We study an eigenvalue problem for the biharmonic operator with Neumann boundary conditions on domains of Riemannian manifolds. We discuss the weak formulation and the classical boundary conditions, and we describe a few properties of the eigenvalues. Moreover, we establish upper bounds compatible with the Weyl’s law under a given lower bound on the Ricci curvature.
Neumann Eigenvalues of the Biharmonic Operator on Domains: Geometric Bounds and Related Results / Colbois, Bruno; Provenzano, Luigi. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 32:8(2022). [10.1007/s12220-022-00955-7]
Neumann Eigenvalues of the Biharmonic Operator on Domains: Geometric Bounds and Related Results
Colbois, Bruno;Provenzano, Luigi
2022
Abstract
We study an eigenvalue problem for the biharmonic operator with Neumann boundary conditions on domains of Riemannian manifolds. We discuss the weak formulation and the classical boundary conditions, and we describe a few properties of the eigenvalues. Moreover, we establish upper bounds compatible with the Weyl’s law under a given lower bound on the Ricci curvature.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Colbois_Neumann Eigenvalues_2022.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
921.15 kB
Formato
Adobe PDF
|
921.15 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.