We provide complementary semiclassical bounds for the Riesz means R1(z) of the eigenvalues of various biharmonic operators, with a second term in the expected power of z. The method we discuss makes use of the averaged variational principle (AVP), and yields twosided bounds for individual eigenvalues, which are semiclassically sharp. The AVP also yields comparisons with Riesz means of different operators, in particular Laplacians.
Semiclassical bounds for spectra of biharmonic operators / Buoso, Davide; Provenzano, Luigi; Stubbe, Joachim. - In: RENDICONTI DI MATEMATICA E DELLE SUE APPLICAZIONI. - ISSN 2532-3350. - (2022).
Semiclassical bounds for spectra of biharmonic operators
Luigi Provenzano
;
2022
Abstract
We provide complementary semiclassical bounds for the Riesz means R1(z) of the eigenvalues of various biharmonic operators, with a second term in the expected power of z. The method we discuss makes use of the averaged variational principle (AVP), and yields twosided bounds for individual eigenvalues, which are semiclassically sharp. The AVP also yields comparisons with Riesz means of different operators, in particular Laplacians.File | Dimensione | Formato | |
---|---|---|---|
Buoso_Semiclassical_2022.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
527.86 kB
Formato
Adobe PDF
|
527.86 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.