We provide complementary semiclassical bounds for the Riesz means R1(z) of the eigenvalues of various biharmonic operators, with a second term in the expected power of z. The method we discuss makes use of the averaged variational principle (AVP), and yields twosided bounds for individual eigenvalues, which are semiclassically sharp. The AVP also yields comparisons with Riesz means of different operators, in particular Laplacians.

Semiclassical bounds for spectra of biharmonic operators / Buoso, Davide; Provenzano, Luigi; Stubbe, Joachim. - In: RENDICONTI DI MATEMATICA E DELLE SUE APPLICAZIONI. - ISSN 2532-3350. - (2022).

Semiclassical bounds for spectra of biharmonic operators

Luigi Provenzano
;
2022

Abstract

We provide complementary semiclassical bounds for the Riesz means R1(z) of the eigenvalues of various biharmonic operators, with a second term in the expected power of z. The method we discuss makes use of the averaged variational principle (AVP), and yields twosided bounds for individual eigenvalues, which are semiclassically sharp. The AVP also yields comparisons with Riesz means of different operators, in particular Laplacians.
2022
Biharmonic operator, Riesz means, eigenvalue asymptotics, semiclassical bounds for eigenvalues, averaged variational principle.
01 Pubblicazione su rivista::01a Articolo in rivista
Semiclassical bounds for spectra of biharmonic operators / Buoso, Davide; Provenzano, Luigi; Stubbe, Joachim. - In: RENDICONTI DI MATEMATICA E DELLE SUE APPLICAZIONI. - ISSN 2532-3350. - (2022).
File allegati a questo prodotto
File Dimensione Formato  
Buoso_Semiclassical_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 527.86 kB
Formato Adobe PDF
527.86 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1642286
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact