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Abstract
We study an eigenvalue problem for the biharmonic operator with Neumann boundary
conditions on domains ofRiemannianmanifolds.Wediscuss theweak formulation and
the classical boundary conditions, and we describe a few properties of the eigenvalues.
Moreover, we establish upper bounds compatible with the Weyl’s law under a given
lower bound on the Ricci curvature.
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1 Introduction

Let (M, g) be a complete n-dimensional smooth Riemannianmanifold and let� ⊂ M
be a bounded domain, i.e., a bounded connected open set, with boundary ∂�. We
consider the following Neumann eigenvalue problem for the biharmonic operator:

⎧
⎪⎨

⎪⎩

�2u = μu, in �,
∂2u
∂ν2
= 0, on ∂�,

div∂� (∇ν∇u)∂� + ∂�u
∂ν
= 0, on ∂�.

(1.1)
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in the unknowns u (the eigenfunction) and μ (the eigenvalue). Here �u = div(∇u)

is the Laplacian (or Laplace–Beltrami operator) of u on (M, g), �2u = �(�u), ν

denotes the outer unit normal to ∂�, ∂2u
∂ν2
= 〈∇ν∇u, ν〉 is the second normal derivative,

div∂� is the divergence on ∂� with respect to the induced metric, and F∂� denotes
the projection of F ∈ T M on T ∂�.

We recall that in the case M = R
n with the Euclidean metric, problem (1.1) is well-

known and has increasingly gained attention in recent years. We refer to [3, 8–10, 13–
15, 31, 37–39] for the eigenvalue problem and to [41] for the corresponding boundary
value problem. Problem (1.1) in dimension two represents Kirchhoff’s solution to the
problem of describing the transverse vibrations of a thin elastic plate with free edges.
We refer to [7, 24, 33, 34] for more details and for historical information.

We also note that the corresponding Dirichlet problem for the biharmonic operator,
which for planar domains is related to the study of the transverse vibrations of a thin
elastic plate with clamped edges [22], has been extensively studied not only in the
Euclidean setting, but also for domains in Riemannian manifolds, see e.g., [18, 42,
43]. In particular, the Dirichlet problem on Euclidean domains and the analogous
problem on Riemannian manifolds share many properties which can be derived by
using similar arguments.

On the other hand, we have not been able to find the analogue of the biharmonic
Neumann problem on Riemannian manifolds in the literature. The first aim of the
present paper is to introduce problem (1.1) on domains of Riemannian manifolds in a
suitableway, derive the boundary conditions aswell as the variational formulation. The
problem which we obtain turns out to be the genuine generalization of the biharmonic
Neumann problem for Euclidean domains. We remark that the standard technique
used to derive the boundary conditions and the variational formulation of problem
(1.1) in the Euclidean case is to multiply the eigenvalue equation �2u = μu by a test
function φ ∈ C∞(�), integrate the resulting equality over � and perform suitable
integrations by parts. Computations become easy since we can exchange the order of
partial derivatives. This is no longer possible in the case of Riemannian manifolds,
hence we have to take a longer path, described in Sect. 3.1. An essential tool is Reilly’s
identity. It turns out that the strategy described in Sect. 3.1 allows to define alternatively
problem (1.1) also in the Euclidean case.

Then, we prove that problem (1.1) admits an increasing sequence of eigenvalues of
finite multiplicity diverging to +∞ of the form

−∞ < μ1 ≤ μ2 ≤ · · · ≤ μ j ≤ · · · ↗ +∞.

If � is a bounded domain of R
n it is known that the eigenvalues are non-negative and

satisfy the Weyl’s asymptotic law

lim
j→+∞

μ j

j
4
n

= 16π4

(ωn|�|) 4
n

,
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that is

μ j ∼ 16π4

ω
4
n
n

(
j

|�|
) 4

n

, as j →+∞, (1.2)

where ωn denotes the volume of the unit ball in R
n and |�| denotes the Lebesgue

measure of �, see e.g., [31].
An important question regarding the eigenvalues of Neumann-type problems is that

of finding upper bounds which are compatible with the Weyl’s law. One of the main
purposes of the present paper is that of finding upper bounds for μ j which can be
compared with (1.2) and which contain the correct geometric information.

In the case of Euclidean domains, Weyl-type upper bounds for μ j are well-known
and are of the form

μ j ≤ An

(
j

|�|
) 4

n

(1.3)

with An =
( 4+n

4

)4/n 16π4

ω
4/n
n

, see e.g., [31] (see also [8] for the general case of the operator

�2 − τ�, τ ≥ 0, i.e., the biharmonic operator with a tension term). The proof in [31]
is in the spirit of the analogous result of Kröger for the Neumann eigenvalues m j of
the Laplacian on Euclidean domains, namely

m j ≤ Bn

(
j

|�|
) 2

n

, (1.4)

where Bn =
( 2+n

2

)2/n 4π2

ω
2/n
n

, see [30]. Note that (1.4) is compatible with the Weyl’s

law

m j ∼ 4π2

ω
2
n
n

(
j

|�|
) 2

n

, as j →+∞, (1.5)

The proofs of (1.3) and (1.4) rely on harmonic analysis techniques and are hardly
adaptable to the case of manifolds.

In the case of the eigenvalues of the Laplacian on manifolds, one of the first result
in this direction is presented in [11], where it is proved that

m j ≤ (n − 1)2

4
κ2 + Cn

(
j

|M |
) 2

n

. (1.6)

Herem j denote, with abuse of notation, the eigenvalues of the Laplacian on a compact
manifold (without boundary) M with Ric ≥ −(n − 1)κ2, κ ≥ 0. Results on domains
have been obtained more recently. In [19] the authors prove the following upper bound
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m j ≤ An

(
j

|�|
) 2

n + Bnκ
2, (1.7)

for the Neumann eigenvalues m j of the Laplacian on a domain � of a complete
Riemannian manifold with Ric ≥ −(n − 1)κ2, κ ≥ 0. It can be shown that An

behaves like 2n as n grows to +∞.
Note that the constants An, Bn in (1.7) depend only on n and do not coincide with

those in (1.3) and (1.4). In fact, here and inwhat follows,we shall denote by An , Bn,Cn

some positive constants which depend only on n and which are be re-defined line by
line.

The authors adopt a metric approach for the proof of (1.7).
We will use this approach also in the present paper in order to obtain upper bounds

for μ j . In view of (1.2), (1.5) and (1.7), it is natural to conjecture that the inequality

μ j ≤ An

(
j

|�|
) 4

n + Bnκ
4 (1.8)

holds for any bounded domain of a complete Riemannian manifold with Ric ≥ −(n−
1)κ2, κ ≥ 0.We are able to prove (1.8) for certain classes of domains andmanifolds. In
particular we prove (1.8) for domains of manifolds with non-negative Ricci curvature
and n = 2, 3, 4 (see Theorem 5.11), for domains of the standard sphere (see Theorem
5.15) and of the standard hyperbolic space (see Theorem 5.17), for boundaryless
manifolds (see Corollary 5.21), and for convex domains (see Corollary 5.23).

In the general case, we are able to prove an estimate of the form

μ j ≤ An

(
j

|�|
) 4

n + C(g) (1.9)

(see Theorem 5.7), where C(g) has an explicit form and depends on κ, rin j,�, |∂�|,
where rin j,� is the injectivity radius relative to � (see (5.3) for the definition) and
|∂�| is the n − 1-dimensional Hausdorff measure of the boundary. Estimate (1.9)
is improved if we put additional hypothesis on � and M . In particular we provide
more refined estimates in the case of domains with sufficiently small diameter in
manifolds with non-negative Ricci curvature (see Theorem 5.14) and in the case of
Cartan–Hadamard manifolds (see Theorem 5.18).

It is important to remark that a bound of the form (1.9) is good in the sense that the
geometry of the domain and of the manifold appears as an additive constant in front
of the term encoding the asymptotic behavior, which has the correct form compared
with the asymptotic law (1.2).

As already mentioned, in order to prove the upper bounds, we adopt a metric
approach. In particular, we exploit a result of decomposition of a metric measure
space by disjoint capacitors, see [25, 27] for more details, see also [19, 21]. Namely,
given a domain �, we find, for each j ∈ N, a family of j disjointly supported sets Ai ,
i = 1, . . . , j , in�with sufficient volume.Associated to each set Ai webuild a function
ui to test in the min–max formula for the eigenvalues [see formula (3.33)]. Since the
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ui are disjointly supported, from (3.33) we deduce that it is sufficient to bound the
Rayleigh quotient of each ui in order to upper bound μ j . Hence the functions ui have
to be constructed in a proper way.

We remark that test functions for the biharmonic operator need to belong to the stan-
dard Sobolev space H2(�). Usually, test functions are built in terms of distance-type
functions, which are Lipschitz, but are not in general H2(�) functions. In particu-
lar, test functions for the Laplacian eigenvalues are cut-off functions which are just
Lipschitz regular. The application of the technique used in [19] for the Laplacian is
not straightforward in our situation, in fact it is notoriously a difficult task to build
cut-off functions enjoying precise estimates for first and second derivatives, see e.g.,
[5, 17, 26]. We pay the price of the fact that we need cut-off functions in H2(�) with
well-behaved gradient and Laplacian by introducing into the estimates the quantities
rin j,� and |∂�|. Getting rid of these quantities in the general case seems a very difficult
issue.

Looking at (1.2) and (1.5), one may wonder if there is some sort of relationship
between μ j and m2

j and if it is possible, in general, to recover upper estimates for μ j

from upper estimates on m j . The answer is negative in general, in fact we provide
examples showing that the ratio μ j/m2

j may be made arbitrarily large or arbitrarily
close to zero. This does not happen with the Dirichlet eigenvalues: if we denote by λ j

and by � j the eigenvalues of the Laplace and biharmonic operator respectively, with
Dirichlet boundary conditions, then λ2j ≤ � j , for all j ∈ N.

Another interesting feature of problem (1.1) is that it is possible to produce nega-
tive eigenvalues. Again, this does not happen with the eigenvalues of the biharmonic
Dirichlet problem on domains of manifolds. In particular, in Sect. 4.3 we prove that
any domain of the standard hyperbolic space H

n admits at least n negative eigenval-
ues. Moreover, we prove that there exist domains with an arbitrarily large number of
negative eigenvalues, the absolute value of which can be made arbitrarily large. On
the other hand, for domains in manifolds with positive Ricci curvature we prove a
lower bound for the eigenvalues μ j in terms ofm j , η j and a lower bound on the Ricci
curvature (see Theorem 4.3), where η j denote the eigenvalues of the rough Laplacian
on �.

The present paper is organized as follows. In Sect. 2 we recall some preliminaries
and introduce the notation. In Sect. 3 we describe the classical Neumann boundary
conditions in (1.1) and derive the weak formulation of the problem, proving that it is
well-posed and characterizing its spectrum. In Sect. 4 we discuss a few properties of
the eigenvalues. In particular we provide examples where the ratioμ j/m2

j can bemade
arbitrarily large or close to zero. We prove that any domain of the hyperbolic space
admits at least n negative eigenvalues, and that there exists domains with an arbitrarily
large number of negative eigenvalues with arbitrarily large absolute value. We also
prove a lower bound for μ j for domains on manifolds with positive Ricci curvature.
In Sect. 5 we recall the main technical results of decomposition of a metric measure
space by capacitors, which allow to prove the upper estimates for the eigenvalues μ j

presented in the same section.
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2 Preliminaries and Notation

Let (M, g) be a complete n-dimensional smooth Riemannian manifold. For a bounded
domain � in M , by L2(�) we denote the space of measurable functions f on � such
that

∫

�
u2dv <∞.

The Sobolev space H2(�) is the completion of C∞(�) with respect to the norm

‖ f ‖H2(�) :=
(∫

�

(
|D2 f |2 + |∇ f |2 + f 2

)
dv

) 1
2

. (2.1)

The space L2(�) is a Hilbert space when endowed with the standard scalar product

〈 f , g〉L2(�) :=
∫

�

f gdv. (2.2)

The space H2(�) is a Hilbert space when endowed with the standard scalar product

〈 f , g〉H2(�) :=
∫

�

(
〈D2 f , D2g〉 + 〈∇ f ,∇g〉 + f g

)
dv, (2.3)

which induces the norm (2.1).
The space H2

0 (�) is the completion of C∞c (�) with respect to (2.1), there C∞c (�)

is the space of functions in C∞(�) compactly supported in �. We refer to [28] for an
introduction to Sobolev spaces on Riemannian manifolds.

We denote here by dv the Riemannian volume element of M and by dσ the induced
n − 1-dimensional volume element of ∂�.

Through all the paper, we denote by 〈·, ·〉 the inner product on the tangent spaces of
M associated with the metric g, and, with abuse of notation, we shall denote by 〈·, ·〉
also the induced metric on ∂�. Let ∇, D2 and � denote the gradient, the Hessian and
the Laplacian on M , respectively, and let∇∂�, div∂� and�∂� denote the gradient, the
divergence and the Laplacian on ∂� with respect to the induced metric, respectively.
We denote by ν the outer unit normal to ∂�. The shape operator of ∂�, denoted
by S, is defined for any X ∈ T ∂� as S(X) := ∇Xν, where ∇Xν is the covariant
derivative of ν along a vector field X . The second fundamental form of ∂�, denoted
by I I (X ,Y ), is defined as I I (X ,Y ) := 〈S(X),Y 〉 for all X ,Y ∈ T ∂�. We recall
that the eigenvalues of S are the principal curvatures of ∂�. We will denote by H :=
1

n−1 tr S = 1
n−1 div ν|∂�

the mean curvature of ∂�. Let Ric(·, ·) denote the Ricci tensor
ofM . Finally, for an open set E ⊆ M we denote by |E | the standard Lebesguemeasure
of E . For a closed set G ⊆ M of finite n− 1-dimensional Hausdorff measure, we still
denote by |G| the n − 1-dimensional Hausdorff measure of G.

We recall Bochner’s formula:

|D2 f |2 + Ric(∇ f ,∇ f ) = 1

2
�

(
|∇ f |2

)
− 〈∇� f ,∇ f 〉, (2.4)

holding pointwise for smooth functions f on �.
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It is also useful to recall Reilly’s formula, see [40]:

∫

�

(� f )2dv −
∫

�

|D2 f |2 + Ric(∇ f ,∇ f )dv

=
∫

∂�

(n − 1)H
(

∂ f

∂ν

)2

+ 2�∂� f
∂ f

∂ν
+ I I (∇∂� f ,∇∂� f )dσ, (2.5)

holding for smooth functions f on �.
We also recall Green’s identity for smooth functions f , g :

∫

�

(� f g − f �g) dv =
∫

∂�

(
∂ f

∂ν
g − f

∂g

∂ν

)

dσ. (2.6)

We recall that for any smooth vector field F on T ∂� and any function f defined
on ∂�,

∫

∂�

〈F,∇∂� f 〉dσ =
∫

∂�

div∂�F f dσ, (2.7)

that is, the divergence operator is the adjoint of the gradient. In particular, (2.7)
holds with ∂� replaced by any complete smooth (boundaryless) Riemannianmanifold
(M, g), and div∂�, ∇∂� replaced by the divergence and gradient on M , respectively.

Finally, by N we denote the set of positive natural numbers.

3 The Eigenvalue Problem for the Biharmonic Operator with
Neumann Boundary Conditions

In this section we describe the classical Neumann boundary conditions in (1.1), as
well as the weak formulation of the problem. This is done in Sect. 3.1.

Then we prove that problem (3.1) is well-posed under suitable assumptions on
the domain, and admits an increasing sequence of eigenvalues of finite multiplicity
bounded from below and diverging to +∞. This is done in Sect. 3.2.

3.1 Classical Neumann Boundary Conditions andWeak Formulation

We consider the following variational problem:

∫

�

〈D2u, D2φ〉 + Ric(∇u,∇φ)dv = μ

∫

�

uφdv, ∀φ ∈ H2(�), (3.1)

in the unknowns u ∈ H2(�) and μ ∈ R. Problem (3.1) is the variational (weak)
formulation of problem (1.1), as stated in the following theorem. We remark that it
is not straightforward to recognize the left-hand side of (3.1) as the correct quadratic
form for an eigenvalue problem for the biharmonic operator with Neumann boundary

123
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conditions. One would like to take the simpler quadratic form
∫

�
�u�φdv, which

however provides an ill-defined problem, see Remark 3.3.

Theorem 3.1 Let (M, g) be a complete n-dimensional smooth Riemannian manifold
and let� be a smooth (C∞) bounded domain in M. Given a solution (u, μ) of problem
(3.1) such that u ∈ C4(�)∩C3(�), then (u, μ) solves problem (1.1). Vice versa, any
solution (u, μ) of problem (1.1) is a solution of problem (3.1).

Actually, we will prove that (3.1) is the weak formulation of the following eigen-
value problem:

⎧
⎪⎨

⎪⎩

�2u = μu, in �,

(n − 1)H ∂u
∂ν
+�∂�u −�u = 0, on ∂�,

�∂�

(
∂u
∂ν

)− div∂�S(∇∂�u)+ ∂�u
∂ν
= 0, on ∂�,

(3.2)

in the unknowns u (the eigenfunction) and μ (the eigenvalue). Then, we will show
that the two boundary conditions in (3.2) coincide with those of (1.1), namely we will
prove the following lemma.

Lemma 3.2 Let (M, g) be a complete n-dimensional smooth Riemannian manifold
and let � be a smooth bounded domain in M. Then, for any u ∈ C3(�)

(n − 1)H∂u

∂ν
+�∂�u −�u = −∂2u

∂ν2
(3.3)

and

�∂�

(
∂u

∂ν

)

− div∂�S(∇∂�u)+ ∂�u

∂ν
= div∂� (∇ν∇u)∂� + ∂�u

∂ν
. (3.4)

Proof of Theorem 3.1 Assume that a function u ∈ C4(�) ∩ C3(�) and a real number
μ are solution of the eigenvalue equation

�2u = μu , in �. (3.5)

We multiply both sides of (3.5) by a function φ ∈ C∞ and integrate over �, obtaining
thanks to (2.6)

∫

�

�2uφdv =
∫

�

�u�φdv +
∫

∂�

(
∂�u

∂ν
φ −�u

∂φ

∂ν

)

dσ = μ

∫

�

uφdv. (3.6)

We set, for a function f ∈ C2(�)

Q�( f ) :=
∫

�

(� f )2dv −
∫

�

(
|D2 f |2 + Ric(∇ f ,∇ f )

)
dv (3.7)

123
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and

Q∂�( f ) :=
∫

∂�

(n − 1)H
(

∂ f

∂ν

)2

+ 2�∂� f
∂ f

∂ν
+ I I (∇∂� f ,∇∂� f )dσ. (3.8)

We polarize Q� and Q∂�: we have

1

4
(Q�(u + φ)− Q�(u − φ))

=
∫

�

�u�φdv −
∫

�

(
〈D2u, D2φ〉 + Ric(∇u,∇φ)

)
dv (3.9)

and

1

4
(Q∂�(u + φ)− Q∂�(u − φ))

=
∫

∂�

(n − 1)H∂u

∂ν

∂φ

∂ν
+�∂�u

∂φ

∂ν
+ ∂u

∂ν
�∂�φ + I I (∇∂�u,∇∂�φ)dσ. (3.10)

Applying Reilly’s formula (2.5) to u + φ and u − φ, and summing the resulting
equations, implies that Q�(u + φ) − Q�(u − φ) = Q∂�(u + φ) − Q∂�(u − φ).
Hence, from (3.9) and (3.10) we deduce that

∫

�

�u�φdv −
∫

�

(
〈D2u, D2φ〉 + Ric(∇u,∇φ)

)
dv

=
∫

∂�

(n − 1)H∂u

∂ν

∂φ

∂ν
+�∂�u

∂φ

∂ν
+ ∂u

∂ν
�∂�φ + I I (∇∂�u,∇∂�φ)dσ, (3.11)

hence
∫

�

�u�φdv =
∫

�

〈D2u, D2φ〉 + Ric(∇u,∇φ)dv

−
∫

∂�

(n − 1)H∂u

∂ν

∂φ

∂ν
+�∂�u

∂φ

∂ν
+ ∂u

∂ν
�∂�φ

+I I (∇∂�u,∇∂Mφ)dσ. (3.12)

Using (3.12) in (3.6), we can re-write (3.6) as

∫

�

�2uφdv =
∫

�

〈D2u, D2φ〉 + Ric(∇u,∇φ)dv

+
∫

∂�

(

(n − 1)H∂u

∂ν
+�∂�u −�u

)
∂φ

∂ν
dσ

+
∫

∂�

(

I I (∇∂�u,∇∂�φ)+ ∂�u

∂ν
φ + ∂u

∂ν
�∂�φ

)

dσ

= μ

∫

�

uφdv. (3.13)

123
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We note now that
∫

∂�

I I (∇∂�u,∇∂�φ)dσ =
∫

∂�

〈S(∇∂�u),∇∂�φ〉dσ

= −
∫

∂�

div∂�S(∇∂�u)φdσ, (3.14)

where the second equality follows from (2.7), and that

∫

∂�

∂u

∂ν
�∂�φdσ =

∫

∂�

�∂�

(
∂u

∂ν

)

φdσ. (3.15)

Thanks to (3.14) and (3.15), (3.13) can be rewritten as follows

∫

�

�2uφdv =
∫

�

〈D2u, D2φ〉 + Ric(∇u,∇φ)dv

+
∫

∂�

(

(n − 1)H∂u

∂ν
+�∂�u −�u

)
∂φ

∂ν
dσ

+
∫

∂�

(

�∂�

(
∂u

∂ν

)

− div∂�S(∇∂�u)+ ∂�u

∂ν

)

φdσ

= μ

∫

�

uφdv. (3.16)

Assume now that the function u satisfies the boundary conditions in (3.2). Then

∫

�

〈D2u, D2φ〉 + Ric(∇u,∇φ)dv = μ

∫

�

uφdv , ∀φ ∈ C∞(�). (3.17)

From the definition of H2(�) we deduce the validity of (3.1).
On the other hand, assume that there exist a solution (u, μ) ∈ (C4(�)∩C3(�))×R

to (3.1). From (3.16), by taking test functions φ ∈ C∞(�) we immediately deduce
that u solves the differential equation (3.5) as well as the boundary conditions in (3.2),
thus the pair (u, μ) is a solution of (3.2). This concludes the proof. ��

We prove now Lemma 3.2.

Proof of Lemma 3.2 We start by proving (3.3). Let {Ei }ni=1 an orthonormal frame in
a neighborhood of a point p ∈ ∂� such that {Ei }n−1i=1 is a orthonormal frame of ∂�

and En = ν is the outward unit normal to ∂�. For a Lipschitz vector field F in a
neighborhood of ∂�, we denote by F∂� :=∑n−1

i=1 〈F, Ei 〉Ei , hence in p

F = F∂� + 〈F, ν〉ν.

123
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Note that

〈∇νF, ν〉 = 〈∇ν(F∂� + 〈F, ν〉ν), ν〉 = 〈∇νF∂�, ν〉 + 〈∇ν〈F, ν〉ν, ν〉
= 〈∇ν〈F, ν〉ν, ν〉,

where we have used the fact that 〈∇νF∂�, ν〉 = 0. Moreover,
∑n−1

i=1 〈∇Ei ν, Ei 〉 =
divν = (n − 1)H. Thus we have

divF|∂�
=

n∑

i=1
〈∇Ei F, Ei 〉 =

n∑

i=1
〈∇Ei (F∂� + 〈F, ν〉ν), Ei 〉

=
n−1∑

i=1
〈∇Ei F∂�, Ei 〉 +

n∑

i=1
〈∇Ei 〈F, ν〉ν, Ei 〉

= div∂�F∂� +
n−1∑

i=1
〈∇Ei 〈F, ν〉ν, Ei 〉 + 〈∇ν〈F, ν〉ν, ν〉

= div∂�F∂� + 〈F, ν〉
n−1∑

i=1
〈∇Ei ν, Ei 〉 + 〈∇νF, ν〉

= div∂�F∂� + (n − 1)H〈F, ν〉 + 〈∇νF, ν〉. (3.18)

Now, noting that

∇u|∂�
= ∇∂�u + ∂u

∂ν
ν,

and that, by definition

∂2u

∂ν2
= 〈∇ν∇u, ν〉,

we immediately obtain from (3.18) the following identity

�u|∂�
= div∂�∇∂�u + (n − 1)H∂u

∂ν
+ 〈∇ν∇u, ν〉 = �∂�u + (n − 1)H∂u

∂ν
+ ∂2u

∂ν2
.

This proves (3.3).
We prove now (3.4). Let us consider the second boundary condition in (3.2). We

need to show that

�∂�

(
∂u

∂ν

)

− div∂�S(∇∂�u) = div∂� (∇ν∇u)∂� ,

which can be re-written as

div∂�

(

∇∂�

(
∂u

∂ν

)

− S(∇∂�u)− (∇ν∇u)∂�

)

= 0.
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We will prove the stronger identity

∇∂�

(
∂u

∂ν

)

− S(∇∂�u)− (∇ν∇u)∂� = 0.

We note that for any vector field X ∈ T M

〈∇ (〈∇u, ν〉) , X〉 = 〈∇X∇u, ν〉 + 〈∇Xν,∇u〉 = 〈∇ν∇u, X〉 + 〈∇∇uν, X〉,

since D2u and ∇ν are symmetric. Thus ∇ (〈∇u, ν〉) = ∇ν∇u+∇∇uν. We have then

∇∂�

(
∂u

∂ν

)

− S(∇∂�u)− (∇ν∇u)∂�

= ∇∂� (〈∇u, ν〉)− ∇∇∂�uν − ∇ν∇u + 〈∇ν∇u, ν〉ν
= ∇ (〈∇u, ν〉)− 〈∇ (〈∇u, ν〉) , ν〉ν −∇∇∂�uν −∇ν∇u + 〈∇ν∇u, ν〉ν
= ∇ν∇u + ∇∇uν − 〈∇ν∇u, ν〉ν − 〈∇∇uν, ν〉ν
−∇∇∂�uν −∇ν∇u + 〈∇ν∇u, ν〉ν
= ∇∇uν −∇∇∂�uν − 〈∇∇uν, ν〉ν = 0,

since

∇∇uν = ∇∇∂�uν +∇〈∇u,ν〉νν = ∇∇∂�uν

and

〈∇∇uν, ν〉 = 〈∇∇∂�uν, ν〉 + 〈∇〈∇u,ν〉νν, ν〉 = 0.

In fact ∇νν = 0 and 〈∇∇∂�uν, ν〉 = 0. This proves (3.4). The proof is now
concluded. ��

Sincewewill be interested in the variational problem (3.1), we can relax the hypoth-
esis on the smoothness of �. A sufficient condition for the solvability of (3.1) is, e.g.,
that � is of class C1, see Sect. 3.2.

Remark 3.3 (The correct quadratic form). By looking at (3.6) it is natural to ask what
happens if we consider in the left-hand side of (3.1) the more familiar quadratic form

∫

�

�u�φdv. (3.19)

The corresponding variational problem would read

∫

�

�u�φdv = μ

∫

�

uφdv , ∀φ ∈ H2(�), (3.20)
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in the unknowns u ∈ H2(�), μ ∈ R. We note that this problem is not well-posed: it is
immediate to see that all harmonic functions in H2(�) are eigenfunctions correspond-
ing to the eigenvalueμ = 0 . This is due to the fact that the quadratic form (3.19) is not
coercive in H2(�), indeed we can add to the quadratic form (3.19) a term γ

∫

�
uφdv

with γ > 0 arbitrarily large and obtain a scalar product whose induced norm is not
equivalent to the standard one of H2(�), see also Lemma 3.4. In [39] it is proved that
(3.20) has an infinite kernel consisting of all harmonic functions in H2(�). Moreover,
if we rule out the kernel, problem (3.20) admits an increasing sequence of positive
eigenvalues of finite multiplicity which coincide with the Dirichlet eigenvalues of the
biharmonic operator. It is not difficult to adapt the results of [39] to the case of domains
in a Riemannian manifold. The classical formulation of problem (3.20) reads

⎧
⎪⎨

⎪⎩

�2u = μu , in �,

�u = 0 , on ∂�,
∂�u
∂ν
= 0 , on ∂�.

(3.21)

We remark that Neumann boundary conditions are usually called “natural boundary
conditions” and in a certain sense arises from “solving a variational problem on the
largest possible energy space”, which in this case is H2(�). In this space, problem
(3.20) is evidently not well posed.

We also remark that the situation is completely different if we impose Dirichlet
boundary conditions, namely if we consider problem

⎧
⎪⎨

⎪⎩

�2u = �u , in �,

u = 0 , on ∂�,
∂u
∂ν
= 0 , on ∂�,

(3.22)

in the unknowns u (the eigenfunction) and � (the eigenvalue). In this case, the corre-
sponding weak formulation is

∫

�

�u�φdv = �

∫

�

uφdv , ∀φ ∈ H2
0 (�), (3.23)

in the unknowns u ∈ H2
0 (�), � ∈ R. In this case boundary conditions are no more

“natural” but are “imposed” with the choice of the energy space H2
0 (�). Problem

(3.23) can be written in the form (3.1) with the space H2(�) replaced by H2
0 (�). In

fact, it is easy to see that

∫

�

�u�φdv =
∫

�

〈D2u, D2φ〉 + Ric(∇u,∇φ)dv (3.24)

for all u, φ ∈ H2
0 (�), see (3.6) and (3.16). It turns out that (3.1) and (3.20) are

equivalent in H2
0 (�).

The situation is similar if � = M is a compact complete (boundaryless) smooth
Riemannianmanifold. In this case H2(M) = H2

0 (M) (see [28]), hence (3.24) holds for
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all u, φ ∈ H2(M). Thus, the weak formulation of the biharmonic closed problem on
M is fairly simple, and it turns out that the eigenvalues of the biharmonic operator onM
coincide with the squares of the eigenvalues of the Laplacian on M , the eigenfunctions
being the same. We refer to Sect. 5.8 for more details.

Finally, we remark that one can also consider the variational problem

∫

�

〈D2u, D2φ〉dv = μ

∫

�

uφdv , ∀φ ∈ H2(�), (3.25)

in the unknowns u ∈ H2(�), μ ∈ R. As it is done in Sect. 3.2 it is possible to prove
that problem (3.25) is well-posed and admits an increasing sequence of non-negative
eigenvalues of finite multiplicity. However, it is not always possible to recover an
eigenvalue problem of the form (1.1) starting from a smooth solution of (3.25) as in
the proof of Theorem 3.1, except for few particular cases. In fact, by following the
proof of Theorem 3.1, we are left to deal with the term

∫

�
Ric(∇u,∇φ)dv, and we

would like to have an identity of the form

∫

�

Ric(∇u,∇φ)dv

=
∫

�

L(u)φdv +
∫

∂�

B1(u)φdσ +
∫

∂�

B2(u)
∂φ

∂ν
dσ , ∀φ ∈ H2(�),

for suitable differential operators L, B1, B2. It is not in general possible to have explicit
form for L, B1, B2 (they exist by Riesz Theorem). If (M, g) is an Einstein manifold,
that is, Ric = Kg, then L(u) = −K�u, B1(u) = K ∂u

∂ν
and B2(u) = 0. Thus, any

smooth solution of (3.25) solves

⎧
⎪⎨

⎪⎩

�2u + K�u = μu, in �,
∂2u
∂ν2
= 0, on ∂�,

div∂� (∇ν∇u)∂� + ∂�u
∂ν
+ K ∂u

∂ν
= 0, on ∂�.

(3.26)

Problem (3.26) contains lower order terms in the eigenvalue equation and in the second
boundary condition.

3.2 Neumann Eigenvalues of the Biharmonic Operator

We prove here that, under suitable hypothesis on�, problem (3.17) admits an increas-
ing sequence of eigenvalues of finite multiplicity bounded from below and diverging
to +∞. To do so we recast problem (3.1) into an eigenvalue problem for a compact
self-adjoint operator acting on aHilbert space. First we note that (3.1) can be re-written
as

∫

�

〈D2u, D2φ〉 + Ric(∇u,∇φ)+ γ uφdv = �

∫

�

uφdv , ∀φ ∈ H2(�), (3.27)
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where γ ∈ R is fixed, in the unknowns u ∈ H2(�) and � ∈ R. Clearly a pair (u, μ) ∈
H2(�)×R is a solution of (3.1) if and only if the pair (u, μ+ γ ) ∈ H2(�)×R is a
solution of (3.27). We will study the eigenvalue problem in the equivalent formulation
(3.27) for suitable choices of γ .

We consider on H2(�) the bilinear form

〈 f , g〉H2(�) :=
∫

�

(
〈D2 f , D2g〉 + Ric(∇ f ,∇g)+ γ f g

)
dv, (3.28)

with γ > 0. We denote by H2(�) the space H2(�) endowed with the form (3.28).
We also set

‖ f ‖2H2(�)
:=

∫

�

(
|D2 f |2 + Ric(∇ f ,∇ f )+ γ f 2

)
dv. (3.29)

We state the following coercivity lemma, whose proof we postpone to the end of
this section.

Lemma 3.4 Let (M, g) be a complete n-dimensional smooth Riemannian manifold
and let � be a bounded domain in M with C1 boundary. There exist γ0 > 0 such
that for all γ > γ0, the bilinear form (3.28) defines a scalar product in H2(�) which
induces on H2(�) a norm which is equivalent to the standard one.

Through all this subsection, we fix once and for all a positive number γ > γ0,
where γ0 is as in Lemma 3.4.

Then we define the operator P as an operator from H2(�) to its dual H2(�)′ by
setting

P(u)[φ] :=
∫

�

(
〈D2u, D2φ〉 + Ric(∇u,∇φ)+ γ uφ

)
dv , ∀u, φ ∈ H2(�).

(3.30)

By the Riesz Theorem it follows that P is surjective isometry. Then we consider the
operator J fromH2(�) ⊂ L2(�) toH2(�)′ defined by

J (u)[φ] :=
∫

�

uφdv, ∀u, φ ∈ H2(�). (3.31)

If the embedding H2(�) ⊂ L2(�) is compact, then the operator J is compact. Finally,
we set

T = P(−1) ◦ J . (3.32)

If J is compact, since P is bounded, then also T is compact. Moreover

〈T (u), φ〉H2(�) = 〈u, φ〉L2(�),
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for all u, φ ∈ H2(�). Hence T is self-adjoint. Note that Ker T = Ker J = {0} and
the non-zero eigenvalues of T coincide with the reciprocals of the eigenvalues of
(3.27), the eigenfunctions being the same. If � is of class C1, then the embeddings
H2(�) ⊂ H1(�) ⊂ L2(�) are compact (see e.g., [4, Sect. 2]).

We are now ready to prove the following theorem.

Theorem 3.5 Let (M, g) be a smooth n-dimensional Riemannian manifold and let
� be a bounded domain in M with C1 boundary. Then the eigenvalues of (3.1) have
finitemultiplicity andare givenbyanon-decreasing sequence of real numbers

{
μ j

}∞
j=1

bounded from below defined by

μ j = min
U⊂H2(M)
dimU= j

max
0 �=u∈U

∫

�
|D2u|2 + Ric(∇u,∇u)dv

∫

�
u2dv

, (3.33)

where each eigenvalue is repeated according to its multiplicity.
Moreover, there exists a Hilbert basis of

{
u j

}∞
j=1 of H2(�) of eigenfunctions u j

associated with the eigenvalues μ j . By normalizing the eigenfunctions with respect to
(3.29), then

{ u j√
μ j+γ

}∞
j=1 define a Hilbert basis of L

2(�) with respect to its standard

scalar product.

Proof By the Hilbert–Schmidt Theorem applied to the compact self-adjoint operator
T it follows that T admits an increasing sequence of positive eigenvalues

{
q j

}∞
j=1,

bounded from above, converging to zero and a corresponding Hilbert basis
{
u j

}∞
j=1 of

eigenfunctions ofH2(�). Since q �= 0 is an eigenvalue of T if and only ifμ = 1
q −γ is

an eigenvalue of (3.1) with the same eigenfunction, we deduce the validity of the first
part of the statement. In particular, formula (3.33) follows from the standard min-max
formula for the eigenvalues of compact self-adjoint operators.

To prove the final part of the theorem, we recast problem (3.27) into an eigenvalue
problem for the compact self-adjoint operator T ′ = i ◦ P(−1) ◦ J ′, where J ′ denotes
the map from L2(�) to the dual of H2(�) defined by

J ′(u)[φ] :=
∫

�

uφdv , ∀u ∈ L2(�), φ ∈ H2(�), (3.34)

and i denotes the embedding of H2(�) into L2(�). We apply again the Hilbert–
Schmidt Theorem and observe that T and T ′ admit the same non-zero eigenvalues,
and that the eigenfunctions of T ′ can be chosen in H2(�) and coincide with the
eigenfunctions of T . From (3.27) we deduce that the normalized eigenfunction u j of
T with respect to (3.29), divided by

√
μ j + γ , form a orthonormal basis of L2(�).

This concludes the proof. ��
We prove now Lemma 3.4.

Proof of Lemma 3.4 It is easy to see that there exists C > 0 (possibly depending on
�, M and γ ) such that for any u ∈ H2(�)
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‖u‖2H2(�)
≤ C‖u‖2H2(�)

,

in fact we can trivially take C = max
{
1, ‖Ric‖L∞(�), γ

}
.

We prove now the opposite inequality

‖u‖2H2(�)
≥ 1

C
‖u‖2H2(�)

, (3.35)

possibly re-defining the constant C . We note that for ε ∈ (0, 1)

‖u‖2H2(�)
≥ ε‖u‖2H2(�)

+ (1− ε)

∫

�

×
(

|D2u|2 − ‖Ric‖L∞(�) + ε

1− ε
|∇u|2 + γ − ε

1− ε
u2

)

dv (3.36)

Hence, in order to prove (3.35) is is sufficient to prove that for any fixed B > 0 there
exists a constant A > 0 such that

∫

�

(
|D2u|2 − B|∇u|2 + Au2

)
dv ≥ 0.

We argue by contradiction and assume that such constant does not exists. We find a
sequence {uk}∞k=1 ⊂ H2(�) such that

∫

�

(
|D2uk |2 + ku2k

)
dv ≤ B

∫

�

|∇uk |2dv.

Wenormalize the functions uk by setting
∫

�
|∇uk |2dv = 1. Hence

∫

�
|D2uk |2dv ≤ B

and
∫

�
u2kdv ≤ B

k , thus the sequence {uk}∞k=1 is bounded in H2(�). Passing to a
subsequence, we have that uk⇀ū in H2(�) as k → +∞ (we have re-labeled the
elements of the subsequence as uk) and uk → ū in H1(�) by the compactness of the
embedding H2(�) ⊂ H1(�). Hence

∫

�
|∇ū|2dv = limk→+∞

∫

�
|∇uk |2dv = 1 and

∫

�
ū2dv = limk→+∞

∫

�
u2kdv = 0. Then we have found a function ū ∈ H2(�) such

that
∫

�
|∇ū|2dv = 1 and

∫

�
ū2dv = 0, a contradiction. This concludes the proof of

(3.35) and of the lemma. ��

4 A Few Properties of Neumann Eigenvalues

In this sectionwe investigate a fewproperties of the eigenvaluesμ j of problem (3.1). In
particularwe study thebehavior of the ratio

μ j

m2
j
,wherem j are theNeumanneigenvalues

of the Laplacian on �. In fact, in view of the asymptotic laws (1.2) and (1.5), it is
natural to compare μ j with m2

j . In particular we show that this ratio can be arbitrarily
large or arbitrarily close to zero. We denote by

0 = m1 < m2 ≤ · · · ≤ m j ≤ · · · ↗ +∞
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the Neumann eigenvalues of the Laplacian on �, which are given by

m j = min
U⊂H1(�)
dimU= j

max
0 �=u∈U

∫

�
|∇u|2dv

∫

�
u2dv

. (4.1)

Here H1(�) denotes the closure ofC∞(�)with respect to the norm
∫

�
|∇u|2+u2dv.

We also consider the sign of the eigenvalues, proving that in some situations negative
eigenvalues may appear. As a consequence we also provide examples where the ratio
μ j

m2
j
can be made negative and with arbitrarily large absolute value. In order to produce

suitable examples, we restrict our analysis to the Euclidean space, to manifolds with
Ric ≥ (n − 1)K > 0 and to the standard hyperbolic space H

n .

4.1 Domains of the Euclidean Space

Through this subsection (M, g) is the standard Euclidean space R
n . It is well-known

that if � is a bounded Lipschitz domain, then

0 = μ1 = μ2 = · · · = μn+1 < μn+2 ≤ · · · ≤ μ j ≤ · · · ↗ +∞,

and the eigenspace corresponding to the eigenvalue μ = 0 is generated by
{1, x1, . . . , xn}, see e.g., [39].

We have the following theorem.

Theorem 4.1 For all N ∈ N there exists a family
{
�ε,N

}

ε∈(0,ε0) such that

lim
ε→0+

με
j

(mε
j )
2 → 0,

whenever j satisfies N + 2 ≤ j ≤ (N + 1)(n+ 1). Here με
j ,m

ε
j are, respectively, the

eigenvalues of (3.1) and of the Neumann Laplacian in �ε,N .

Proof The domains providing the result are obtained by connecting with thin junctions
a fixed domain � to N domains �1, . . . , �N , N ∈ N, of fixed volume and disjoint
from �, and by letting the size of the junctions go to zero. We will prove the theorem
for n = 2 and N = 1.

For ε ∈ (0, 1), let �ε,1 = �ε := �L ∪ �R ∪ Rε, where �L = (−1, 0) × (0, 1),
�R = (1, 2) × (0, 1), and Rε :=

{
x ∈ R

2 : 0 ≤ x1 ≤ 1 , 0 < x2 < ε
}
. Note that the

domain �ε is not C1 smooth but only Lipschitz. It is well-known that for a Euclidean
domain � the inclusion H1(�) ⊂ L2(�) is compact provided � is Lipschitz, hence
the Neumann Laplacian as well as problem (3.1) have discrete spectrum. In particular,
Theorem 3.5 holds.

Let
{
m j

}∞
j=1 denote the Neumann eigenvalues of �L ∪ �R , let

{
ξ j

}∞
j=1 denote

the eigenvalues of − f ′′(t) = ξ f (t) in (0, 1) with Dirichlet boundary conditions, and

let
{
mε

j

}∞
j=1 denote the Neumann eigenvalues of �ε. It is known that the sequence
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{
mε

j

}∞
j=1 converges to the sequence

{
m j

}∞
j=1 ∪

{
ξ j

}∞
j=1, where in the union the

eigenvalues have been ordered increasingly, see e.g., [2]. In particular,mε
1 = 0,mε

2 →
0 as ε → 0+, and mε

j are uniformly bounded from below by some positive constant
independent on ε for j ≥ 3.

Let now με
j denote the eigenvalues of (3.1) in �ε. We prove that με

j ≤ Cε for
j ≤ 6, where C > 0 does not depend on ε.
To do so, let φL(x1, x2) ∈ C2(R2) be such that φL(x1, x2) = 1 if x1 < 0, 0 ≤

φL(x1, x2) ≤ 1 for 0 ≤ x1 ≤ 1
2 , and φL(x1, x2) = 0 if x1 > 1

2 . By construction
|D2φL(x1, x2)| ≤ c for some c > 0. We define analogously φR(x1, x2) ∈ C2(R2)

which is supported in
{
x1 > 1

2

}
by setting φR(x1, x2) = φL(1− x1, x2).

We set u1L = φL |�ε
, u2L = x1 · φL |�ε

, u3L = x2 · φL |�ε
, u1R = φR |�ε

, u2R =
x1 · φR |�ε

, u3R = x2 · φR |�ε
. These functions are linearly independent and belong

to H2(�ε). Moreover, any u in the space generated by u1L , u2L , u3L , u1R, u2R, u3R with∫

�ε
u2dv = 1 is easily seen to satisfy

∫

�

|D2u|2dv ≤ Cε,

with C independent of ε. This implies from (3.33) that με
j ≤ Cε for j ≤ 6. The proof

is now complete in the case n = 2 and N = 1.
The proof for n > 2 and N > 1 is a standard adaptation of the arguments above. ��

Remark 4.2 Let us consider a domain �ε,N as in the proof of Theorem 4.1. Such a
domain is usually called a N + 1-dumbbell. We observe that if N > n, we have that
m j , μ j → 0 as ε → 0+ for n + 2 ≤ j < N + 2. It is well-known that m1 = 0
and m j = O(εn+1) as ε → 0+ for 2 ≤ j ≤ N + 1, see e.g., [1, 29]. Moreover, it
is possible to show that in the case of a sufficiently regular N + 1-dumbbell domain
�ε,N , μ j → 0 as ε → 0+ for n + 2 ≤ j ≤ (N + 1)(n + 1), and μ(N+1)(n+1)+1
is bounded away from zero, uniformly in ε. We refer to [3] for the proof in the case
N = 1. Thanks to this fact, with the same arguments of [1] (see also [29]) it is possible
to prove that μ j = O(εn−1) as ε → 0+ for n + 2 ≤ j ≤ (N + 1)(n + 1). We omit
the details of the computations which are standard but quite technical and go beyond
the scopes of the present article. Anyway, we have that

μ j

m2
j
→ +∞ as ε → 0 for all

n+ 2 ≤ j < N + 2. Thus in the Euclidean case dumbbell domains provide examples
where either μ j < m2

j (for certain j ∈ N) or μ j > m2
j (for other j ∈ N).

4.2 Domains in Manifolds with Ric ≥ (n − 1)K > 0

Through all this subsection (M, g)will be a complete n-dimensional smooth Rieman-
nian manifold with Ric ≥ (n − 1)K > 0. We note that for any domain � of class
C1 of M we have μ1 = 0 and μ2 > 0. In fact, from (3.33) we immediately deduce
that μ j ≥ 0 for all j ∈ N and that μ1 = 0 is an eigenvalue with corresponding
eigenfunctions the constant functions. Constant functions are the only eigenfunctions
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associated with μ1 = 0. In fact, any eigenfunction u corresponding to the eigenvalue
μ = 0 satisfies

∫

�

|D2u|2 + Ric(∇u,∇u)dv = 0,

hence |∇u| = 0, thus u is a constant. This implies that μ2 > 0.
Let us denote by

0 ≤ η1 ≤ η2 ≤ · · · ≤ η j ≤ · · · ↗ +∞
the eigenvalues of the rough Laplacian applied to 1-forms on�with Neumann bound-
ary conditions. They are characterized by

η j = min
W⊂H1(�)
dimW= j

max
0 �=ω∈W

∫

�
|∇ω|2dv

∫

�
ω2dv

, (4.2)

whereH1(�) is the space of 1-forms of class H1(�), see e.g., [20] for more informa-
tion on the eigenvalues of the rough Laplacian. We have the following.

Theorem 4.3 Let (M, g) be a complete n-dimensional smooth Riemannian manifold
with Ric ≥ (n − 1)K > 0 and let � be a bounded domain in M with C1 boundary.
Then

μ j ≥ (η1 + (n − 1)K )m j

for all j ∈ N.

Proof The inequality is trivially true for j = 1. Hence we assume j ≥ 2. We observe
that for any non-constant u ∈ H2(�)

∫

�
|D2u|2 + Ric(∇u,∇u)dv

∫

�
u2dv

=
∫

�
|D2u|2dv

∫

�
|∇u|2dv ·

∫

�
|∇u|2dv

∫

�
u2dv

+
∫

�
Ric(∇u,∇u)dv

∫

�
u2dv

≥ η1

∫

�
|∇u|2dv

∫

�
u2dv

+ (n − 1)K

∫

�
|∇u|2dv

∫

�
u2dv

= (η1 + (n − 1)K )

∫

�
|∇u|2dv

∫

�
u2dv

. (4.3)

Hence, for any subspace U ⊂ H2(M) of dimension j ≥ 2 we have

max
0 �=u∈U

∫

�
|D2u|2 + Ric(∇u,∇u)dv

∫

�
u2dv

≥ (η1 + (n − 1)K ) max
0 �=u∈U

∫

�
|∇u|2dv

∫

�
u2dv
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This implies

μ j = min
U⊂H2(�)
dimU= j

max
0 �=u∈U

∫

�
|D2u|2 + Ric(∇u,∇u)dv

∫

�
u2dv

≥ (η1 + (n − 1)K ) min
U⊂H2(�)
dimU= j

max
0 �=u∈U

∫

�
|∇u|2dv

∫

�
u2dv

≥ (η1 + (n − 1)K ) min
U⊂H1(�)
dimU= j

max
0 �=u∈U

∫

�
|∇u|2dv

∫

�
u2dv

= (η1 + (n − 1)K )m j , (4.4)

where in the last inequality we have used the fact that H2(�) ⊂ H1(�), hence the
minimum decreases. The proof is now complete. ��
Remark 4.4 Note that if � is a bounded domain with I I ≥ 0, we have that

m2 ≥ nK ,

with equality if and only if � is isometric to an n-dimensional Euclidean hemisphere
of curvature K , see e.g., [23]. This result is in the spirit of the well-known Obata-
Lichnerowicz inequality, see [16, 32, 35]. Hence, for any bounded domain � with
I I ≥ 0 we have from Theorem 4.3 that

μ2 ≥ (η1 + (n − 1)K )nK .

It is natural to conjecture that

μ2 ≥ n2K 2. (4.5)

Problem Prove (4.5).
Thanks to Theorem 4.3 we have the following inequality for all j ∈ N, j ≥ 2

μ j

m2
j

≥ (η1 + (n − 1)K )

m j
. (4.6)

We recall now that for any N ∈ N there exists a sequence
{
�ε,N

}

ε∈(0,ε0) such that
m j ≤ Cε for all j ≤ N . These domains are obtained by connecting to a fixed domain
�, N domains of fixed volume and disjoint from � with thin junctions, and by letting
the width of the channels, represented by the parameter ε > 0, go to zero. This is a
standard construction (see [1, 2], see also Sect. 4.1).

This implies the validity of the following theorem.

Theorem 4.5 Let (M, g) be a complete n-dimensional smooth Riemannian manifold
with Ric ≥ (n − 1)K > 0. For all N ∈ N there exist a sequence

{
�ε,N

}

ε∈(0,ε0) of
domains such that
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lim
ε→0+

μ j

m2
j

= +∞, (4.7)

for all 2 ≤ j ≤ N.

On the other hand, if � is such that the second fundamental form of its boundary
is non-negative, that is, I I ≥ 0, we have that

μ j

m2
j

≤ 1. (4.8)

We refer to Sect. 5.9 for the proof of (4.8).

4.3 Domains of the Hyperbolic Space

Given an eigenvalue μ of (3.1) and a corresponding eigenfunction uμ ∈ H2(�), we
have

μ =
∫

�
|D2uμ|2 + Ric(∇uμ,∇uμ)dv

∫

�
u2μdv

.

It is well-known, from Bochner’s formula (2.4) and integration by parts, that, for any
u ∈ H2

0 (�)

∫

�

|D2u|2 + Ric(∇u,∇u)dv =
∫

�

(�u)2dv ≥ 0.

Note that for a complete, compact (boundaryless) smooth Riemannian manifold M

∫

M
|D2u|2 + Ric(∇u,∇u)dv =

∫

M
(�u)2dv ≥ 0,

for all u ∈ H2(M).
In view of this, the natural question arises whether the biharmonic Neumann eigen-

values μ j can be negative or not. Clearly, a necessary condition for the appearance
of negative eigenvalues is that Ric � 0. In this section we consider domains of the
standard hyperbolic space H

n . We have the following theorem.

Theorem 4.6 Let � be a bounded domain of the hyperbolic space H
n with C1 bound-

ary. Then � admits at least n negative eigenvalues.

Proof We start by proving the result for n = 2. To do so, wewill use Fermi coordinates
for H

2 (see e.g., [12, p. 54]). In this case the metric is given by

g(x, y) = dx2 + cosh2(x)dy2.
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The Christoffel symbols are

�1
1,1 = �2

1,1 = �1
1,2 = �2

2,2 = 0 , �2
1,2 = tanh(x), �1

2,2 = −2 cosh(x) sinh(x).

For any smooth function u(x, y) we have

∇u = uxdx + uydy,

hence

|∇u|2 = u2x +
u2y

cosh(x)2
.

Moreover,

D2u = uxxdx ⊗ dx + (
uxy − tanh(x)uy

)
(dx ⊗ dy + dy ⊗ dx)

+(uyy + cosh(x) sinh(x)ux )dy ⊗ dy,

therefore

|D2u|2 = u2xx +
2

(
uxy − tanh(x)uy

)2

cosh(x)2
+ (uyy + cosh(x) sinh(x)ux )2

cosh(x)4
.

A natural test function for the Rayleigh quotient in (3.33) is ũ(x, y) = x , which is the
signed distance from the geodesic x = 0. We have then

|D2u|2 + Ric(∇u,∇u) = |D2u|2 − |∇u|2 = tanh(x)2 − 1 < 0.

This implies that

μ1 = min
u∈H2(�)

∫

�
|D2u|2 + Ric(∇u,∇u)dv

∫

�
u2

≤
∫

�
|D2ũ|2 + Ric(∇ũ,∇ũ)dv

∫

�
ũ2

< 0.

Thus, μ1 < 0. Now, fixed a domain �, let μ1 < 0 be the first eigenvalue of (3.1)
and let u1 be an associated eigenfunction. Let p ∈ �, v �= 0 be a vector in TpH

2,
and let {γθ }θ∈[0,2π) be the family of geodesics with γθ (0) = p and with the angle
between γ ′θ (0) and v equals to θ . Let hθ be the signed distance to γθ . For all θ ∈
[0, 2π), |D2hθ |2+Ric(∇hθ ,∇hθ ) < 0. Indeedwecanperform the samecomputations
above in a new system of Fermi coordinates where x = hθ . Moreover, we have that
hπ = −h0.

Let us consider the function θ �→ ρ(θ) defined byρ(θ) := ∫

�
hθu1dv. The function

ρ is continuous and satisfies ρ(0) = −ρ(π). Therefore, there exists 0 ≤ θ0 ≤ π with
ρ(θ0) = 0. Hence, there exists at least one function hθ with negative Rayleigh quotient
and orthogonal to u1. From (3.33) we deduce that
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μ2 = min
0 �=u∈H2(�)∫

� uu1dv=0

|D2u|2 + Ric(∇u,∇u)dv

u2dv
≤ |D

2hθ |2 + Ric(∇hθ ,∇hθ )dv

h2θdv
< 0.

This proves the existence of a second negative eigenvalue. This concludes the proof
in the case n = 2.

The proof for n ≥ 3 is similar, howeverwe shall highlight only themain differences,
omitting the standard but quite long analogous computations.

The main tool in order to prove the result for n ≥ 3 is the Borsuk–Ulam Theorem
which states that if g : Sn → R

n is an odd function (that is, g(p) = −g(−p) where
−p is the antipodal point to p in S

n), then there exists p ∈ S
n such that g(p) = 0.

Let q ∈ � and letH1 be an hyperplane containing q. Let f1 be the signed distance
fromH1. Then

|D2 f1|2 + Ric(∇ f1,∇ f1)dv < 0.

The proof is analogous to that of the case n = 2. It follows by explicit computations in
Fermi coordinates (x1, . . . , xn) where x1 represents the signed distance fromH1 and
(x2, . . . , xn) are normal coordinates on H1 = H

n−1 (in this system q = (0, . . . , 0)).
Therefore μ1 < 0 with u1 a corresponding eigenfunction.

Letπ2 be afixedplane inTqH
n and letv1 ∈ π2 be a non-zero vector. For θ ∈ [0, 2π),

let Hθ be the hyperplane whose tangent space at q is normal to the vector vθ ∈ π2,
where vθ is a unit vector which forms with v1 an angle of width θ in π1. Let fθ be
the signed distance fromHθ . The Rayleigh quotient of this function is again negative.
Moreover, we have that f0 = − fπ and if we define ρ1(θ) := ∫

�
fθu1dv, we find out

that there exists θ ∈ [0, 2π) such that ρ1(θ) = 0. Thus we deduce the existence of a
function with negative Rayleigh quotient orthogonal to u1. As in the case n = 2, we
deduce that μ2 < 0. Assume now that we have μ1, . . . , μk < 0, with k < n, and with
associated eigenfunctions u1, . . . , uk . We prove that μk+1 < 0.

Let πk+1 be a fixed k + 1-dimensional subspace of TqH
n and let vk be a non-zero

vector in πk+1. Let, for θ = (θ1, . . . , θk) ∈ S
k , vθ be a vector in πk+1 forming a

directional angle θ = (θ1, . . . , θk) with vk . Let Hθ be the hyperplane whose tangent
space atq is normal to the vector vθ ∈ πk+1. Let fθ be the signed distance fromHθ . The
Rayleigh quotient of this function is negative. Moreover, we have that fθ = − f−θ for
all θ ∈ S

k . We define now ρk : Sk → S
k by ρk(θ) := (

∫

�
fθu1dv, . . . ,

∫

�
fθukdv).

By construction ρk is continuous and odd, hence there exists θ ∈ S
k such that ρk(θ) =

0, hence
∫

�
fθu1dv = · · · =

∫

�
fθukdv = 0. Therefore there exists a function in

H2(�)with negative Rayleigh quotient and orthogonal to u1, . . . , uk . From (3.33) we
deduce that μk+1 < 0.

This concludes the proof. ��

Remark 4.7 We can give an upper bound on the number of negative eigenvalues of
� in terms of the number of eigenvalues of the rough Laplacian smaller than one.
Indeed, if we have μ1, . . . , μN negative eigenvalues with corresponding eigenfunc-
tions u1, . . . , uN , then any u =∑N

i=1 αi ui is such that
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∫

�

|D2u|2 + Ric(∇u,∇u)dv =
∫

�

|D2u|2 − |∇u|2dv < 0.

To end this section we show that there exists domains with an arbitrary number of
arbitrarily large (in absolute value) negative eigenvalues.

Theorem 4.8 For any N ∈ N and M > 0 there exist a bounded domain �M,N of the
hyperbolic space H

n with |�M,N | = V , V > 0, and such that

μ j ≤ −M,

for all j ≤ N.

Proof We start by proving the theorem with N = 1. Let γ be a simple geodesic in
H

n and let γδ a δ-neighborhood of γ , that is γδ := {p ∈ H
n : dist(p, γ ) < δ}. In γδ

we consider Fermi coordinates (x1, . . . , xn), where (x1, 0, . . . , 0) correspond to the
points on γ and (0, x2, . . . , xn) correspond to a normal neighborhood of 0. Moreover,
gi j (p) = δi j and

∂gi j
∂xk

(p) = 0 = �k
i j (p) for all p ∈ γ .

Given ε > 0, we find δ > 0 such that |gi j (p) − δi j | < ε,
∣
∣
∣
∂gi j
∂xk

(p)
∣
∣
∣ < ε and

|�k
i j (p)| < ε for all p ∈ γδ .
On the domain Dδ,L := {p ∈ γδ : 0 < x1 < L} we consider n test functions xi ,

i = 2, . . . , n. We have, for all i = 2, . . . , n

|D2xi |2 = |∇dxi |2 ≤ C ′ε

for some C ′ > 0 independent of ε, and

Ric(∇xi ,∇xi ) = −1.

Therefore
∫

Dδ,L

|D2xi |2 + Ric(∇xi ,∇xi )dv ≤ (Cε − 1)Lδn−1,

while
∫

Dδ,L

x2i dv ≥ C ′′Lδn−1δ2,

for some constant C ′′ > 0 independent of ε, δ, since in γδ \ γδ/2, |xi |2 ≥ δ2

4 . By
choosing ε > 0 sufficiently small, we conclude that

μ1 ≤ −C

δ2
.

Moreover, by choosing L = 1
δn−1 we have that |Dδ,L | = O(1) as δ→ 0+. This proves

the statement for N = 1.
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Let N ∈ N be fixed. Consider the domain Dδ,NL . Let the points p1, . . . , pN ∈ γ

be given by pi =
(
L

(
i − 1

2

)
, 0, . . . , 0

)
for i = 1, . . . , N and let Bi := B

(
pi ,

L
4

)

and 2Bi := B
(
pi ,

L
2

)
. The balls 2Bi are disjoint. Associated with each 2Bi we define

cut-off functions φi by

φi (p) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if p ∈ Bi ,

4
(
2 dist(p,pi )

L − 1
)2 (

42 dist(p,pi )
L − 1

)
, if p ∈ 2Bi \ Bi ,

0, if p ∈ H
n \ 2Bi .

The functions ui := xkφi , i = 1, . . . , N (for some k = 2, . . . , n) are N disjointly
supported functions in H2(Dδ,L), hence from (3.33) we deduce that

μN ≤ max
i=1,...,N

∫

Dδ,NL
|D2ui |2 + Ric(∇ui ,∇ui )dv

∫

Dδ,NL
u2i dv

.

The same computations above show that the Rayleigh quotient of each ui is bounded
above by − C

δ2
, hence we have N negative eigenvalues with arbitrary large absolute

value. By choosing NL = 1
δn−1 we have also that |Dδ,NL | = O(1) as δ → 0+. This

concludes the proof. ��

Remark 4.9 A consequence of Theorem 4.8 is that we can always locally perturb a
fixed domain of the hyperbolic space H

n in order to obtain an arbitrary large number
of negative eigenvalues with arbitrary large absolute value. This is done exactly as for
the Neumann Laplacian, in which case we can deform locally a domain in order to
have an arbitrary large number of eigenvalues arbitrarily close to zero. Indeed, it is
sufficient to join to the domain a sufficient number of small balls by sufficiently thin
junctions.

Remark 4.10 A natural problem is to find classes of domains of the hyperbolic space
which have exactly n negative eigenvalues. A first immediate conjecture is that hyper-
bolic balls admit exactly n negative eigenvalues. However, a simple proof of this fact is
currently unavailable andwe leave this as an open question. Nevertheless, it is possible
to prove the result in the case of sufficiently small balls. In fact, from Remark 4.7 we
deduce that if ηn+1 > 1, where ηn+1 is the n+1-th eigenvalue of the rough Laplacian
on �, then � admits exactly n negative eigenvalues. Using normal coordinates with
origin in the center of a ball Bε of radius ε it is possible to prove by means of explicit
computations and max-min formula for the eigenvalues that ηn+1→+∞ as ε→ 0+.
Thus we deduce the existence of ε0 > 0 such that every ball of radius smaller than ε0
admits exactly n negative eigenvalues.

Problem Prove that hyperbolic balls admit exactly n negative eigenvalues.
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5 Upper Estimates for Eigenvalues

In this section we provide upper bounds for the eigenvalues μ j of (3.1) which are
compatible with Weyl’s law (1.2). As we have highlighted in Sect. 4, there is in
general no monotonicity between the eigenvalues μ j and the squares of the Neumann
eigenvalues of the Laplacian m j , hence in general there is no hope to recover upper
bounds for μ j from the known upper bounds on m j .

5.1 Decomposition of a Metric Measure Space by Capacitors

In this subsection we present the main technical tools which will be used to prove
upper bounds for eigenvalues. We start with some definitions.

We denote by (X , dist, ς) a metric measure space with a metric dist and a Borel
measure ς . We will call capacitor every couple (A, D) of Borel sets of X such that
A ⊂ D. By an annulus in X we mean any set A ⊂ X of the form

A = A(a, r , R) = {x ∈ X : r < dist(x, a) < R} ,

where a ∈ X and 0 ≤ r < R < +∞. By 2A we denote

2A = 2A(a, r , R) =
{
x ∈ X : r

2
< dist(x, a) < 2R

}
.

Moreover, for any F ⊂ X and r > 0 we denote the r -neighborhood of F by Fr ,
namely

Fr := {x ∈ X : dist(x, F) < r} .

We recall the following metric construction of disjoint capacitors from [25].

Theorem 5.1 ([25, Theorem 1.1]). Let (X , dist, ς) be a metric-measure space with ς

a non-atomic finite Borel measure. Assume that the following properties are satisfied:

(i) there exists a constant � such that any metric ball of radius r can be covered by
at most � balls of radius r

2 ;
(ii) all metric balls in X are precompact sets.

Then for any integer j there exists a sequence {Ai } ji=1 of j annuli in X such that, for
any i = 1, . . . , j

ς(Ai ) ≥ c
ς(X)

j
,

and the annuli 2Ai are pairwise disjoint. The constant c depends only on the constant
� in (i).

As we shall see, Theorem 5.1 is not easy to use in many concrete cases, e.g., when
X is a domain in the standard hyperbolic space H

n and ς is the restriction of the
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Lebesgue measure on X . In fact, hypothesis i) fails to hold with � depending only on
the dimension because of the exponential growth of the volume of balls. We state now
the following lemma, which improves [21, Lemma 4.1]. We postpone its proof at the
end of this subsection.

Lemma 5.2 Let (X , dist, ς) be a compact metric measure space with a finite measure
ς . Assume that for all s > 0 there exists an integer N (s) such that each ball of radius
5s can be covered by N (s) balls of radius s. Let β > 0 satisfying β ≤ ς(X)

2 and
assume that r > 0 is such that for all x ∈ X

ς(B(x, r)) ≤ β

2N (r)
.

Then there exist two open sets A and D of X with A ⊂ D such that:

(i) A = B(x1, r) ∪ · · · ∪ B(xl , r) with dist(xi , x j ) ≥ 4r if i �= j ;
(ii) D = A4r = B(x1, 5r) ∪ · · · ∪ B(xl , 5r);
(iii) ς(A) ≥ β

2N (r) , ς(D) ≤ β and dist(A, Dc) ≥ 4r .

A consequence of Lemma 5.2 is the following result providing a decomposition of
a metric measure space by capacitors which is alternative of that of Theorem 5.1.

Lemma 5.3 Let (X , dist, ς) be a compact metric measure space with a finite measure
ς . Assume that for all s > 0 there exists an integer N (s) such that each ball of radius
5s can be covered by N (s) balls of radius s. If there exists an integer k > 0 and a real
number r > 0 such that, for each x ∈ X

ς(B(x, r)) ≤ ς(X)

4N (r)2k
,

then there exist k ς -measurable subsets A1, . . . , Ak of X such that

ς(Ai ) ≥ ς(X)

2N (r)k
,

for all i ≤ k, dist(Ai , A j ) ≥ 4r for i �= j , and

Ai = B(xi1, r) ∪ · · · ∪ B(xili , r).

The proof of Lemma 5.3 is a consequence of Lemma 5.2 and follows exactly the
same lines of the proof of [21, Lemma 2.1]. We remark that [21, Lemma 2.1] provides
a decomposition of a metric measure space by capacitors given by union of balls. In
Lemma 5.3 the decomposition is given by unions of disjoint balls.

A clever merging of Theorem 5.1 and Lemma 5.3 allows to obtain the following
Theorem, which provides a further construction of disjoint families of capacitors. This
is a construction which we will widely use in the next subsections. We omit the proof
here. The interested reader can check the proof by following exactly the same lines as
those of [27, Theorem 2.1]. In fact, the substantial difference is the use of Lemma 5.3
instead of [27, Lemma 2.3] (see also [21, Lemma 2.1] and [19, Corollary 2.3]).
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Theorem 5.4 Let (X , dist, ς) be a compact metric-measure space with ς a non-atomic
finite Borel measure and let a > 0. Assume that there exists a constant � such that
any metric ball of radius 0 < r ≤ a can be covered by at most � balls of radius r

2 .

Then, for every j ∈ N there exists two families {Ai } ji=1 and {Di } ji=1 of Borel subsets
of X such that Ai ⊂ Di , with the following properties:

(i) ς(Ai ) ≥ c ς(X)
j , where c depends only on �;

(ii) Di are pairwise disjoint;
(iii) the two families have one of the following form:

(a) all the Ai are annuli and Di = 2Ai , with outer radii smaller than a, or
(b) all the Ai are of the form Ai = B(xi1, r0) ∪ · · · ∪ B(xili , r0), Di = A4r0

i and

dist(xik, x
i
l ) ≥ 4r0, where r0 = 4a

1600 .

We remark that for a sufficiently large integer j it is always possible to apply the
construction of Theorem 5.1 and obtain a decomposition of the metric measure space
by annuli [Theorem 5.4 (i),(i i) and (i i i)-(a)]. In particular we have the following.

Lemma 5.5 Assume that the hypotheses of Theorem 5.4 hold. Then there exists an
integer jX such that for every j ≥ jX there exists two families {Ai } ji=1 and {Di } ji=1
of Borel subsets of X such that Ai ⊂ Di satisfying i),i i) and iii)-a) of Theorem 5.4.

We refer to [27, Proposition 2.1] for the proof of Lemma 5.5.
We state now a useful corollary of Theorem 5.1 which gives a lower bound of the

inner radius of the annuli of the decomposition, see [25, Remark3.13].

Corollary 5.6 Let the assumptions of Theorem 5.1 hold. Then each annulus Ai has
either internal radius ri such that

ri ≥ 1

2
inf

{
r ∈ R : V (r) ≥ v j

}
, (5.1)

where V (r) := supx∈X ς(B(x, r)) and v j = c ς(X)
j , or is a ball of radius ri satisfying

(5.1).

It turns out that Corollary 5.6 applies to the case (i i i)-(a) of Theorem 5.4, see also
[27].

We conclude this subsection with the proof of Lemma 5.2

Proof of Lemma 5.2 Step 1We construct the points xi by induction. Let �1 = X . The
point x1 is such that ς(B(x1, r) ∩�1) = max{ς(B(x, r) ∩�1) : x ∈ X}.

Let �2 = X \ B(x1, 5r). The point x2 is such that

ς(B(x2, r) ∩�1) = max{ς(B(x, r) ∩�2) : x ∈ X}.

Note that this definition implies that dist(x2, x1) ≥ 4r . If dist(x2, x1) < 4r , B(x, r)∩
�2 = ∅.
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Suppose that we have constructed x1, . . . , x j . Let � j+1 = X \ (B(x1, 5r) ∪
· · · ∪ B(x j , 5r). Suppose � j+1 �= ∅. The point x j+1 is such that ς(B(x j+1, r) ∩
� j+1) = max{ς(B(x, r) ∩ � j+1) : x ∈ X}. Note that this definition implies that
dist(x j+1, xi ) ≥ 4r . If dist(x, xi ) < 4r , B(x, r) ∩� j+1 = ∅.

By compactness, the process has to stop: there exist only finitely many points on X
such that dist(xi , x j ) ≥ 4r . Let (x1, . . . , xk) be the set of points we have constructed.
We have ς(X \ (B(x1, 5r) ∪ · · · ∪ B(xk, 5r))) = 0 otherwise we could do another
iteration. Then

ς(X) = ς(B(x1, 5r) ∪ · · · ∪ B(xk, 5r)).

Step 2 We write

B(x1, 5r) ∪ · · · ∪ B(xk, 5r)

= (B(x1, 5r) ∩�1) ∪ (B(x2, 5r) ∩�2) ∪ · · · ∪ (B(xk, 5r) ∩�k).

Indeed, if x ∈ B(xi , 5r) and x /∈ B(xi , 5r) ∩ �i , we have by construction that x ∈
B(x1, 5r)∪ · · · ∪ B(xi−1, 5r)). Let j be the smallest integer such that x ∈ B(x j , 5r).
Then x ∈ � j . In fact, if it not the case, x ∈ B(x1, 5r) ∪ · · · ∪ B(x j−1, 5r)) and this
would contradict the fact that j was minimal.

As this is a disjoint union, we get

ς(X) = ς(B(x1, 5r) ∪ · · · ∪ B(xk, 5r))

= ς(B(x1, 5r) ∩�1)+ · · · + ς(B(xk, 5r) ∩�k).

Step 3 For each i , let us show that

ς(B(xi , 5r) ∩�i ) ≤ N (r)ς(B(xi , r) ∩�i ).

In fact by definition,

ς(B(xi , r) ∩�i ) = max{ς(B(x, r) ∩�i ) : x ∈ X}

and B(xi , 5r) is covered by N (r) balls of radius r . Let B(y, r) one of these balls. We
have

ς(B(y, r) ∩�i ) ≤ ς(B(xi , r) ∩�i ),

so that ς(B(xi , 5r) ∩�i ) ≤ N (r)ς(B(xi , r) ∩�i ).
Step 4 We deduce

ς(X) = ς(B(x1, 5r) ∩�1)+ · · · + ς(B(xk, 5r) ∩�k)

≤ N (r)(ς(B(x1, r) ∩�1)+ · · · + ς(B(xk, r) ∩�k)

≤ N (r)(ς(B(x1, r)+ · · · + ς(B(xk, r)), (5.2)
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and

ς(B(x1, r))+ · · · + ς(B(xk, r)) ≥ ς(X)

N (r)
.

By hypothesis β ≤ ς(X)
2 . As ς(B(x1, r) + · · · + ς(B(xk, r)) ≥ ς(X)

N (r) ≥ 2β
N (r) , we

choose l such that

ς(B(x1, r))+ · · · + ς(B(xl , r)) ≥ β

2N (r)

and

ς(B(x1, r))+ · · · + ς(B(xl−1, r)) ≤ β

2N (r)
.

Let A = B(x1, r) ∪ · · · ∪ B(xl , r) and D = B(x1, 5r) ∪ · · · ∪ B(xl , 5r). We have
by construction dist(xi , x j ) ≥ 4r and we immediately deduce that ς(A) ≥ β

2N (r) ,
dist(A, Dr ) ≥ 4r . It remains to show

ς(D) ≤ β.

We can argue as before and deduce that

ς(D) = ς(B(x1, 5r))+ · · · + ς(B(xl , 5r)

= ς(B(x1, 5r) ∩�1)+ · · · + ς(B(xl , 5r) ∩�l) ≤
≤ N (r)(ς(B(x1, r)+ · · · + ς(B(xl , r))) ≤ β

2
.

This concludes the proof. ��

5.2 A First General Estimate

In this subsection we prove an upper bound which holds for any domain with C1

boundary of a complete n-dimensional smooth Riemannian manifold (M, g) with a
given lower bound on the Ricci curvature of the form Ric ≥ −(n − 1)κ2, κ ≥ 0.

We need a few preliminary definitions. We denote by rin j (p) the injectivity radius
of the manifold (M, g) at p. We denote by rin j the injectivity radius of the manifold
(M, g), which is defined as the infimum of rin j (p) for p ∈ M . We will use also the
injectivity radius relative to � ⊂ M , defined by:

rin j,� := inf
p∈�

rin j (p). (5.3)

If � is bounded, then the infimum in (5.3) is actually a minimum and it is positive.
We are ready to state the main result of this subsection.
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Theorem 5.7 Let (M, g) be a complete n-dimensional smooth Riemannian manifold
with Ric ≥ −(n − 1)κ2, κ ≥ 0 and let � be a bounded domain of M of class C1. Let
a := min

{ 1
κ
,
rin j,�
2

}
. Then

μ j ≤ An

(
j

|�|
) 4

n + Bn
|∂�|4
|�|4 +

Cn

a4
. (5.4)

for all j ∈ N, where An, Bn,Cn are positive constants which depend only on the
dimension.

The strategy of the proof of Theorem 5.7 is to build, for each j ∈ N, j disjointly
supported functions u1, . . . , u j ∈ H2(�). Hence, the linear space Uj spanned by
u1, . . . , u j is j-dimensional and we can use Uj in the min–max formula (3.33). The
fact that the functions u1, . . . , u j have disjoint support makes easy to estimate the
Rayleigh quotient of any function inUj : it is in fact sufficient to estimate the Rayleigh
quotient of each of the ui .

We will use the sets given by Theorem 5.4 as supports for building u1, . . . , u j ,

namely, the sets {Di } ji=1. Hence, they will be annuli, balls, or union of disjoint balls.
Note that, in view of Theorem 5.4, if we are in the case (i i i)− a), the sets Di = 2Ai

are doubled annuli (or doubled balls), and they could be completely contained in �,
or they could intersect the boundary of �. In this latter case, the corresponding test
functionwill be the restriction of a function supported on Di , andwill not be compactly
supported in �; see Fig. 1. Analogous considerations hold in the case (i i i) − b) of
Theorem 5.4.

Once that we have chosen the supports, suitable test functions for the Rayleigh
quotient in (3.33) are built, in this subsection, in terms of the Riemannian distance
function from a point p ∈ M . This point is the center of an annulus of the family

Fig. 1 The annuli Ai and their doubled 2Ai
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Fig. 2 Radial profile of test functions supported on balls (left) or annuli (right)

{Di = 2Ai } ji=1 of Theorem 5.4 (in the case i i i) − (a); the case (i i i) − (b) will be
treated similarly). In Fig. 2 we have represented the prototype of the profile of a radial
test function supported on some ball or proper annulus 2Ai (left and right pictures,
respectively), and which equals 1 on Ai .

For any x, p ∈ M we denote by δp(x) the function

δp(x) := dist(x, p).

We also denote by cut(p) the cut-locus of a point p ∈ M . We will make use of the
Laplacian Comparison Theorem, see e.g., [36, Sect. 9] for details.

Theorem 5.8 Let (M, g) be a complete n-dimensional smooth Riemannian manifold
satisfying Ric ≥ −(n − 1)κ2, κ ≥ 0 and let p ∈ M. Then, for any x ∈ M \ ({p} ∪
cut(p))

(i) �δp(x) ≤ (n − 1)κ coth(κδp(x)) if κ > 0;
(ii) �δp(x) ≤ n−1

δp(x)
if κ = 0.

We prove now the following lemma.

Lemma 5.9 Let (M, g) be a complete n-dimensional smooth Riemannian manifold

with Ric ≥ −(n − 1)κ2, κ ≥ 0. Then, for any p ∈ M and any x ∈ B
(
p,

rin j (p)
2

)
we

have

(i) |�δp(x)| ≤ (n − 1)κ coth(κδp(x)) if κ > 0;
(ii) |�δp(x)| ≤ n−1

δp(x)
if κ = 0.

In particular, for any κ ≥ 0

|�δp(x)| ≤ n − 1

δp(x)
+ (n − 1)κ. (5.5)

Proof We prove point i i). Let p ∈ M and let x ∈ B
(
p,

rin j (p)
2

)
. Let p′ be the unique

point such that δp(p′) = rin j (p)
2 and x belongs to the geodesic joining p and p′. From

Theorem 5.8 it follows that
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�δp(x) ≤ n − 1

δp(x)
.

Moreover, since x belongs to the geodesic connecting p with p′ we see that

�δp(x) = �

(
rin j (p)

2
− δp′(x)

)

= −�δp′(x) ≥ − n − 1

δp′(x)

= − n − 1
rin j (p)

2 − δp(x)
≥ −n − 1

δp(x)
.

Point (i i) is now proved. Point (i) is proved exactly in the sameway. The last statement
follows by observing that cosh(t) ≤ 1

t − 1 for all t > 0, which implies (5.5). ��
We note that the restriction x ∈ B

(
p,

rin j (p)
2

)
is somehow natural. We may think

of the unit 2-dimensional standard sphere and coordinates (θ, φ) ∈ [0, π ] × [0, 2π)

and p being the north pole (θ = 0). In this case rin j = π . Hence δp(θ, φ) = θ and
�δp(θ, φ) = 1

tan(θ)
. Then, for any (θ, φ) ∈ [

0, π
2

]×[0, 2π), 0 ≤ �δp(θ, φ) ≤ 1
δp(θ,φ)

,

which in particular implies |�δp(θ, φ)| ≤ 1
δp(θ,φ)

. This last inequality fails for some

(θ, φ) ∈ (
π
2 , π

]×[0, 2π). It stills remains true for θ ∈ (
π
2 , θ∗

]
, for some θ∗ ∈ (

π
2 , π

)

(θ∗ ≈ 2.02876), but fails for θ ∈ (θ∗, π ].
We are now ready to prove Theorem 5.7.

Proof of Theorem 5.7 We first apply Theorem 5.4 with a = min
{ 1

κ
,
rin j,�
2

}
(if κ = 0,

then we take a = rin j,�
2 ). We take X = � endowed with the induced Riemannian

distance, and with the measure ς defined as the restriction to � of the Lebesgue
measure of M , namely ς(E) = |E ∩�| for all measurable set E .
Step 1 (large j) From Lemma 5.5 we deduce that there exists j� ∈ N such that for
all j ≥ j� there exists a sequence {Ai }4 ji=1 of 4 j annuli such that 2Ai are pairwise
disjoint and

|� ∩ Ai | ≥ c
|�|
4 j

. (5.6)

The constant c depends only on � of Theorem 5.4, hence it depends only on the
dimension and can be determined explicitly (see [27]). Since we have 4 j annuli, we
can pick at least 2 j of them such that

|� ∩ 2Ai | ≤ |�|
j

. (5.7)

Among these last 2 j annuli, we can pick at least j of them such that

|∂� ∩ 2Ai | ≤ |∂�|
j

. (5.8)

We take this family of j annuli, and denote it by {Ai } ji=1.
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Subordinated to this decomposition we construct a family of j disjointly supported
functions u1, . . . , u j . If u1, . . . , u j belong to H2(�), then from (3.33)

μ j ≤ max
i=1,..., j

∫

�
|D2ui |2 + Ric(∇ui ,∇ui )dv

∫

�
u2i dv

, (5.9)

Thus, in order to estimate μ j it is sufficient to estimate the Rayleigh quotient of each
of the test functions.

Let f : [0,∞)→ [0, 1] be defined as follows:

f (t) =

⎧
⎪⎨

⎪⎩

4(t − 1)2(4t − 1), t ∈ [ 1
2 , 1

]
,

1, t ∈ [
0, 1

2

]
,

0, t ∈ [1,+∞[.
(5.10)

By construction f ∈ C1,1[0,+∞). Moreover f ∈ C2(
[ 1
2 , 1

]
). We consider test

functions of the form f (ηδp(x)) for some η ∈ R and p ∈ M . We note that

∇ f (ηδp(x)) = η f ′(ηδp(x))∇δp(x) (5.11)

and

� f (ηδp(x)) = η2 f ′′(ηδp(x))+ η f ′(ηδp(x))�δp(x). (5.12)

In (5.12) we have used the fact that |∇δp(x)| = 1 for almost all x ∈ M , the equality
holding pointwise in M \ ({p} ∪ cut(p))). Standard computations show that

| f ′(t)| ≤ 3 (5.13)

and

| f ′′(t)| ≤ 24. (5.14)

Let now Ai be an annulus of the family {Ai } ji=1. We have two possibilities. Either Ai

is a proper annulus with 0 < ri < Ri ≤ rin j,�
4 , or is a ball of radius 0 < ri ≤ rin j,�

4 .

Case a (ball) Assume that Ai is a ball of radius 0 < ri ≤ rin j,�
4 and center pi .

Associated to Ai we define a function ui as follows

ui (x) =

⎧
⎪⎨

⎪⎩

1, 0 ≤ δpi (x) ≤ ri

f (
δpi (x)
2ri

), ri ≤ δpi (x) ≤ 2ri
0, otherwise.

(5.15)
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By construction, ui |� ∈ H2(�). Standard computations [see (5.11)–(5.14)]
and Lemma 5.9 show that

|∇ui | ≤ 3

ri
(5.16)

and

|�ui | ≤ 6

r2i
+ 3

ri
|�δpi (x)| ≤

3(n + 1)

r2i
+ 3(n − 1)κ

ri
. (5.17)

When estimating the Rayleigh quotient of ui we will also need to estimate
|∇|∇ui |2|. We have that

|∇ui (x)|2 = f ′(δpi (x)/2ri )2

4r2i
,

hence

|∇|∇ui (x)|2| = | f
′(δpi (x)/2ri ) f ′′(δpi (x)/2ri )|

4r3i
≤ 36

r3i
. (5.18)

Case b (annulus) Assume that Ai is a proper annulus of radii 0 < ri < Ri ≤ rin j,�
4

and center pi . Associated to Ai we define a function ui as follows

ui (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1− f (
δpi (x)
ri

),
ri
2 ≤ δpi (x) ≤ ri

1, ri ≤ δpi (x) ≤ Ri

f (
δpi (x)
2Ri

), Ri ≤ δpi (x) ≤ 2Ri

0, otherwise.

(5.19)

By construction, ui |� ∈ H2(�). Standard computations (see (5.11)–(5.14))
show that

|∇ui (x)| ≤

⎧
⎪⎨

⎪⎩

3
Ri

, Ri ≤ δpi (x) ≤ 2Ri ,
6
ri

,
ri
2 ≤ δpi (x) ≤ ri ,

0, otherwise.

(5.20)

In any case then

|∇ui (x)| ≤ 6

ri
. (5.21)
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Moreover, from Lemma 5.9 we have

|�ui (x)| ≤

⎧
⎪⎪⎨

⎪⎪⎩

3(n+1)
R2
i
+ 3(n−1)κ

Ri
, Ri ≤ δpi (x) ≤ 2Ri ,

12(n+1)
r2i
+ 6(n−1)κ

ri
,

ri
2 ≤ δpi (x) ≤ ri ,

0, otherwise.

(5.22)

In any case then

|�ui (x)| ≤ 12(n + 1)

r2i
+ 6(n − 1)κ

ri
. (5.23)

We will also need an estimate on |∇|∇ui |2|. As for (5.18) we find that

|∇|∇ui (x)|2| ≤

⎧
⎪⎪⎨

⎪⎪⎩

≤ 36
R3
i
, Ri ≤ δpi (x) ≤ 2Ri ,

≤ 288
r3i

,
ri
2 ≤ δpi (x) ≤ ri ,

0, otherwise.

(5.24)

In any case then

|∇|∇ui (x)|2| ≤ 288

r3i
. (5.25)

We also need an upper bound for the volume of 2Ai . Since the outer radius of 2Ai

is by construction smaller than 1
κ
, we have, from the volume comparison and standard

calculus that

|2Ai | ≤ 2n sinh(1)n−1ωn R
n
i . (5.26)

From Bochner’s formula (2.4) we deduce that

∫

�∩2Ai

|D2ui |2 + Ric(∇ui ,∇ui )dv

=
∫

�∩2Ai

1

2
�(|∇ui |2)− 〈∇�ui ,∇ui 〉dv

=
∫

∂�∩2Ai

1

2

∂|∇ui |2
∂ν

−�ui
∂ui
∂ν

dσ +
∫

�∩2Ai

(�ui )
2dv

≤
∫

∂�∩2Ai

1

2
|∇|∇ui |2| + |�ui ||∇ui |dσ +

∫

�∩2Ai

(�ui )
2dv (5.27)

We note that the boundary integrals are taken on ∂� ∩ 2Ai since by construction
ui ∈ H2

0 (2Ai ). From (5.8), (5.16), (5.17), (5.18), (5.21), (5.23) and (5.25) we deduce
that
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∫

�∩2Ai

|D2ui |2 + Ric(∇u,∇u)dv

≤
∫

�∩2Ai

(�ui )
2dv + |∂�|

j

(
18(4n + 5)

r3i
+ 36(n − 1)κ

r2i

)

≤
∫

�∩2Ai

(�ui )
2dv + |∂�|

j
18

(
5n + 4

r3i

)

. (5.28)

where the last inequality follows from the fact that ri ≤ Ri ≤ 1
2κ .

Corollary 5.6 gives us information on the size of the radius ri , in fact

ri ≥ 1

2
r̃ := 1

2
inf B (5.29)

where

B :=
{

r ∈ R : V (r) ≥ c|�|
j

}

. (5.30)

We observe that each r ∈ B is such that

c|�|
j
≤ V (r) = sup

x∈�
|B(x, r) ∩�| ≤ |B(x, r)| ≤ |B(p′, r)|κ

by volume comparison, where |B(p′, r)|κ denotes the volume of the ball of radius r
in the space form of constant curvature −κ2. If κ = 0 then each r ∈ B is such that

c|�|
j
≤ ωnr

n .

Hence any r ∈ B is such that

r ≥
(
c|�|
ωn j

) 1
n

,

therefore

ri ≥ 1

2

(
c|�|
ωn j

) 1
n

. (5.31)

If κ > 0, then r̃ ≤ 2ri ≤ 2
κ
by construction, and since r̃ = inf B, from volume

comparison and standard calculus (see also (5.26))

c|�|
j
≤ sinh(2)n−1ωnr̃

n .

123



Neumann Eigenvalues of the Biharmonic Operator on Domains Page 39 of 58   218 

Therefore

ri ≥ r̃

2
≥ 1

2

(
c|�|

sinh(2)n−1ωn j

) 1
n

. (5.32)

We note that (5.31) implies (5.32) which holds true for any κ ≥ 0. We conclude that

∫

�∩2Ai

|D2ui |2 + Ric(∇u,∇u)dv ≤
∫

�∩2Ai

(�ui )
2dv + αn

|∂�|
j

(
j

|�|
) 3

n

(5.33)

where

αn = 144(5n + 4)

(
ωn sinh(2)n−1

c

) 3
n

. (5.34)

In order to complete the estimates, it remains to bound the term
∫

�∩2Ai
(�ui )2dv. We

need to distinguish the case n = 2, 3, 4 and n > 4.

Case a’ (lower dimensions) Let n ≤ 4. We note that in this case it is irrelevant to
know that |2Ai ∩�| ≤ |�|j . This fact is crucial only for higher dimensions.

If Ai is a ball of radius ri ≤ 1
2κ , and hence |2Ai | ≤ 2n sinh(1)n−1ωnrni , we

have

∫

�∩2Ai

(�ui )
2dv ≤

∫

2Ai

(�ui )
2dv ≤

(
3(n + 1)

r2i
+ 3(n − 1)κ

ri

)2

|2Ai |

≤
(
3(n + 1)

r2i
+ 3(n − 1)κ

ri

)2

2nωn sinh(1)
n−1rni

≤ 18

(
(n + 1)2

r4−ni

+ (n − 1)2κ2

r2−ni

)

2n sinh(1)n−1ωn

≤ 18

(
(n + 1)2

r4−ni

+ (n − 1)2

4r4−ni

)

2n sinh(1)n−1ωn

= 18(4(n + 1)2 + (n − 1)2)2n−2ωn sinh(1)n−1

r4−ni

, (5.35)

where in the last line we have used the fact 2ri ≤ 1
κ
if κ > 0. From (5.32)

we obtain that

∫

�∩2Ai

(�ui )
2dv ≤ β ′n

(
j

|�|
) 4

n−1
, (5.36)
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where we set

β ′n = 72ωn sinh(1)
n−1(4(n + 1)2 + (n − 1)2)

(
sinh(2)ωn

c

) 4
n−1

. (5.37)

In the very same way it is possible to prove that (5.36) holds if Ai is a proper
annulus, possibly with a different β ′n , but still dependent only on n. It is
sufficient to split the integral

∫

2Ai
(�ui )2dv as the sum of the integrals of

(�ui )2 on the annulus ri
2 ≤ δpi (x) ≤ ri and on the annulus Ri ≤ δpi (x) ≤

2Ri and use (5.22) and (5.26) in each case.
Case b’ (higher dimensions) Let n > 4. Let Ai be a ball of radius ri . Then, by

Hölder’s inequality,

∫

�∩2Ai

(�ui )
2dv

≤ |� ∩ 2Ai |1− 4
n

(∫

�∩2Ai

(�ui )
n
2 dv

) 4
n

≤ |� ∩ 2Ai |1− 4
n

(∫

2Ai

(�ui )
n
2 dv

) 4
n

≤
( |�|

j

)1− 4
n

(
3(n + 1)

r2i
+ 3(n − 1)κ

ri

)2

|2Ai | 4n

≤
( |�|

j

)1− 4
n 72(4(n + 1)2 + (n − 1)2)

r4i
(ωn sinh(1)

n−14nrni )
4
n

= β ′′n
( |�|

j

)1− 4
n

, (5.38)

where

β ′′n = 72(4(n + 1)2 + (n − 1)2)(ωn sinh(1)
n−1)

4
n . (5.39)

In the same way it is possible to prove that (5.38) holds if Ai is a proper
annulus, possibly with a different β ′′n , but still dependent only on n . It is
sufficient to split the integral

∫

2Ai
(�ui )2dv as the sum of the integrals of

(�ui )2 on the annulus ri
2 ≤ δpi (x) ≤ ri and on the annulus Ri ≤ δpi (x) ≤

2Ri and use (5.22) and (5.26) on each annulus.

We have then proved that, for all dimensions n ≥ 2,

∫

�∩2Ai

(�ui )
2dv ≤ βn

(
j

|�|
) 4

n−1
, (5.40)
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where βn is a constant which depends only on n and is explicitly computable. This
concludes the estimate of the numerator of the Rayleigh quotient for ui . As for the
denominator we have

∫

�∩2Ai

u2i dv ≥
∫

�∩Ai

u2i dv = |� ∩ Ai | ≥ c
|�|
4 j

.

Then, we have for all i = 1, . . . , j

∫

�
|D2ui |2 + Ric(∇ui ,∇ui )dv

∫

�
u2i dv

≤ 4βn

c

(
j

|�|
) 4

n + 4αn

c

|∂�|
|�|

(
j

|�|
) 3

n

≤
(
4βn + 3αn

c

) (
j

|�|
) 4

n + αn

c

|∂�|4
|�|4 , (5.41)

where we have used Young’s inequality in the last passage. We have proved then that

μ j ≤ An

(
j

|�|
) 4

n + Bn

2

|∂�|4
|�|4 , (5.42)

for all j ≥ j�, where

An :=
(
4βn + 3αn

c

)

(5.43)

and

Bn := 2
αn

c
. (5.44)

Step 2 (small j) Let now j < j� be fixed. By using Theorem 5.4 as in Step 1, we find
that there exists a sequence of 4 j sets {Ai }4 ji=1 such that |� ∩ Ai | ≥ c |�|4 j . If the sets
Ai are annuli, we can proceed as in Step 1 and deduce the validity of (5.42). Assume
now that j is such that the sets Ai of the decomposition are of the form

Ai = B(xi1, r0) ∪ · · · ∪ B(xili , r0),

where r0 = 4a
1600 , Di = A4r0

i are pairwise disjoint, and δxil
(xik) ≥ 4r0 if l �= k. By

definition Di = B(xi1, 5r0) ∪ · · · ∪ B(xili , 5r0) and 5r0 ≤ rin j,�
160 . Since we have 4 j

disjoint sets Di , we can pick j of them such that |�∩Di | ≤ |�|j and |∂�∩Di | ≤ |∂�|
j .

We take from now on this family of j capacitors. Note that Di is a disjoint union
of li balls B(xi1, 5r0), · · · , B(xili , 5r0) of radius 5r0. Associated to each B(xik, 5r0),

k = 1, . . . , l we construct test functions uik as in (5.15). Then we define the function
ui associated with the capacitor (Ai , Di ) by setting ui = uik on B(xik, 5r0). We have
j disjointly supported test functions in H2(�). We estimate the Rayleigh quotient of

123



  218 Page 42 of 58 B. Colbois, L. Provenzano

each of the ui as in Step 1. As in (5.16), (5.17) and (5.18) we estimate |∇ui |, |�ui |
and |∇|∇ui |2|. In particular, we find a universal constant c0 such that

|∇ui | ≤ c0
r0

, |�ui | ≤ c0
r20
+ c0κ

r0
, |∇|∇ui |2| ≤ c0

r30
. (5.45)

By using (5.27), as we have done for (5.33), (5.36) and (5.38), we find that

∫

�
|D2ui |2 + Ric(∇ui ,∇ui )dv

∫

�
u2i dv

≤ An

a4
+ Bn

a3
|∂�|
|�| ,

for all i = 1, . . . , j , which implies, by using Young’s inequality as in (5.41), that

μ j ≤ 3An

4a4
+ Bn

a4
|∂�|
4|�| . (5.46)

The proof of (5.4) follows by combining (5.42) and (5.46), possibly re-defining the
constants An, Bn . ��
Remark 5.10 We point out that in the proof of Theorem 5.7 the inequality (5.46)
appears. Apparently this may look like a nonsense, in fact the right-hand side of the
inequality does not depend on j . However, note that this situation may occur only
for a finite number of eigenvalues μ j , since, starting from a certain j� (of which it is
possible in principle to give a lower bound), the capacitors of the decomposition given
by (5.4) are of the form (i i i) − (a), hence the estimate (5.42) holds starting from a
certain j�.

In the next subsections we will present more refined estimates under additional
assumptions.

5.3 Manifolds with Ric ≥ 0 and n = 2, 3, 4

In this subsection we establish upper bounds for bounded domains in Riemannian
manifolds satisfying Ric ≥ 0. In this case we will use Theorem 5.1, noting that the
constant � depends only on n. Moreover, test functions in this case are not given
in terms of the distance from a point, thus avoiding the obstruction of the lack of
regularity in correspondence of the cut-locus.

We state the main theorem of this subsection.

Theorem 5.11 Let (M, g) be a complete n-dimensional smooth Riemannianmanifolds
with Ric ≥ 0 and n = 2, 3, 4. Let � be a bounded domain of M with C1 boundary.
Then

μ j ≤ An

(
j

|�|
) 4

n

, (5.47)

for all j ∈ N, the constant An depending only on the dimension.
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The proof is similar to that of Theorem 5.7. However we will use different test
functions. To do so, we adapt a construction originally contained in [17, Theorem
6.33]. We have the following lemma (see [26, Theorem 2.2], see also [5]).

Lemma 5.12 Let (M, g) be a complete n-dimensional smooth Riemannian manifold
withRic ≥ 0. Then, for any p ∈ M and r > 0 there exists a function φr : M → [0, 1],
φ ∈ C∞(M), such that

(1) φr ≡ 1 on B
(
p, r

2

)
;

(2) supp(φr ) ⊂ B(p, r);
(3) |∇φr | ≤ C(n)

r ;

(4) |�φr | ≤ C(n)

r2
,

the constant C(n) depending only on the dimension.

Proof Let p ∈ M and r > 0 be fixed. Let us consider another metric on M , namely
gr := 1

r2
g. In this new metric

B(p, r) = Bgr (p, 1)

and

B
(
p,

r

2

)
= Bgr

(

p,
1

2

)

.

Here we denote by B(p, r) and B
(
p, r

2

)
the balls of center p and radius r and r

2 in the
original metric g. Moreover, Ricgr ≥ 0, hence from Theorem 6.33 of [17] we deduce
that there exists a constant c(n) and φ : M → [0, 1], φ ∈ C∞(M), such that

(1) φ ≡ 1 on Bgr

(
p, 1

2

)
;

(2) supp(φ) ⊂ Bgr (p, 1);
(3) |∇φ| ≤ c(n);
(4) |�φ| ≤ c(n).

Since �gr = r2� and |ω|2gr = r2|ω| for all 1-forms ω on M , we conclude that

|∇φ|2 ≤ c(n)

r

and

|�φ|2 ≤ c(n)

r2.

This concludes the proof by taking φr := φ. ��
Proof of Theorem 5.11 We use Theorem 5.1, which provides, for all indexes j ∈ N, a
family {Ai } ji=1 of annuli such that

|Ai ∩�| ≥ c
|�|
j
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and the annuli 2Ai are pairwise disjoint. Moreover, from Corollary 5.6 we deduce
that each annulus Ai has either internal radius ri satisfying (5.1) or is a ball of

radius ri satisfying (5.1). In this case B =
{
r ∈ R : V (r) ≥ c |�|j

}
and V (r) :=

supx∈� |B(x, r) ∩ �|. Since Ric ≥ 0, from volume comparison we know that every
ball B(p, r) ⊂ M satisfies |B(x, r)| ≤ ωnrn . Hence any r ∈ B is such that

c
|�|
j
≤ V (r) ≤ ωnr

n ⇐⇒ r ≥
(
c|�|
jωn

) 1
n

. (5.48)

Subordinated to the family {Ai } ji=1 we build a family of test functions {ui } ji=1 in
H2(�) in the following way. If Ai is a ball of radius ri , we take ui = φri , where φri
is defined in Lemma 5.12. Hence ui is supported in 2Ai and ui ≡ 1 on Ai . If Ai is a
proper annulus of radii 0 < ri < Ri , we take ui = φRi − φri . Again, ui is supported

in 2Ai and ui ≡ 1 on Ai . The functions
{
ui |�

} j
i=1 are disjointly supported and belong

to H2(�). Hence, from (3.33) we deduce that

μ j ≤ max
i=1,..., j

∫

�
|D2ui |2 + Ric(∇ui ,∇ui )dv

∫

�
u2i dv

.

We estimate now the Rayleigh quotient of each of the ui . Assume that Ai is a ball of
radius ri . We have, for the numerator

∫

�

|D2ui |2 + Ric(∇ui ,∇ui )dv

=
∫

�∩2Ai

|D2ui |2 + Ric(∇ui ,∇ui )dv

≤
∫

2Ai

|D2ui |2 + Ric(∇ui ,∇ui )dv

=
∫

2Ai

(�ui )
2dv ≤ |2Ai |c(n)2

r4i

≤ c(n)2ωnr
n−4
i ≤ c(n)2ω

4
n
n c

1− 4
n

( |�|
j

)1− 4
n

. (5.49)

In the first inequality we have estimated
∫

�∩2Ai
|D2ui |2 +Ric(∇ui ,∇ui )dv with the

integral on the whole ball 2Ai , being the integrand a non-negative function. More-
over, from Bochner’s formula, since ui ∈ H2

0 (2Ai ), we have that
∫

2Ai
|D2ui |2 +

Ric(∇ui ,∇ui )dv =
∫

2Ai
(�ui )2dv ≤ |2Ai |c(n)2

r4i
. Finally we have used (5.48) since

n ≤ 4.
For the denominator we have

∫

�

u2i dv =
∫

�∩2Ai

u2i dv ≥
∫

�∩Ai

u2i dv = |� ∩ 2Ai | ≥ c
|�|
j

. (5.50)
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From (5.49) and (5.50) we deduce

∫

�
|D2ui |2 + Ric(∇ui ,∇ui )dv

∫

�
u2i dv

≤ c(n)2
ω

4
n
n

c
4
n

(
j

|�|
) 4

n

. (5.51)

In the very same way it is possible to prove that (5.49) holds if Ai is a proper annulus,

possibly with a different dimensional constant in front of the term
(

j
|�|

) 4
n
. It is suf-

ficient to split the integral
∫

2Ai
(�ui )2dv as the sum of the integrals of (�ui )2 on the

annulus ri
2 ≤ δpi (x) ≤ ri and on the annulus Ri ≤ δpi (x) ≤ 2Ri .

The proof is now complete. ��
Remark 5.13 We remark that, differently from the proof of Theorem 5.7, we did not
choose the annuli of the decomposition in such a way that |� ∩ 2Ai | ≤ |�|j . In fact,
in the case n = 2, 3, 4, an upper bound on the size of the supports of test functions
seems to be irrelevant in the estimates. Moreover, being Ric ≥ 0, the quadratic form
|D2u|2+Ric(∇u,∇u) is always non-negative, hence we can estimate its integral over
� ∩ 2Ai with the whole integral over 2Ai and use Bochner’s formula. Of course we
can do this passage also for n > 4. However, in this case we would obtain

∫

�∩2Ai

|D2ui |2 + Ric(∇ui ,∇ui )dv

≤
∫

2Ai

|D2ui |2 + Ric(∇ui ,∇ui )dv

=
∫

2Ai

(�ui )
2dv ≤ |2Ai |c(n)2

r4i
≤ c(n)2ωnr

n−4
i , (5.52)

but n − 4 > 0, and inequality (5.52) is useless to obtain uniform estimates.
In the case n > 4 the strategy would be rather to choose, according to Theorem 5.1,

a family {Ai }4 ji=1 annuli such that |� ∩ Ai | ≥ c |�|4 j and then choose j annuli among

the 4 j of the family in such a way that |�∩ 2Ai | ≤ |�|j and |∂�∩ 2Ai | ≤ |∂�|
j , as in

the proof of Theorem 5.7. We build then test functions ui as in the proof of Theorem
5.11. From Bochner’s formula, as in (5.27), we have

∫

�∩2Ai

|D2ui |2 + Ric(∇ui ,∇ui )dv

≤
∫

∂�∩2Ai

1

2
|∇|∇ui |2| + |�ui ||∇ui |dσ +

∫

�∩2Ai

(�ui )
2dv.

Assume that Ai is a ball of radius ri . The term
∫

∂�∩2Ai
|�ui ||∇ui |dσ is estimated by

∫

∂�∩2Ai

|�ui ||∇ui |dσ ≤ |∂�|
j

c(n)2

r3i
≤ |∂�|

j

c(n)2ω
3
n
n

c
3
n

(
j

|�|
) 3

n

.
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For the term
∫

�∩2Ai
(�ui )2dv we have

∫

�∩2Ai

(�ui )
2dv ≤

(∫

�∩2Ai

(�ui )
n
2 dv

) 4
n |� ∩ 2Ai |1− 4

n

≤
(∫

2Ai

(�ui )
n
2 dv

) 4
n

( |�|
j

)1− 4
n ≤ c(n)2

|2Ai | 4n
r4i

( |�|
j

)1− 4
n

≤ 16c(n)2ω
4
n
n

( |�|
j

)1− 4
n

. (5.53)

Hence, as for (5.41), we find that

∫

�
|D2ui |2 + Ric(∇ui ,∇ui )dv

∫

�
u2i dv

≤ An

(
j

|�|
) 4

n + Bn
|∂�|4
|�|4 + Cn‖∇|∇ui |2‖∞,

(5.54)

for some constants An, Bn,Cn which depend only on the dimension. In the case that
Ai is a proper annulus, inequality (5.54) still holds, with possibly different dimensional
constants. Unfortunately an estimate of the form |∇|∇φr |2| ≤ c(n)

r3
is not available

for a function φr as in Lemma 5.12. If such an inequality would hold, then we would
immediately have

∫

�
|D2ui |2 + Ric(∇ui ,∇ui )dv

∫

�
u2i dv

≤ An

(
j

|�|
) 4

n + Bn
|∂�|4
|�|4 , (5.55)

and therefore

μ j ≤ An

(
j

|�|
) 4

n + Bn
|∂�|4
|�|4 . (5.56)

Problem Prove (5.56) for domains in complete smooth manifolds with Ric ≥ 0
and n > 4. Prove inequality (5.47) for domains in complete smooth manifolds with
Ric ≥ 0 and n ≥ 2.

5.4 Manifolds with Ric ≥ 0 and Small Diameter

If Ric ≥ 0 and the diameter is sufficiently small compared to rin j,�, it is possible
to build test functions for the Rayleigh quotient in terms of the distance function. In
particular, we have the following.

Theorem 5.14 Let (M, g) be a complete n-dimensional smooth Riemannian manifold
with Ric ≥ 0 and let � be a bounded domain in M with C1 boundary and diameter
D. If D <

rin j,�
2 , then
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μ j ≤ An

(
j

|�|
) 4

n + Bn
|∂�|4
|�|4 , (5.57)

for all j ∈ N, where An, Bn depend only on the dimension. If n ≤ 4 we can choose
Bn = 0.

Proof In order to prove Theorem 5.14 we exploit Theorem 5.1 and Corollary 5.6. We
find, as in the proof of Theorem 5.7, for all j ∈ N a family of j annuli {Ai } ji=1 such
that |� ∩ Ai | ≥ c |�|4 j , |∂� ∩ 2Ai | ≤ |∂�|

j , |� ∩ 2Ai | ≤ |�|j and the annuli 2Ai are

pairwise disjoint. Moreover, since we have taken D <
rin j,�
2 , the annuli 2Ai can be

chosen such that the outer radius is strictly smaller that rin j,�. Associated with Ai we
then build test functions ui of the form (5.15) if Ai is a ball or (5.19) if Ai is a proper
annulus. It follows then, as for the proof of (5.41)

∫

�
|D2ui |2 + Ric(∇ui ,∇ui )dv

∫

�
u2i dv

≤ An

(
j

|�|
) 4

n + Bn
|∂�|4
|�|4 ,

where the constants An , Bn depend only on the dimension. This implies (5.57) for all
j ∈ N. The last statement follows immediately from Theorem 5.11. This concludes
the proof. ��

5.5 Domains on the Sphere

In this section we obtain bounds for domains of the standard sphere S
n
R , namely we

have the following theorem.

Theorem 5.15 Let (M, g) = S
n
R be the sphere of radius R with standard round metric

and let � be a domain in S
n with C1 boundary. Then

μ j ≤ An

(
j

|�|
) 4

n

,

for all j ∈ N.

Proof Through all the proof we assume n > 4. The validity of the theorem for n ≤ 4
follows from Theorem 5.11. Given two points p1, p2 ∈ S

n
R , the maximal distance

among them is attained when they are antipodal points. In this case δp1(p2) = πR.
Moreover, μ1 = 0 and the corresponding eigenfunctions are the constant functions
on �, and μ2 > 0 (see Sect. 4.2).

We apply Theorem 5.1with X = �with the Riemannian distance, ς(A) = |A∩�|.
Since we have positive Ricci curvature, point (i) of Theorem 5.1 is satisfied for some
� which depends only on n. Points (ii) and (iii) are easily seen to hold. Hence we
deduce that there exists c which depends only on the dimension such that for any
j ≥ 2, there exists A1, . . . , A j annuli with
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(i) |Ai ∩�| ≥ c |�|j ;
(ii) 2Ai are pairwise disjoint;
(iii) |2Ai ∩�| ≤ |�|j ;
(iv) each annulus 2Ai has outer radius less than πR

2 .

Points (iii) and (iv) follow from the fact that we shall apply Theorem 5.1 with 2 j + 1
and by observing that we can choose first 2 j among the 2 j + 1 annuli given by the
construction so that (iv) holds. Indeed, if an annulus Ai with center pi has outer radius
strictly greater than πR

2 , the set S
n
R \ 2Ai is B(p1, r) ∪ B(p′i , r ′), where p′i is the

antipodal point of pi , r , r ′ < πR
2 (B(p′, r ′) = ∅ if Ai is a ball), and all other annuli

2Ak of the decomposition need belong to B(p1, r) ∪ B(p′i , r ′). Hence, no more than
one annulus can satisfy iv). Moreover, among the remaining 2 j annuli, we can chose
j annuli such that (iii) holds (see also the proof of Theorem 5.7). We shall denote by
ri and Ri the inner and outer radius of Ai , if Ai is an actual annulus, while we shall
denote by ri the radius, if Ai is a ball. By pi we denote the center of the annuli Ai .

Associated to each of the j annuli A1, . . . , A j satisfying (i)–(iv) we construct test
functions ui as in (5.15) (if Ai is a ball) or in (5.19) if Ai is a proper annulus. The
functions ui are of the form ui (x) = f

(
δp(x)

)
.

We apply now Bochner’s formula to a function of the form f (δp(x)), and we use
the fact that |∇δp(x)| = 1 almost everywhere. We have

1

2
�

(
|∇ f (δp(x))|2

)
= 1

2
�

(
| f ′(δp(x))∇δp(x)|2

)

= 1

2
�

(
f ′(δp(x))2

)

= ∇( f ′(δp(x)) f ′′(δp(x))) · ∇δp(x)

+ f ′(δp(x)) f ′′(δp(x))�δp(x)

= f ′′(δp(x))2 + f ′(δp(x)) f ′′′(δp(x))
+ f ′(δp(x)) f ′′(δp(x))�δp(x). (5.58)

On the other hand

∇� f (δp(x)) · ∇ f (δp(x))

= f ′(δp(x))∇δp(x) · ∇( f ′′(δp(x))+ f ′(δp(x))�δp(x))

= f ′(δp(x)) f ′′′(δp(x))+ f ′(δp(x)) f ′′(δp(x))�δp(x)

+( f ′(δp(x)))2∇δp(x) · ∇�δp(x). (5.59)

We deduce then

|D2 f (δp(x))|2 + Ric(∇ f (δp(x)),∇ f (δp(x)))

= f ′′(δp(x))2 − ( f ′(δp(x)))2∇δp(x) · ∇�δp(x). (5.60)
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Moreover,

∇δp(x) · ∇�δp(x) = ∇
(

(n − 1)

R
cot

(
δp(x)

R

))

· ∇δp(x)

= − n − 1

R2 sin2(δp(x)/R)
|∇δp(x)|2

= − n − 1

R2 sin2(δp(x)/R)
(5.61)

for all x �= p, p′, where p′ is the antipodal point to p, and

sin2(δp(x)/R) ≤ 4δp(x)2

π2R2 ,

for all x such that 0 ≤ δp(x) ≤ πR
2 .

Now, since |D2 f (δp(x))|2 + Ric(∇ f (δp(x)),∇ f (δp(x))) ≥ 0 and n > 4,

∫

�∩2Ai

|D2 f (δp(x))|2 + Ric(∇ f (δp(x))dv

≤ |� ∩ 2Ai |1−
4
n

(∫

�∩2Ai

(
|D2 f (δp(x))|2 + Ric(∇ f (δp(x)),∇ f (δp(x)))

) n
4 dv

) 4
n

≤ |� ∩ 2Ai |1−
4
n

(∫

2Ai

(
|D2 f (δp(x))|2 + Ric(∇ f (δp(x)),∇ f (δp(x)))

) n
4 dv

) 4
n

= |� ∩ 2Ai |1−
4
n

(∫

2Ai

(
f ′′(δp(x))− ( f ′(δp(x)))2∇δp(x) · ∇�δp(x)

) n
4 dv

) 4
n

= |� ∩ 2Ai |1−
4
n

⎛

⎝

∫

2Ai

(

f ′′(δp(x))2 + ( f ′(δp(x)))2
(n − 1)

R2 sin2(δp(x)/R)

) n
4

dv

⎞

⎠

4
n

≤ |� ∩ 2Ai |1−
4
n

⎛

⎝

∫

2Ai

(

f ′′(δp(x))2 + (n − 1)π2( f ′(δp(x)))2
4δp(x)2

) n
4

dv

⎞

⎠

4
n

≤ A′n |� ∩ 2Ai |1−
4
n ≤ A′n

( |�|
j

)1− 4
n

, (5.62)

where the constant A′n depends only on the dimension. For the denominator, we have

∫

�∩2Ai

u2i dv ≥
∫

�∩Ai

u2i dv = |� ∩ Ai | ≥ c
|�|
j

.

The proof follows now the same lines as that of Theorem 5.7. ��
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Remark 5.16 We remark that explicit constructions like the one just presented for
domains on the sphere are difficult already in other cases of manifolds for which we
know the exact structure of the cut-locus of a point. This is the case of domains on an
infinitely long cylinder. In this case, obtaining good estimates with the technique used
in the proof of Theorem 5.15 seems quite involved.

5.6 Domains of the Hyperbolic Space

In this subsection we provide estimates for domains of the standard hyperbolic space
H

n
κ . We have the following theorem.

Theorem 5.17 Let (M, g) = H
n
κ be the standard n-dimensional hyperbolic space of

curvature −κ , κ > 0 and let � be a bounded domain in H
n
κ with C1 boundary. Then

μ j ≤ An

(
j

|�|
) 4

n + Bnκ
4, (5.63)

for all j ∈ N.

Proof We apply Theorem 5.4 with a = 1
κ
.

Step 1 There exists j ∈ N such that for all j ≥ j� we find a sequence of j annuli
{Ai } ji=1 such that |� ∩ Ai | ≥ c |�|2 j , |� ∩ 2i | ≤ |�|j and 2Ai pairwise disjoint.

Associated to Ai we construct test functions ui given by (5.15) if Ai is a ball, or by
(5.19) if Ai is an a proper annulus. The distance function δp is smooth on all Hn

κ \ {p},
for all p ∈ H

n
κ , hence by construction ui |� ∈ H2(�). We estimate now the Rayleigh

quotient of the ui . From (5.60) and from the fact that

∇δp · ∇�δp = − (n − 1)2κ2

sinh2(κδp)
≤ − (n − 1)2

δ2p

we deduce, as in (5.62), that

∫

�∩2Ai

|D2 f (δp(x))|2 + Ric(∇ f (δp(x))dv

≤ |� ∩ 2Ai |1− 4
n

(∫

2Ai

(

f ′′(δp(x))2 + ( f ′(δp(x)))2
(n − 1)

δp(x)2

) n
4

dv

) 4
n

≤ A′n|� ∩ 2Ai |1− 4
n ≤ A′n

( |�|
j

)1− 4
n

, (5.64)

if n > 4.
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If n = 2, 3, 4 and Ai is a ball of radius ri
∫

�∩2Ai

|D2 f (δp(x))|2 + Ric(∇ f (δp(x))dv

=
∫

�∩2Ai

f ′′(δp(x))2 + ( f ′(δp(x)))2
(n − 1)

δp(x)2
dv

≤ A′n
|� ∩ 2Ai |

r4i
≤ A′n

|2Ai |
r4i
≤ A′′nrn−4i

≤ A′′′n
( |�|

j

)1− 4
n

, (5.65)

where we have used (5.31). Analogous computations show that inequality (5.65) holds
also in the case that Ai is a proper annulus, possibly with a different value of the
constant A′′′n .

For the denominator of the Rayleigh quotient we have

∫

�∩2Ai

u2i dv ≥
∫

�∩Ai

u2i dv = |� ∩ Ai | ≥ c
|�|
j

.

Therefore

μ j ≤ An

(
j

|�|
) 4

n

, (5.66)

for all j ≥ j�.
Step 2 If j < j�, we proceed as in Step 2 of the proof of Theorem 5.7. By applying
Theorem 5.4 we find that there exists a family {Ai }2 ji=1 of sets with the property

|�∩ Ai | ≥ c |�|2 j . If the Ai are annuli, we proceed as in Step 1 and deduce the validity
of (5.66). Assume now that Theorem 5.4 provides 2 j sets such that

Ai = B(xi1, r0) ∪ · · · ∪ B(xili , r0),

with r0 = 4a
1600 , Di = A4r0

i are pairwise disjoint, and δxil
(xik) ≥ 4r0 if l �= k. Since

we have 2 j disjoint sets, we can pick j of them such that |� ∩ Di | ≤ |�|j . Note that
each Di is a disjoint union of balls B(xi1, r0), . . . , B(xili , r0). Associated with each

B(xik, 5r0) we define a test function uik as in (5.15). Then, for any i = 1, . . . , j we
define the function ui by setting ui = uik on B(xik, r0). Now, analogous computations
as those in Step 1 allow to conclude that

μ j ≤ Bn

a4
. (5.67)

Since a = 1
κ
, from (5.66) and (5.67) we deduce the validity of (5.63). This concludes

the proof. ��
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5.7 Domains of Cartan–HadamardManifolds

ACartan–Hadamard manifold is a complete, simply-connected Riemannian manifold
(M, g) with non-positive sectional curvature. As a corollary of Theorem 5.7 we have
the following.

Theorem 5.18 Let (M, g) be a n-dimensional Cartan-Hadamardmanifold withRic ≥
−(n − 1)κ2, κ > 0 and let � be a bounded domain in M of class C1. Then

μ j ≤ An

(
j

|�|
) 4

n + Bn
|∂�|4
|�|4 + Cnκ

4,

for all j ∈ N

Proof We note that we can choose a = 1
κ
in Theorem 5.7, since for any p ∈ M , δp is

smooth on the whole M \ {p}. Moreover, �δp ≥ 0 for any p ∈ M , see e.g., [6]. ��

Remark 5.19 A way of getting rid of the term |∂�|4
|�|4 is to have explicit expressions for

the right-hand side of (5.60). This is the case of domains of standard spheres or for the
hyperbolic space. However, we note that ∇δp · ∇�δp is exactly ∂H(r)

∂r , where H(r)
is the mean curvature of the sphere centered at p in M and r is the radial direction.
From Bochner’s formula we can just recover

∇δp · ∇�δp = −|D2δp|2 − Ric(∇δp,∇δp) ≤ − (�δp)
2

n
+ (n − 1)κ2.

However, a lower bound for such quantity is needed. Otherwise, we necessarily have
to pass through an integration by parts as in Theorem 5.7, and this involves boundary
terms.

5.8 ManifoldsWithout Boundary

In this subsection � = M , with (M, g) a compact complete n-dimensional smooth
Riemannian manifold (without boundary) and Ric ≥ −(n − 1)κ2, κ ≥ 0.

A double integration by parts and Bochner’s formula imply that

∫

M
|D2u|2 + Ric(∇u,∇u)dv =

∫

M
(�u)2dv

for all u ∈ H2(M). In particular we have that

0 = μ1 < μ2 ≤ · · · ≤ μ j ≤ · · · ↗ +∞.
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In fact, one easily checks that all the eigenvalues are non-negative, and that there is
only one zero eigenvalue with associated eigenfunctions the constant functions on M .

We prove now that the eigenvalues μ j of (3.1) are exactly the squares of the eigen-
values of theLaplacian onM . Recall that theweak formulation of the closed eigenvalue
problem for the Laplacian is

∫

M
〈∇u,∇φ〉dv = m

∫

M
uφdv , ∀φ ∈ H1(M), (5.68)

in the unknowns (u,m) ∈ H1(M)×R. Problem (5.68) admits an increasing sequence
of non-negative eigenvalues of finite multiplicity

0 = m1 < m2 ≤ · · · ≤ m j ≤ · · · ↗ +∞

and the corresponding eigenfunctions can be chosen to form a orthonormal basis of
L2(M). We have the following theorem.

Theorem 5.20 Let (M, g) be a compact complete n-dimensional smooth Riemannian
manifold. Let

{
m j

}∞
j=1 denote the eigenvalues of the Laplacian on M. Then for all

j ∈ N

μ j = m2
j .

and the corresponding eigenfunctions can be chosen to be the same.

Proof Let vi denote the eigenfunctions associatedwithmi normalized by
∫

�
vivkdv =

δik . Since themetric is smooth,we have that vi ∈ H2(M) and−�vi = mivi in L2(M).
Hence, by setting V :=< v1, . . . , v j >, we have that V is a j-dimensional subspace of

H2(M) and a function v ∈ V is of the form v =∑ j
i=1 αivi for some α1, . . . , α j ∈ R.

Hence, from (3.33) we have

μ j ≤ max
v∈V

∫

M (�v)2dv
∫

M v2dv
= max

(α1,...,α j )∈R j

∑ j
i=1 α2

i m
2
i

∑ j
i=1 α2

i

= m2
j .

On the other hand, the well-known min–max principle for the eigenvalues of the
Laplacian on M states that

m j = min
U⊂H1(M)
dimU= j

max
u∈U
u �=0

∫

M |∇u|2dv∫

M u2dv
.

We choose U := 〈
u1, . . . , u j

〉
where u1, . . . , u j are the eigenfunctions associated

with the eigenvalues μ1, . . . , μ j of the biharmonic operator on M normalized by∫

M uiukdv = δik . Then
∫

M �ui�ukdv = μiδik . Any u ∈ U is of the form u =
∑ j

i=1 αi ui for some α1, . . . , α j ∈ R. We note that
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∫

M
|∇u|2dv = −

∫

M
u�udv ≤

(∫

M
u2dv

) 1
2

(∫

M
(�u)2dv

) 1
2

=
⎛

⎝
j∑

i=1
α2
i

⎞

⎠

1
2

⎛

⎝
j∑

i=1
α2
i μi

⎞

⎠

1/2

, (5.69)

hence

m j ≤ max
(α1,...,α j )∈R j

(∑ j
i=1 α2

i μi
∑ j

i=1 α2
i

) 1
2

= μ
1
2
j .

The rest of the proof is straightforward. ��
From Theorem 5.20 and from (1.6) we deduce the following corollary.

Corollary 5.21 Let (M, g) be a compact complete n-dimensional smooth Riemannian
manifold (without boundary) with Ric ≥ −(n − 1)κ2, κ ≥ 0. Then for all j ∈ N

μ j ≤
(

(n − 1)2

4
κ2 + Cn

(
j

|�|
) 2

n
)2

.

5.9 Domains with Convex Boundary

In this last subsection we shall present a case in which upper bounds for biharmonic
Neumann eigenvaluesμ j can be deduced directly by comparisonwithNeumann eigen-
values of the Laplacian and by (1.7).

Let (M, g) be a complete n-dimensional smooth Riemannian manifold with Ric ≥
−(n−1)κ2, κ ≥ 0, and let� be a bounded domain in M withC2 boundary. If I I ≥ 0
then we can compare the eigenvalues of (3.1) with the squares of the eigenvalues of
the Neumann Laplacian on �. We recall that the weak formulation of the Neumann
problem for the Laplace operator on � is given by (5.68) with M replaced by �.
Neumann eigenvalues of the Laplacian have finite multiplicity, are non-negative and
form an increasing sequence

0 = m1 < m2 ≤ · · · ≤ m j ≤ · · · ↗ +∞.

The associated eigenfunctions are denoted by {vi }∞i=1 can be chosen to form a orthonor-
mal basis of L2(�). We have the following

Theorem 5.22 Let (M, g) be a complete n-dimensional smooth Riemannian manifold
and let � will be a bounded domain of M of class C2 with I I ≥ 0. Then

μ j ≤ m2
j ,

for all j ∈ N
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Proof We have seen that for all u, φ ∈ H2(�) [see (3.6) and (3.13)]

∫

�

〈D2u, D2φ〉 + Ric(∇u,∇φ)dv

=
∫

�

�u�φdv −
∫

∂�

(

(n − 1)H∂u

∂ν
+�∂�u

)
∂φ

∂ν
dσ

−
∫

∂�

(

I I (∇∂�u,∇∂�φ)+ ∂u

∂ν
�∂�φ

)

dσ. (5.70)

Since the domain is of class C2, by standard elliptic regularity we have that the eigen-
functions vi of the Neumann Laplacian belong to H2(�). Therefore −�vi = mivi
in L2(�) and ∂vi

∂ν
= 0 in L2(∂�). We deduce that for any linear combination

v =∑ j
i=1 αivi with αi ∈ R

x
∫

�

|D2v|2 + Ric(∇v,∇v)dv

=
∫

�

(�v)2dv −
∫

∂�

I I (∇∂�v,∇∂�v)dσ ≤
∫

�

(�v)2dv

=
∫

�

⎛

⎝
j∑

i=1
αimivi

⎞

⎠

2

dv =
j∑

i=1
α2
i m

2
i . (5.71)

Consider then V := 〈
v1, . . . , v j

〉
the j-dimensional space spanned by the first j

eigenfunctions of the Neumann Laplacian. This is a subspace of H2(�) of dimension
j . Each v ∈ V is of the form v =∑ j

i=1 αivi for some α1, . . . , α j ∈ R. Moreover

∫

�

v2dv =
j∑

i=1
α2
i .

From (3.33) we have that

μ j ≤ max
v∈V

∫

�
|D2v|2 + Ric(∇v,∇v)dv

∫

�
v2dv

≤ max
(α1,...,α j )∈R j

∑ j
i=1 α2

i m
2
i

∑ j
i=1 α2

i

= m2
j .

This concludes the proof. ��
Theorem 5.22 and inequality (1.7) imply the following corollary.

Corollary 5.23 Let (M, g) be a complete n-dimensional smooth Riemannian manifold
with Ric ≥ −(n− 1)κ2, κ ≥ 0, and let � be a bounded domain of M of class C2 with
I I ≥ 0. Then
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μ j ≤
(

Anκ
2 + Bn

(
j

|�|
) 2

n
)2

, (5.72)

for all j ∈ N.

We remark that this bound holds independently of the size of �, its diameter and
the injectivity radius of M . Hence it is natural to pose the following question, whose
answer seems quite complicated at this stage.

Problem Prove inequality (5.72) for any bounded domain � with C1 boundary in a
complete n-dimensional smooth Riemannianmanifoldwith Ric ≥ −(n−1)κ2, κ ≥ 0.
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