Hybrid rockets are considered a promising future propulsion alternative for specific applications to solid or liquid rockets. In order to raise their technology readiness level, it is important to perform predictive numerical simulations of their internal ballistics. The objective of this work is to describe and validate a numerical approach based on Reynolds-averaged Navier–Stokes simulations with sub-models for fluid–surface interaction, radiation, chemistry, and turbulence. Particular attention is given to scale effects by considering two different paraffin–oxygen hybrid rocket engines and a simplified grain evolution approach from the initial to the final port diameter. Moreover, a mild sensitivity of the computed regression rate to paraffin’s melting temperature, surface radiation emissivity, and Schmidt numbers is observed. Results highlight the increasing importance of radiation effects at larger scales and pressures. A numerical rebuilding of regression rate and pressure is obtained with simulations at the time-space-averaged port diameter, producing a reasonable agreement with the available experimental data, but a noticeable improvement is obtained by considering the grain evolution in time
Numerical simulations of the internal ballistics of paraffin–oxygen hybrid rockets at different scales / Migliorino, MARIO TINDARO; Bianchi, Daniele; Nasuti, Francesco. - In: AEROSPACE. - ISSN 2226-4310. - 8:8(2021), pp. 1-15. [10.3390/aerospace8080213]
Numerical simulations of the internal ballistics of paraffin–oxygen hybrid rockets at different scales
Mario Tindaro Migliorino
;Daniele Bianchi;Francesco Nasuti
2021
Abstract
Hybrid rockets are considered a promising future propulsion alternative for specific applications to solid or liquid rockets. In order to raise their technology readiness level, it is important to perform predictive numerical simulations of their internal ballistics. The objective of this work is to describe and validate a numerical approach based on Reynolds-averaged Navier–Stokes simulations with sub-models for fluid–surface interaction, radiation, chemistry, and turbulence. Particular attention is given to scale effects by considering two different paraffin–oxygen hybrid rocket engines and a simplified grain evolution approach from the initial to the final port diameter. Moreover, a mild sensitivity of the computed regression rate to paraffin’s melting temperature, surface radiation emissivity, and Schmidt numbers is observed. Results highlight the increasing importance of radiation effects at larger scales and pressures. A numerical rebuilding of regression rate and pressure is obtained with simulations at the time-space-averaged port diameter, producing a reasonable agreement with the available experimental data, but a noticeable improvement is obtained by considering the grain evolution in timeFile | Dimensione | Formato | |
---|---|---|---|
Migliorino_Numerical-simulations_2021.pdf
accesso aperto
Note: https://doi.org/10.3390/aerospace8080213
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
828.3 kB
Formato
Adobe PDF
|
828.3 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.