiber obeys a Rayleigh-
Jeans (RJ) distribution [8]. Because of the role of high-order
modes at the occurrence of thermal equilibrium in MMFs,
thermalization of a multimode field is a more general situa-
tion than condensation [9].

On the other hand, experimental observations have re-
vealed that, as the input power of a laser beam coupled into
a graded-index (GRIN) MMF grows above a certain thresh-
old, the intensity speckles generated by multimode interfer-
ence may spontaneously reorganize into a bell-shaped beam,
which approaches the fundamental mode of the fiber [10, 11].
This spatial self-organization effect is known as beam self-
cleaning (BSC) [12], and it has similarities with wave conden-
sation in hydrodynamic 2D turbulent systems [13]. Since its
first demonstration, BSC has been extensively experimentally
studied [13–20], in order to fully clarify its physical mecha-
nism. All of the studies reported so far in the literature agree
on the fact that modal four-wave-mixing (FWM) interactions
are crucial for activating BSC. The condensation of energy in

the fundamental mode has been verified to obey the expected
dependence on the initial degree of spatial correlation [14], or
on the internal energy of the input beam with a fixed power
value [6].

As a thermodynamic phenomenon, BSC can be seen as the
tendency of the optical beam to experience an irreversible evo-
lution towards a state of thermal equilibrium, which is estab-
lished by conservation laws. Specifically, the total number of
photons and the total momentum of motion must be simulta-
neously conserved [6, 9].

As a matter of fact, another quantity is conserved when a
beam of light propagates in waveguide systems: its total or-
bital angular momentum (OAM). First introduced by Allen
et al. in 1992 [21], interest in OAM beams has increased
tremendously, thanks to their widespread potential for appli-
cations. These range from telecommunications [22] to quan-
tum optics [23], holography [24] and optical tweezers [25].
To date, BSC has only been observed with laser beams that
carry no OAM. In this work we extend current knowledge
by describing, both theoretically and experimentally, the ther-
malization of OAM-carrying multimode beams in nonlinear
optical fibers. We present a general theory of thermalization
of light in a MMF, which takes into account the conservation
of OAM. This permits to derive a generalized RJ distribution
for the relative occupation of the fiber modes, which directly
stems out of the conservation laws that rule FWM process in
MMFs. Remarkably, our model shows that BSC can only be
achieved by means of laser beams which do not carry any
OAM. Theoretical predictions are then compared to numer-
ical simulations, which turn out to be in excellent agreement.
Finally, we carried out an experimental characterization of the
thermal mode distribution at the fiber output, based on a holo-
graphic mode decomposition (MD) technique. The MD was
performed by means of a phase-only spatial light modulator
(SLM) [26]. In our implementation, OAM is imparted to an
input Gaussian laser beam by means of properly adjusting its
coupling condition into the fiber [27].
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In our theoretical model, we do not use the conventional
Laguerre-Gauss basis for decomposing the amplitude (A) of
a light pulse in a GRIN MMFs. Conversely, we write A in
terms of the real normalized radial OAM eigenfunctions F̀ ,m,
so that

A(t,z,r,φ) = ∑
k,`,m

A`,m(ωk,z)eiωkt−ip`,m(ωk)z+imφ F̀ ,m(r), (1)

and 2π
∫

∞

0 rdr(F̀ ,m(r))2 = 1. Here, p`,m(ωk) and A`,m(ωk,z)
are the propagation constant and the slowly varying ampli-
tude of a mode with radial index `, azimuthal index m, and
frequency ωk = ω0+2πHk, where ω0 is the carrier frequency
and H is the pulse repetition rate. In the Supplementary Notes
we outline the transformation from the Laguerre-Gauss basis
to the OAM basis.

Although BSC is a purely spatial effect, its high threshold
powers have required the use of pulsed sources for its observa-
tion. Moreover, it has been shown that BSC is accompanied
by significant temporal pulse reshaping [28], which may be
associated with a transfer of disorder between spatial and tem-
poral degrees of freedom [29]. For this reason, in our deriva-
tion, we keep explicit the dependence of the light amplitude
on frequency ωk.

Let us normalize |A(t,z,r,φ)|2 to the beam intensity, so that
for each mode (`,m) and frequency component ωk we may in-
troduce the average power Wk,`,m(z)= |A`,m(ωk,z)|2, the mode
energy in a pulse Ek,`,m(z) =Wk,`,m(z)/H, the number of pho-
tons Nk,`,m(z) = Ek,`,m(z)/h̄ωk, the longitudinal component of
pulse momentum of motion Pk,`,m(z) = p`,m(ωk)Nk,`,m(z), and
the OAM Mk,`,m(z) = h̄mNk,`,m(z). There are four conser-
vation laws in the FWM process. Specifically, the total en-
ergy of each pulse E = ∑k,`,m Ek,`,m(z) = const, the number
of photons in each pulse N = ∑k,`,m Nk,`,m(z) = const, the lon-
gitudinal component of the momentum of motion of a pulse
P = ∑k,`,m Pk,`,m(z) = const, and the longitudinal component
of the pulse OAM M = ∑k,`,m Mk,`,m(z) = const. All of the
conserved quantities (E,N,P,M) are fully defined by the in-
jection conditions of the laser beam into the fiber. Whereas,
during propagation, FWM leads to energy exchange between
fiber modes, similarly to particle collisions in a gas, thus
shuffling the values of N`,m,k(z). One could expect then that
the photon system reaches thermodynamic equilibrium over
a finite ”time” (i.e., a finite distance z), owing to the well
known Onsager’s principle of detailed balance. When ap-
plied to mode interactions, this principle means that, at ther-
mal equilibrium, each elementary FWM process leading to
energy transfer into some modes is equally probable as its re-
verse process.

As it is well-known, at thermal equilibrium, which is
reached after a certain propagation distance, say, z∗, the statis-
tics of an ideal gas is described by the Boltzmann distribu-
tion. At z > z∗, this leads to a RJ distribution for the number
of photons Nk,`,m = T

h̄ω ′k,`,m−µ
occupying the mode (k, `,m) in

the coordinate system moving with the light pulse at speed
V , and rotating with its angular velocity Ω [30]. Here, T is

the statistical temperature of photons in a light pulse (which
is analogous to the temperature of electrons in particle accel-
erator electron beams), µ is the chemical potential, ω ′k,`,m =

γ(ωk−V p`,m−Ωm), and γ = 1/(1−V 2/c2)1/2 '
√

2 is a rel-
ativistic factor, c is the speed of light in vacuum. At thermal
equilibrium, the number of photons occupying mode (`,m)
with frequency ωk in laboratory system reads as

Nk,`,m =
T/
√

2
h̄ωk− µ√

2
− h̄V p`,m− h̄Ωm

, (2)

which is a generalized form of the RJ distribution. It is worth
to noting that Eq.(2) can be equivalently derived starting from
conservation laws, without recurring to the change of coordi-
nate system (see Supplementary Materials).

FWM scattering of waves must obey the conservation laws
of E, N,P and M, which lead to the following conditions

ω1 +ω2 = ω3 +ω4, (3)
p`1,m1(ω1)+ p`2,m2(ω2) = p`3,m3(ω3)+ p`4,m4(ω4), (4)
m1 +m2 = m3 +m4, (5)

where `i, mi and ωi with i = 1,2,3,4 characterize each of the
four waves. If any of Eqs.(3), (4) or (5) are not satisfied, the
scattering process is forbidden, the ergodicity hypothesis fails,
and the multimode optical system never reaches its thermody-
namic equilibrium.

Let us consider the FWM of narrow spectrum beams, i.e.,
|ω j −ω0| � ω0. In this case, the mode propagation con-
stants may be expanded as p`,m(ω j) = p`,m(ω0)+ p′`,m(ω j−
ω0)+0.5p′′`,m(ω j−ω0)

2. According to Eqs.(3) and (4), FWM
processes within a single transverse mode have a mismatch
δ p`,m = p′′`,m(ω1 − ω3)(ω1 − ω4). Now, the efficiency of
FWM is strongly suppressed for mismatch values larger than
the inverse of the nonlinear length. As a result, the nonlinear
spectral broadening of a light beam is restricted at long propa-
gation distances [31]. When the interaction of different trans-
verse modes is involved, the FWM mismatch may be equal to
zero only occasionally, that is, for just a few quartets of waves.
As a result, thermalization broadening of wave spectra fails to
occur. Therefore, in the following we shall limit our treat-
ment to pulses with a narrow spectrum (ωk ' ω). As a matter
of fact, in our experiments we use relative narrow-band pi-
cosecond pulses, whose spectral broadening is negligible over
distances as long as z∗, which turns out to be of a few meters.

In the special case of GRIN fibers, the mode propaga-
tion constants are equidistant p`,m = p0,0− n(2π/LB), where
n = 2`+ |m| is dubbed quantum number, whereas LB is the
self-imaging distance. The condition of Eqs.(4) and (5) may
be met for many quartets with n1+n2 = n3+n4 and m1+m2 =
m3 +m4 simultaneously. As a result, the ergodicity hypothe-
sis is verified, and the equilibrium distribution (2) is achieved
after a suitable nonlinear length: it can be written as

N`,m =
N0,0

1− (2πV/LBµ̃)(2`+ |m|)+(Ω/µ̃)m
, (6)



3

where µ̃ = µ/h̄
√

2+V p0,0−ω . Note that the average power
of transverse mode Wlm has the same distribution. In the Sup-
plementary Notes, we show that the FWM process in a mul-
timode fiber can be described in frame of a kinetic equation
approach [7], for which the distribution (6) is found to be a
stationary solution.

Importantly, Eq.(6) shows that the equilibrium RJ distribu-
tion is asymmetric with respect to m = 0, owing to the pres-
ence of the Lagrange’s multiplier Ω, which is associated to
the conservation of the total OAM (see Fig.1b, where Ω > 0).
Specifically, the frequencies (2πV/LB) and Ω must be com-
parable, in order to significantly modify the symmetry of the
RJ distribution around m = 0. Whereas, if Ω = 0, i.e., if the
theory does not impose the conservation of the longitudinal
OAM, then one recovers the conventional symmetric RJ dis-
tribution [9, 20], cfr. Fig.1a. Starting from this consideration,
one can associate the presence of an OAM with the asymme-
try of the mode distribution, i.e., with a non zero value of the
average azimuthal index 〈m〉 ∝ Ω, where

〈m〉= ∑
`,m

mW`,m. (7)

a)

n

-7 -2 2 7

n

-7 -2 2 7

b)

FIG. 1. Equilibrium distribution for Ω/µ̃ = 0 (a) and Ω/µ̃ =−0.75
(b). In both plots, N0,0 = 1 and 2πV/LBµ̃ = 1.

The symmetry-breaking of the equilibrium distribution
with respect to m = 0 means that, whenever thermalization
without condensation (µ̃ 6= 0) occurs, a bell-shaped output
beam profile cannot be obtained, unless 〈m〉= Ω = 0, in spite
of the fact that the fundamental mode is always the dominant
mode in the output thermal distribution. Experimentally, this
means that, in order to achieve BSC, one always need to inject
a laser beam which does not carry OAM, e.g., on-axis Gaus-
sian beams, coupled at the center of the fiber core. It is worth
pointing out that BSC was earlier demonstrated by using dif-
ferent input laser coupling configurations. This is the case of
Ref.[6], where a diffuser changes the spatial distribution of
the input beam, and of Ref.[18], where fiber was tilted with
respect to the laser direction. However, in both of these cases
no OAM was carried by the input beam.

In order to seed an OAM, we chose a peculiar input beam,
i.e., a Gaussian beam which is injected with a tilt angle ϑ and
a transverse offset y0 with respect to the fiber axis (see Fig.2a
and b). Such injection condition leads to helical propagation
of the laser beam inside the fiber core [27, 32]: its trajectory
can be visualized by the naked eye by exploiting the lumi-
nescence of fiber defects [33]. The helical trajectory carries a

longitudinal OAM, which can be calculated as

〈m〉the = 2π
y0 sinϑ

λ
. (8)

Interestingly, the magnitude of the input OAM can be tuned
by acting on the injection offset. Specifically, the input OAM
grows larger with y0, and its sign can be flipped by injecting
the laser at diametrically opposite points, thus reversing the
helix chirality [27].

The theoretical value of 〈m〉 was used to verify the validity
of our numerical and experimental mode truncation. In the
Supplementary Materials, we show that, as long as the offset
does not exceed a few microns, there is an excellent agreement
between experimental and theoretical values of 〈m〉, which are
calculated numerically with Eq.(7) or analytically via Eq.(8).

In Fig.2c) we show the mode distribution at the input of
the fiber, corresponding to the injection condition ϑ = 2◦ and
y0 = −3 µm. By applying Eq.(7), this corresponds to 〈m〉 =
0.75 while 〈n〉= ∑`,m(2`+ |m|)W`,m = 2.23.

In Fig.2d we display a convenient way for grouping the
OAM modes, which will be used in the remainder of this
work. In this way, we can emphasize the difference be-
tween groups of modes, represented by number g: they share
the same quantum number n, but have different signs of m.
Specifically, modes with odd n are grouped in three blocks,
one for m < 0, one for m > 0, and one of m = 0. On the other
hand, modes with even n miss the value m = 0, so they are
grouped in two blocks only, one for m < 0 and one for m > 0.

In order to verify the validity of our theoretical predictions,
we performed numerical simulations. Besides FWM, we also
considered the effects of linear random mode coupling [34].
Further details about the numerical model are reported in the
Supplementary Notes. We limited our simulation to include
the 78 modes with the highest values of momentum, i.e., we
only considered GRIN fiber modes with n < 12. This value
represents a trade-off for maintaining the validity of the the-
oretical mode decomposition (the power fraction of the beam
which is carried by modes with n > 11 is negligible for our
injection conditions) on the one hand, and reducing the com-
putation time of both numerical simulations and the experi-
mental mode reconstruction algorithm, on the other hand.

We ran simulations for different values of the input peak
power (Wp), in order to compare quasi-linear with highly non-
linear propagation regimes. In the latter (Wp = 30 kW), the
mode distribution at the output of the fiber (shown in Fig.2e)
turns out to be in excellent agreement with the generalized RJ
distribution (6). For a clearer comparison, we report in Fig.2e
the experimental (histogram) and fitting (cyan dots) values of
the mode power fraction. Whereas in the linear regime (i.e.,
for Wp = 0.1kW ), the lack of significant FWM interactions
prevents mode thermalization: as a result, a fit with Eq.(6)
fails (see Fig.2f). Details on simulation parameters are given
in the Supplementary Notes.

The validity of theory and numerics was verified by the ex-
periments based on the MD of OAM beams at output of GRIN
MMFs. We used 1 ps laser pulses at 1030 nm, and a 2 m
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FIG. 2. a,b) Sketch of front and side views of injection conditions
and helical propagation carrying positive OAM. c) Input mode dis-
tribution. d) Mode grouping by index g. e) Numerically simulated
output mode distribution when Wp = 30 kW. Cyan dots in the 2D
plot represent the values of mode power fraction, obtained by fitting
experimental data with Eq.(6). f) Same as e) when Wp = 0.1 kW.
Images in the inset of e) and f) represent output intensity profiles of
the beams.

long 50/125 GRIN MMF. A full description of the set-up is
reported in the Supplementary Notes. Here, we studied light
thermalization, which is obtained by varying the input pulse
peak power, with two different injection conditions. Specif-
ically, in Fig.3, we report a MD analysis of the beam output
profile for input beams carrying either positive (Fig.3a-c) or
negative (Fig.3d-f) OAM. This was obtained by setting y=+2
µm or y =−1 µm, respectively. In the Supplementary Notes,
we also report the limit case of 〈m〉= 0, which is achieved by
injecting the laser with no offset with respect to the fiber axis.

In Fig.3a and d, we report histograms of the mode power
fraction of the output beams, for several values of Wp. As it
can be seen, the mode content changes when increasing Wp,
eventually approaching an equilibrium distribution once over-
coming the critical value for thermalization. One can appre-
ciate that the distributions at Wp = 17.6 kW and Wp = 26.5
kW are quite similar. Whereas at lower powers, significantly
different output mode contents are observed. In the inset of
Fig.3a and d, we compare the measured output near field in-
tensities (images in the left column) with the MD reconstruc-
tions (images in the right column). These images are impres-
sively similar for all input power values, thus proving the ac-
curacy of our MD method.

The cyan dots shown in the graphs of Fig.3a and d for
the highest input power values provide the fitting of the ex-
perimental mode occupancy with Eq.(6). As it can be seen,
a good agreement is found between the experimental mode
power fractions and the prediction of the generalized RJ dis-
tribution. In Fig.3b and e, we show that the root-mean-square
error (RMSE) of the observed mode occupancy with respect

to the equilibrium is distribution progressively reduced, when
increasing Wp. This indicates that when enough power is pro-
vided, the FWM processes allow for reaching the ergodicity
condition for the multimode system, hence its thermalization
into an equilibrium distribution (6).

𝑦0 = 2 µm 𝑦0 = −1 µm

26.5 kW

17.6 kW

9.0 kW

4.4 kW

26.5 kW

17.6 kW

9.0 kW

4.4 kW

d)a)

b)

c)

e)

f)

FIG. 3. Experimental results. a) MD of the output beam for different
values of Wp, when y0 =+2 µm.. The inset images are the measured
output beam profiles (left) and their reconstructions (right). The blue
dots are extracted by fitting experimental data with Eq.(6). b) Root-
mean-square error of the experimental mode distributions with re-
spect to the generalized RJ distribution (cyan dots in a) vs. input
peak power. c) Conservation of 〈n〉 (blue) and 〈m〉 (red). The error
bars are estimated by considering all of the reconstructions of the
output beam near-field at each input power [9]. d-f) Same as a-c),
when injecting the laser beam with an offset y0 =−1 µm.

Finally, we proved the validity of the hypothesis behind our
theoretical derivation, i.e. the conservation laws of E, N, P
and M. As a matter of fact, our MD method does not al-
low for estimating N`,m, since only averaged quantities can
be extracted from camera pictures. Nevertheless, it is well
known that the energy of each pulse E, and accordingly the
photon number N, are conserved in our experimental condi-
tions, since dissipative effects, of either linear or nonlinear
origin, are negligible over a few meters of fiber for picosec-
ond pulses of few tens of kW of peak power, at wavelengths
around 1 µm. We experimentally verified the conservation of
〈n〉 and 〈m〉, which are related to the linear and angular mo-
mentum, respectively. As it can be seen in Fig.3c and f, when
varying Wp, both quantities oscillate within the experimental
error bars around a constant value. Specifically, we found that
〈m〉 ' 0.46 for y0 = +2 µm and 〈m〉 ' −0.24 for y0 = −1
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µm. This is in agreement with theoretical expectations: Eq.(8)
gives 〈m〉= 0.44 and 〈m〉=−0.22, respectively.

In conclusion, we derived a general theoretical description
of light thermalization in multimode fibers. Theoretical pre-
dictions have been confirmed by numerical and experimen-
tal studies. Remarkably, we found that the thermalization of
OAM beams in GRIN MMFs may occur without the genera-
tion of bell-shaped output beams. Our work sheds a new light
on the nonlinear dynamics and manipulation of vortex optical
beams by multimode fibers.
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(R18SPB8227). E.P., M.G., D.K., S.B. acknowledge financial
support by Russian Science Foundation (Grant 21-72-30024).

[1] S. Dyachenko, A. Newell, A. Pushkarev, and V. Zakharov,
Physica D: Nonlinear Phenomena 57, 96 (1992).

[2] C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, and
S. Rica, Phys. Rev. Lett. 95, 263901 (2005).

[3] A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Mil-
lot, and D. Christodoulides, Physics Reports 542, 1 (2014), op-
tical wave turbulence: Towards a unified nonequilibrium ther-
modynamic formulation of statistical nonlinear optics.

[4] C. Sun, S. Jia, C. Barsi, S. Rica, A. Picozzi, and J. W. Fleischer,
Nature Physics 8, 470 (2012).

[5] D. R. Tilley and J. Tilley, Superfluidity and superconductivity
(Routledge, 2019).

[6] K. Baudin, A. Fusaro, K. Krupa, J. Garnier, S. Rica, G. Millot,
and A. Picozzi, Phys. Rev. Lett. 125, 244101 (2020).

[7] P. Aschieri, J. Garnier, C. Michel, V. Doya, and A. Picozzi,
Phys. Rev. A 83, 033838 (2011).

[8] F. O. Wu, A. U. Hassan, and D. N. Christodoulides, Nature Pho-
tonics 13, 776 (2019).

[9] F. Mangini, M. Gervaziev, M. Ferraro, D. Kharenko, M. Zitelli,
Y. Sun, V. Couderc, E. Podivilov, S. Babin, and S. Wabnitz,
arXiv preprint arXiv:2111.08063 (2021).

[10] K. Krupa, A. Tonello, A. Barthélémy, V. Couderc, B. M. Sha-
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Supplementary
Notes

BASE TRANSFORMATION FROM LG TO OAM

Since the mode decomposition code operates on a
Laguerre-Gauss mode basis, while the theory is expressed in a
generic OAM basis, all experimentally obtained mode decom-
position data had to be transformed into an appropriate basis.
The total field in the therms of mode decomposition software
is expressed as follow:

U = ∑
l,m

NmFl,|m|(Al,m cosmφ +Al,−m sinmφ) (9)

where Fl,|m| the function represents Laguerre-Gaussian (LG)
modes with the (l,m) indexes, Al,m and Al,−m the measured
values. Nm normalized coefficient that is equal to 1 for m = 0
and
√

2 for m 6= 0 as normalization for sin(x) and cos(x) dif-
fers from exp(ix). To simplify further derivations just consider
Ul component of the field and omit the l in mode amplitudes:

Um ∝ Nm(Am cosmφ +A−m sinmφ). (10)

Let’s express the sine and cosine function by complex expo-
nent using Euler’s formula eix = cosx+ isinx for both m and
−m cases: {

cosmφ = (eimφ + e−imφ )/2
sinmφ = (eimφ − e−imφ )/2.

(11)

Substitute the last Eqs. (4) into (3) and let’s group the coeffi-
cient before the same exponents:

Um ∝
Nm

2
(Am− iA−m)eimφ +

Nm

2
(Am + iA−m)e−imφ =

=Bmeimφ +B−me−imφ (12)

where we denote Bm and B−m as follow:
Bl,0 = Al

Bl,m = (Am− iA−m)/
√

2
Bl,−m = (Am + iA−m)/

√
2

(13)

In matrix form it will look like(
Bl,m

Bl,−m

)
=

1√
2

[
1 −i
1 i

](
Al,m

Al,−m.

)
(14)

To calculate the angular momentum express |Bl,m|2 through
Al,m and Al,−m and take into account that z = a+ ib and z−
z∗ = 2ib:

2|Bl,m|2 = |Al,m|2 + |Al,−m|2 +2ℑ(A∗l,mAl,−m) (15)

2|Bl,−m|2 = |Al,m|2 + |Al,−m|2−2ℑ(A∗l,mAl,−m).

DERIVATION OF THE EQUILIBRIUM DISTRIBUTION
FROM CONSERVATION LAWS

We aim at studying the thermalization of a multimode opti-
cal system taking into account the conservation laws of the
number of photons N, the momentum P and the longitudinal
orbital angular momentum (OAM), which we dub M. For sake
of simplicity, we are considering monochromatic waves, oth-
erwise we should have added a fourth conservation law: that
of the energy of the pulse, as in the main text.
Thermalization occurs when maximizing the entropy, which
reads as

S = lnW , (16)

where W is the number of ways in which one can distribute
N (indistinguishable) photons in distinct optical modes. Let
us label with the index i all of the gi modes having the mo-
mentum Pi and OAM Mi. Thus the parameter gi is the mode
degeneracy. Assigning to the i-th group of modes an occu-
pancy Ni, we can write

W = ∏
i

(Ni +gi−1)!
Ni!(gi−1)!

. (17)

Here and in the following, the index i runs over all of the
non-degenerate guided modes, whose (finite) number is es-
tablished by the fiber cut-off. The entropy becomes:

S = ∑
i
(Ni +gi−1) ln(Ni +gi−1)−Ni lnNi− ln(gi−1)!,

(18)
where we used the Stirling formula lnx! ' x lnx for x� 1.
The conservation laws for N, P and M respectively read:

N = ∑
i

Ni, (19)

P = ∑
i

PiNi, (20)

and

M = ∑
i

MiNi. (21)

The conservation laws (19), (20) and (21) are the constraints
for the maximization of S. We can introduce 3 Lagrange’s
multiplier α , β and γ in order to find the stationary points of
S and we impose

∂

∂Ni

[
S+α

(
N−∑

i
Ni

)
+β

(
P−∑

i
PiNi

)
+ γ

(
M−∑

i
MiNi

)]
= 0.

(22)
This gives:

ln
(

Ni +gi−1
Ni

)
−α−βPi− γMi = 0 (23)
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Ni =
gi−1

eα+βPi+γMi −1
, (24)

which, imposing gi� 1, yields the Bose-Einstein distribution:

Ni =
gi

eα+βPi+γMi −1
. (25)

Under the approximation Ni� gi, which holds for highly mul-
timode systems, the Bose-Eistein distribution boils down to

Ni =
gi

α +βPi + γMi
. (26)

Note that, so far, we have extended the derivation of Ref.[8]
to the case of systems which conserve the longitudinal OAM.
Now, we would like to apply this result to multimode fibers,
where the modes are generally defined by two integer numbers
(`,m). Therefore, it is convenient to get rid of the degeneracy.
To do so, we need to do the following substitution:

∑
i

giXi = ∑
`,m

X`,m, (27)

where the new sums run over all of the possible values of ` and
m, independently of the mode degeneracy and X is a generic
quantity which depends on the mode indexes. Accordingly,
Eq.(19) becomes:

N = ∑
`,m

1
α +β P̀ ,m + γM`,m

, (28)

and we can identify the occupancy of the mode (`,m) with

N`,m =
1

α +β P̀ ,m + γM`,m
, (29)

so that, by exploiting the equalities (27) and (28), the conser-
vation laws (19), (20) and (21) respectively become

N = ∑
`,m

N`,m, (30)

P = ∑
`,m

P̀ ,mN`,m, (31)

and

M = ∑
`,m

M`,mN`,m. (32)

So far, we have not chosen a basis for the mode representation.
As we want to exploit the OAM of the field, it is convenient to
choose a mode basis for which the longitudinal OAM operator

L̂z =−ih̄
∂

∂φ
(33)

is diagonalized. Such a basis is a generalization of that of
Laguerre-Gauss modes, and it is dubbed OAM basis. In the
latter, the radial and azimuthal variables are separated, e.g.,
the mode amplitude ψ`,m can be written as

ψ`,m(z,r,φ) = A`,m(z)e−iP̀ ,mz · F̀ ,m(r) · eimφ , (34)

where 2π
∫

dr · r|F(r)|2 = 1. Therefore, each mode (`,m) car-
ries a longitudinal OAM M`,m = mh̄, as

L̂z ·ψ`,m = mh̄ ·ψ`,m (35)

and the total longitudinal OAM reads as:

M = h̄∑
`,m

m ·N`,m. (36)

Finally, with this basis we recover the generalized Rayleigh-
Jeans distribution of our manuscript, after defining the follow-
ing parameters:

α =
h̄ω
√

2−µ

T
, (37)

β =− h̄V
√

2
T

, (38)

γ =− h̄Ω
√

2
T

. (39)

KINETIC EQUATION

The FWM process in a multimode fiber can be described
in frame of a kinetic equation approach [7]. For simplicity of
notation, let us introduce a multi-index q = (`,m). The slowly
variable mode amplitudes Aq(z) = A`,m(z) obey the nonlinear
evolution equation

∑
q1

Fq1(r)eim1φ−ipq1z dAq1

dz
=

=−i(ωn2/c) ∑
q2,q3,q4

e−i(m2−m3−m4)φ ei(pq2−pq3−pq4)z

·Fq2(r)Fq3(r)Fq4(r)A∗q2(z)Aq3(z)Aq4(z) (40)

where n2 ' 2 · 10−16 sm2/W is the coefficient of the nonlin-
ear correction to the refractive index of silica glass δnNL =
n2|Atot |2, and c vacuum speed of light. By using the orthog-
onality of the radial eigenfunctions, we may multiply Eq.(40)
by Fq1(r)exp(−i(m1φ − pq1z)), and then integrate over the
fiber cross-section. As a result, we obtain the propagation
equation for the light amplitude in the modal representation

dAq1

dz
=

−i ∑
q2,q3,q4

Uq1,q2,q3,q4A∗q2(z)Aq3(z)Aq4(z)ei(pq1+pq2−pq3−pq4)z

·∆(m1 +m2−m3−m4), (41)
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where ∆( j) is the Kronecker’s symbol, and

Uq1,q2,q3,q4 =
ωn2

c

∞∫
0

rdrFq1(r)Fq2(r)Fq3(r)Fq4(r)

is an overlap integral. Let us assume that, at some point z∗

along the fiber, the optical system reaches its steady state.
Namely, all light modes have a Gaussian and delta-correlated
statistics 〈Aq(z∗)Aq′(z∗)〉= ∆(l− l′)∆(m−m′)Iq(z∗), and the
mode power Iq(z) remains a constant for z > z∗. Then, exactly
at z = z∗, one obtains

dIq1

dz
|z=z∗ =−2Re{

i ∑
q2,q3,q4

Uq1,q2,q3,q4〈A∗q1(z
∗)A∗q2(z

∗)Aq3(z∗)Aq4(z∗)〉

·ei(pq1+pq2−pq3−pq4)z∗∆(m1 +m2−m3−m4))}=
= 2Im∑

q2
Uq1,q2,q1,q22Iq1(z∗)Iq2(z∗) = 0. (42)

From Eq.41, it follows that the amplitude of any mode Aq j(z)
should change its value according to the equation

δAq j(z) = Aq j(z)−Aq j(z∗) =

=−i
z∫

z∗

dz′ ∑
q j′,q j′′,q j′′′

Uq j,q j′,q j′′,q j′′′A
∗
q j′(z

′)Aq j′′(z
′)Aq j′′′(z

′)

·ei(pq j+pq j′−pq j′′−pq j′′′ )z
′
∆(m1 +m2−m3−m4). (43)

Let us assuming, that the length z−z∗ is smaller than the inter-
action distance LNL ' λ/2πδnNL, where δnNL ' n2Wp/Se f f
- nonlinear correction to refractive index, and Se f f - effective
area of light beam. Than Eq. (43) leads to a nonzero cor-
rection to the right-hand side (RHS) of Eq.(42), which is of
the first order with respect to the small perturbation δA. One
obtains

dIq1

dz
|z>z∗ =−2Re{

i ∑
q2,q3,q4

Uq1,q2,q3,q4
(
〈δA∗q1(z)A

∗
q2(z

∗)Aq3(z∗)Aq4(z∗)〉+

〈A∗q1(z
∗)δA∗q2(z)Aq3(z∗)Aq4(z∗)〉+

〈A∗q1(z
∗)A∗q2(z

∗)δAq3(z)Aq4(z∗)〉+

〈A∗q1(z
∗)A∗q2(z

∗)Aq3(z∗)δAq4(z)〉
)
ei(pq1+pq2−pq3−pq4)z∗

·∆(m1 +m2−m3−m4)}. (44)

By substituting here δA from Eq.(43), and averaging over the
Gaussian statistics, one obtains the general wave kinetic equa-
tion for monochromatic light in a multimode optical fiber:

dIq1

dz
|z>z∗ = 4 ∑

q2,q3,q4
|Uq1,q2,q3,q4|2Iq1(z∗)Iq2(z∗)Iq3(z∗)Iq4(z∗)

·
(

I−1
q1 (z

∗)+ I−1
q2 (z

∗)− I−1
q3 (z

∗)− I−1
q4 (z

∗)
)

·δz,z∗(pq1 + pq2− pq3− pq4)∆(m1 +m2−m3−m4) (45)

where

δz,z∗(x) =
sin(x(z− z∗))

x(z− z∗)
. (46)

For a steady-state solution, the RHS of Eq.(45) must be equal
to zero.

For GRIN multimode fibers, after averaging over the
small self-imaging distance LB, the function (46) reduces to
δz,z∗(pq1 + pq2 − pq3 − pq4) = |z− z∗|∆(k1 + k2− k3− k4)
for z− z∗ � LB ' 5 mm. One could check that the thermal
equilibrium distribution

I−1
`,m = I−1

0,0 (1+a(2`+ |m|)+bm) (47)

is indeed a steady-state solution of the wave kinetic equation
(45): the expression in parenthesis equals to zero, thanks to
the delta-symbols. The constants I0,0, a and b are defined by
the three conservation laws (power, momentum and angular
momentum) from their input values. The number of photons
N`,m passing through the end of the fiber at time τ has the same
distribution, i.e., N`,m = τI`,m/h̄ω .

On the other hand, for SI multimode fibers the function
(46) only reduces to the Dirac’s delta-function in the limit
of an infinite fiber length, i.e., whenever z− z∗ → ∞. For-
mally, one could expect to observe a thermal distribution
in the form I`,m = I0,0/(1 + ap`,m + bm), but the mismatch
δ p = p`1,m1 + p`2,m2− p`3,m3− p`4,m4 6= 0 for any combina-
tion of transverse mode indices, so that I`,m does not reach the
steady-state value if the constant a 6= 0 (i.e., the expression
among brackets in (46) does not turn to zero).

For small powers, the main process of energy exchange
is random mode coupling. Momentum and angular momen-
tum conservation laws are broken by this process. Ran-
dom mode coupling can be described as the scattering of the
modal amplitude A`1,m1 on a noisy Bragg grating with a pe-
riod 2π/(p`1,m1− p`2,m2) into the modal amplitude A`2,m2, and
back. In this case, the thermal equilibrium distribution is the
equidistribution of mode powers, I`,m = I0,0: hence both con-
stants a and b must be equal to zero.

MODE TRUNCATION

Here, we discuss the agreement between both simulation
and experiments with theoretical predictions, when consider-
ing only modes with n < 12. In Fig.4, we report as green
circles the values of 〈m〉 and 〈n〉 at the fiber input, when set-
ting ϑ = 2◦ while varying the injection offset y0. The corre-
sponding output values, calculated by numerical simulations,
are shown by black squares. These are calculated by means of
Eq.(7). Similarly, the values of 〈m〉 and 〈n〉 obtained by MD
experiments are shown by red diamonds. Finally, the theoreti-
cal values calculated by Eq.(8) are shown by a solid line. As it
can be seen, as long as the offset is smaller than a few microns,
the MD analysis is in excellent agreement with the theory. To
the contrary, when y0 grows too large, a discrepancy between
both numerics and experiments and the analytical prediction
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is found. As a consequence, in order to re-establish a coher-
ence between those, one would need to extend the number of
modes which are considered in both simulations and exper-
iments. This would considerably increase both computation
time and MD reconstruction time in the experiments. More
importantly, such high-order modes may in fact not be guided
in the actual GRIN fiber. Therefore, in our work we limited to
offset up to 2 µm of magnitude.

a) b)

FIG. 4. a) Values of 〈m〉 as a function of the offset y0. The solid line
is calculated by Eq. (8); Green circles, black squares and red dia-
monds are calculated by Eq.(7) when considering the mode distribu-
tion at the fiber input, and at the fiber output obtained by numerical
simulations and MD experiments, respectively. b) Same as a) for 〈n〉.

NUMERICAL METHODS

To simulate the spatial evolution of the modal amplitudes of
a beam in a GRIN MMF, we numerically solved the following
system of coupled-mode propagation equations [34]:

∂A`,m

∂ z
= ∑

`1,m1
C`1,`

m1,mA`1,m1−
α

2
A`,m−

− i
kn2

n0
∑

m1,m2,m3
∑

`1,`2,`3
f `1,`2,`3,`m1,m2,m3,mA∗`1,m1A`2,m2A`3,m3, (48)

where A`,m are the mode amplitudes obtained by project-
ing the field on the basis of Laguerre-Gaussian modes; k =
2πn0/λ is the wavenumber and n0 is the core refractive in-
dex. The coefficients f `1,`2,`3,`m1,m2,m3,m are obtained by calculating
the overlap integrals of the spatial modes distributions. The
coupled-mode equations take into account the presence of the
Kerr effect and linear losses (α = 2.72 dB/km). In addition,
we also included terms describing random linear coupling be-
tween all spatial modes, owing to fiber imperfections, bends
and stresses. Specifically, the coefficients Cm1,`1

m,` are normally
distributed random numbers with zero mean value and stan-
dard deviation s = 2 · 10−4. As done for the experimental
mode decomposition, in the simulations we only consider the
78 modes whose mode number n = 2`+ |m| ≤ 11. Finally, in
our simulations we consider a propagation distance of 10 m,
whereas the spatial integration step was set to 0.01 mm.

EXPERIMENTAL SET-UP

The MD experimental setup that we used to study the
OAM thermalization distribution in GRIN MMFs is shown in
Fig.??. It consists of an ultra-short pulse laser system pumped
by a femtosecond Yb-based laser (Lightconversion PHAROS-
SP-HP), generating pulses with adjustable duration (by means
of a dispersive pulse stretcher), at 100 kHz repetition rate and
λ = 1030 nm, and with Gaussian beam shape (M2=1.3). The
pulse shape was measured by using an autocorrelator (APE
PulseCheck type 2), resulting in a sech temporal shape with
pulse width equal to 1 ps. As shown in Fig.??, the laser beam
was injected by a positive lens (L0) into the core of the GRIN
fiber. The input diameter at 1/e2 of peak intensity was mea-
sured to be 30 µm. We employed 2 m long standard 50/125
GRIN fibers (GIF50E from Thorlabs), whose core radius, core
refractive index along the axis, relative core-cladding index
difference, numerical aperture and fundamental mode radius
at λ = 1030 nm are rc = 25 µm, n0 = 1.472, ∆ = 0.0103,
NA = 0.2 and r0,0 = 6.33 µm, respectively. The fiber is po-
sitioned on a 4-Axis micro-block stages, to vary the offset
and choose a proper input tilt angle ϑ . The near-field pro-
file at the fiber output is imaged onto an SLM (Hamamatsu
LCOS- X15213) by means of two confocal lenses (L1, with
f1 = 2.75 mm and L2, with f2 = 400 mm). Between those,
we placed a bandpass filter (BPF, 1030± 5 nm), a half-wave
plate (λ/2), and a polarizer (P). Our measurement system al-
lows us to avoid the parasitic influence of nonlinear frequency
conversions, e.g., provided by Raman scattering or geometric
parametric instability [10], which is detrimental for our MD
reconstruction algorithm. As a matter of fact, the phase pat-
tern on the SLM for the profile reconstruction algorithm must
be chosen at a given wavelength. We could also tune the in-
tensity of the beam reaching the SLM by means of the λ/2. A
flip mirror (FM) is used for imaging the near field profile at the
fiber output facet onto an IR camera (NF, Gentec Beamage-
4M-IR). Images acquired in this way were used as a reference,
in order to check the quality of the reconstruction made by the
MD algorithm. At last, a convex lens (L3 = 400 mm) projects
the field reflected by the SLM onto a second camera (FF cam-
era). The lens is placed in the middle between the SLM and
the camera, so that both these objects are at its focal distance.
Finally, the beam average power both at the input and the out-
put of the fiber was measured by a photo-diode power meter
(Thorlabs).

ZERO ANGULAR MOMENTUM

Here, we report the particular case of beam propagating
without carrying an OAM. In this case, the distribution 2 boils
down to the RJ distribution. We consider the case of a merid-
ional ray, which is achieved by injecting the laser beam with-
out any offset with respect to the fiber axis (y0 = 0) while
keeping a tilted geometry (ϑ = 2◦). In Fig.??a, we report the
output mode distribution when operating in the linear (bottom
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SLM

Camera 
FF

Lens f0
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P Lens f2

Lens f3
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FIG. 5. Sketch of the experimental set-up to study the modes decom-
position.

panel) or in the nonlinear (top panel) regime. As it can be
seen, the mode content changes when varying Wp. Specifi-
cally, the fundamental mode becomes more populated when
Wp grows larger. Eventually, the output distribution reaches
an equilibrium, as for the cases considered in the main text.
However, in this case, when the equilibrium is reached, we
may remark the symmetry of the power fraction associated
with opposite signs of the azimuthal index. In the inset of
Fig.??a, we compare the measured output near field intensi-
ties (left) with the MD reconstructions (right). In Fig.3b, we
show that the root-mean-square error (RMSE) of the observed
mode occupancy with respect to the RJ distribution progres-
sively reduces, when increasing Wp. By comparing Fig.3b
with the experimental results in the main text, one can see
that, in the abseence of OAM, thermodynamic equilibrium is
reached for lower powers. Finally, in Fig.3c we verified the
conservation of 〈m〉 and 〈n〉.

26.5 kW

4.4 kW

a)

b)

c)

FIG. 6. Experimental results in the case of zero angular momentum.
a) MD of the output beam when operating either in the linear (bottom
panel) or in the nonlinear (top panel) regime. The inset images show
the measured output beam profiles (left) and their reconstructions
(right). The blue dots are extracted from the fit of the experimental
data by Eq.(6). b) Root-mean-square error of the experimental mode
distributions with respect to the RJ distribution (blue dots in a) vs.
input peak power. c) Conservation of 〈n〉 (blue) and 〈m〉 (red).
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