We study an eigenvalue problem for the biharmonic operator with Neumann boundary conditions on domains of Riemannian manifolds. We discuss the weak formulation and the classical boundary conditions, and we describe a few properties of the eigenvalues. Moreover, we establish upper bounds compatible with the Weyl’s law under a given lower bound on the Ricci curvature.

Neumann Eigenvalues of the Biharmonic Operator on Domains: Geometric Bounds and Related Results / Colbois, Bruno; Provenzano, Luigi. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 32:8(2022). [10.1007/s12220-022-00955-7]

Neumann Eigenvalues of the Biharmonic Operator on Domains: Geometric Bounds and Related Results

Colbois, Bruno;Provenzano, Luigi
2022

Abstract

We study an eigenvalue problem for the biharmonic operator with Neumann boundary conditions on domains of Riemannian manifolds. We discuss the weak formulation and the classical boundary conditions, and we describe a few properties of the eigenvalues. Moreover, we establish upper bounds compatible with the Weyl’s law under a given lower bound on the Ricci curvature.
2022
Biharmonic operator, Neumann boundary conditions, Riemannian manifolds, Eigenvalues, Eigenvalue bounds, Spectral geometry
01 Pubblicazione su rivista::01a Articolo in rivista
Neumann Eigenvalues of the Biharmonic Operator on Domains: Geometric Bounds and Related Results / Colbois, Bruno; Provenzano, Luigi. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 32:8(2022). [10.1007/s12220-022-00955-7]
File allegati a questo prodotto
File Dimensione Formato  
Colbois_Neumann Eigenvalues_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 921.15 kB
Formato Adobe PDF
921.15 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1642214
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact