The recent identification of noncoding variants with pathogenic effects suggests that these variations could underlie a significant number of undiagnosed cases. Several computational methods have been developed to predict the functional impact of noncoding variants, but they exhibit only partial concordance and are not integrated with functional annotation resources, making the interpretation of these variants still challenging. MicroRNAs (miRNAs) are small noncoding RNA molecules that act as fine regulators of gene expression and play crucial functions in several biological processes, such as cell proliferation and differentiation. An increasing number of studies demonstrate a significant impact of miRNA single nucleotide variants (SNVs) both in Mendelian diseases and complex traits. To predict the functional effect of miRNA SNVs, we implemented a new meta-predictor, MiRLog, and we integrated it into a comprehensive database, dbmiR, which includes a precompiled list of all possible miRNA allelic SNVs, providing their biological annotations at nucleotide and miRNA levels. MiRLog and dbmiR were used to explore the genetic variability of miRNAs in 15,708 human genomes included in the gnomAD project, finding several ultra-rare SNVs with a potentially deleterious effect on miRNA biogenesis and function representing putative contributors to human phenotypes.
MiRLog and dbmiR: Prioritization and functional annotation tools to study human microRNA sequence variants / Giovannetti, Agnese; Bianco, SALVATORE DANIELE; Traversa, Alice; Panzironi, Noemi; Bruselles, Alessandro; Lazzari, Sara; Liorni, Niccolo'; Tartaglia, Marco; Carella, Massimo; Pizzuti, Antonio; Mazza, Tommaso; Caputo, Viviana. - In: HUMAN MUTATION. - ISSN 1059-7794. - 43:9(2022), pp. 1201-1215. [10.1002/humu.24399]
MiRLog and dbmiR: Prioritization and functional annotation tools to study human microRNA sequence variants
Bianco Salvatore DanieleSecondo
;Traversa Alice;Panzironi Noemi;Lazzari Sara;Liorni Niccolo;Pizzuti Antonio;Mazza TommasoPenultimo
;Caputo Viviana
Ultimo
2022
Abstract
The recent identification of noncoding variants with pathogenic effects suggests that these variations could underlie a significant number of undiagnosed cases. Several computational methods have been developed to predict the functional impact of noncoding variants, but they exhibit only partial concordance and are not integrated with functional annotation resources, making the interpretation of these variants still challenging. MicroRNAs (miRNAs) are small noncoding RNA molecules that act as fine regulators of gene expression and play crucial functions in several biological processes, such as cell proliferation and differentiation. An increasing number of studies demonstrate a significant impact of miRNA single nucleotide variants (SNVs) both in Mendelian diseases and complex traits. To predict the functional effect of miRNA SNVs, we implemented a new meta-predictor, MiRLog, and we integrated it into a comprehensive database, dbmiR, which includes a precompiled list of all possible miRNA allelic SNVs, providing their biological annotations at nucleotide and miRNA levels. MiRLog and dbmiR were used to explore the genetic variability of miRNAs in 15,708 human genomes included in the gnomAD project, finding several ultra-rare SNVs with a potentially deleterious effect on miRNA biogenesis and function representing putative contributors to human phenotypes.File | Dimensione | Formato | |
---|---|---|---|
Giovannetti_MiRLog_2022.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
2.33 MB
Formato
Adobe PDF
|
2.33 MB | Adobe PDF | |
Giovannetti_Supporting_MiRLog_2022.pdf
accesso aperto
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
773.11 kB
Formato
Adobe PDF
|
773.11 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.