Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine-learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection-prevention behavior in 56,072 participants across 28 countries, administered in March to May 2020. The machine-learning model predicted 52% of the variance in infection-prevention behavior in a separate test sample—exceeding the performance of psychological models of health behavior. Results indicated the two most important predictors related to individual-level injunctive norms. Illustrating how data-driven methods can complement theory, some of the most important predictors were not derived from theories of health behavior—and some theoretically derived predictors were relatively unimportant.

Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic / Van Lissa, Caspar J.; Stroebe, Wolfgang; Vandellen, Michelle R.; Leander, N. Pontus; Agostini, Maximilian; Draws, Tim; Grygoryshyn, Andrii; Gützgow, Ben; Kreienkamp, Jannis; Vetter, Clara S.; Abakoumkin, Georgios; Abdul Khaiyom, Jamilah Hanum; Ahmedi, Vjolica; Akkas, Handan; Almenara, Carlos A.; Atta, Mohsin; Bagci, Sabahat Cigdem; Basel, Sima; Kida, Edona Berisha; Bernardo, Allan B. I.; Buttrick, Nicholas R.; Chobthamkit, Phatthanakit; Choi, Hoon-Seok; Cristea, Mioara; Csaba, Sára; Damnjanović, Kaja; Danyliuk, Ivan; Dash, Arobindu; Di Santo, Daniela; Douglas, Karen M.; Enea, Violeta; Faller, Daiane Gracieli; Fitzsimons, Gavan J.; Gheorghiu, Alexandra; Gómez, Ángel; Hamaidia, Ali; Han, Qing; Helmy, Mai; Hudiyana, Joevarian; Jeronimus, Bertus F.; Jiang, Ding-Yu; Jovanović, Veljko; Kamenov, Željka; Kende, Anna; Keng, Shian-Ling; Thanh Kieu, Tra Thi; Koc, Yasin; Kovyazina, Kamila; Kozytska, Inna; Krause, Joshua; Kruglanksi, Arie W.; Kurapov, Anton; Kutlaca, Maja; Lantos, Nóra Anna; Lemay, Edward P.; Jaya Lesmana, Cokorda Bagus; Louis, Winnifred R.; Lueders, Adrian; Malik, Najma Iqbal; Martinez, Anton P.; Mccabe, Kira O.; Mehulić, Jasmina; Milla, Mirra Noor; Mohammed, Idris; Molinario, Erica; Moyano, Manuel; Muhammad, Hayat; Mula, Silvana; Muluk, Hamdi; Myroniuk, Solomiia; Najafi, Reza; Nisa, Claudia F.; Nyúl, Boglárka; O’Keefe, Paul A.; Olivas Osuna, Jose Javier; Osin, Evgeny N.; Park, Joonha; Pica, Gennaro; Pierro, Antonio; Rees, Jonas H.; Reitsema, Anne Margit; Resta, Elena; Rullo, Marika; Ryan, Michelle K.; Samekin, Adil; Santtila, Pekka; Sasin, Edyta M.; Schumpe, Birga M.; Selim, Heyla A.; Stanton, Michael Vicente; Sultana, Samiah; Sutton, Robbie M.; Tseliou, Eleftheria; Utsugi, Akira; Anne van Breen, Jolien; Van Veen, Kees; Vázquez, Alexandra; Wollast, Robin; Wai-Lan Yeung, Victoria; Zand, Somayeh; Žeželj, Iris Lav; Zheng, Bang; Zick, Andreas; Zúñiga, Claudia; Bélanger, Jocelyn J.. - In: PATTERNS. - ISSN 2666-3899. - 3:4(2022), p. 100482. [10.1016/j.patter.2022.100482]

Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic

Di Santo, Daniela;Mula, Silvana;Pierro, Antonio;Resta, Elena;
2022

Abstract

Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine-learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection-prevention behavior in 56,072 participants across 28 countries, administered in March to May 2020. The machine-learning model predicted 52% of the variance in infection-prevention behavior in a separate test sample—exceeding the performance of psychological models of health behavior. Results indicated the two most important predictors related to individual-level injunctive norms. Illustrating how data-driven methods can complement theory, some of the most important predictors were not derived from theories of health behavior—and some theoretically derived predictors were relatively unimportant.
2022
machine learning; covid-19; health behaviors; social norms; public goods dilemma; random forest
01 Pubblicazione su rivista::01a Articolo in rivista
Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic / Van Lissa, Caspar J.; Stroebe, Wolfgang; Vandellen, Michelle R.; Leander, N. Pontus; Agostini, Maximilian; Draws, Tim; Grygoryshyn, Andrii; Gützgow, Ben; Kreienkamp, Jannis; Vetter, Clara S.; Abakoumkin, Georgios; Abdul Khaiyom, Jamilah Hanum; Ahmedi, Vjolica; Akkas, Handan; Almenara, Carlos A.; Atta, Mohsin; Bagci, Sabahat Cigdem; Basel, Sima; Kida, Edona Berisha; Bernardo, Allan B. I.; Buttrick, Nicholas R.; Chobthamkit, Phatthanakit; Choi, Hoon-Seok; Cristea, Mioara; Csaba, Sára; Damnjanović, Kaja; Danyliuk, Ivan; Dash, Arobindu; Di Santo, Daniela; Douglas, Karen M.; Enea, Violeta; Faller, Daiane Gracieli; Fitzsimons, Gavan J.; Gheorghiu, Alexandra; Gómez, Ángel; Hamaidia, Ali; Han, Qing; Helmy, Mai; Hudiyana, Joevarian; Jeronimus, Bertus F.; Jiang, Ding-Yu; Jovanović, Veljko; Kamenov, Željka; Kende, Anna; Keng, Shian-Ling; Thanh Kieu, Tra Thi; Koc, Yasin; Kovyazina, Kamila; Kozytska, Inna; Krause, Joshua; Kruglanksi, Arie W.; Kurapov, Anton; Kutlaca, Maja; Lantos, Nóra Anna; Lemay, Edward P.; Jaya Lesmana, Cokorda Bagus; Louis, Winnifred R.; Lueders, Adrian; Malik, Najma Iqbal; Martinez, Anton P.; Mccabe, Kira O.; Mehulić, Jasmina; Milla, Mirra Noor; Mohammed, Idris; Molinario, Erica; Moyano, Manuel; Muhammad, Hayat; Mula, Silvana; Muluk, Hamdi; Myroniuk, Solomiia; Najafi, Reza; Nisa, Claudia F.; Nyúl, Boglárka; O’Keefe, Paul A.; Olivas Osuna, Jose Javier; Osin, Evgeny N.; Park, Joonha; Pica, Gennaro; Pierro, Antonio; Rees, Jonas H.; Reitsema, Anne Margit; Resta, Elena; Rullo, Marika; Ryan, Michelle K.; Samekin, Adil; Santtila, Pekka; Sasin, Edyta M.; Schumpe, Birga M.; Selim, Heyla A.; Stanton, Michael Vicente; Sultana, Samiah; Sutton, Robbie M.; Tseliou, Eleftheria; Utsugi, Akira; Anne van Breen, Jolien; Van Veen, Kees; Vázquez, Alexandra; Wollast, Robin; Wai-Lan Yeung, Victoria; Zand, Somayeh; Žeželj, Iris Lav; Zheng, Bang; Zick, Andreas; Zúñiga, Claudia; Bélanger, Jocelyn J.. - In: PATTERNS. - ISSN 2666-3899. - 3:4(2022), p. 100482. [10.1016/j.patter.2022.100482]
File allegati a questo prodotto
File Dimensione Formato  
VanLissa_machine_predictors_COVID-19_2022.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1640841
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 17
social impact