The family of the multivariate conditional hazard rate functions often reveals to be a convenient tool to describe the joint probability distribution of a vector of non-negative random variables (lifetimes) in the absolutely continuous case. Such a tool can have in particular an important role in the study of the behavior of the minima among inter-dependent lifetimes. In this paper we introduce the concept of reversed multivariate conditional hazard rate functions, which extends the one-dimensional notion of reversed hazard rate of a single non-negative random variable. Several basic properties of this concept are proven. In particular, we point out a related role in the study of the behavior of the maximum value among inter-dependent lifetimes. In different applied fields, and in particular in the reliability literature, a remarkable class of dependence models for vectors of lifetimes is related with the load-sharing condition, which can be defined in terms of the multivariate conditional hazard rate functions. In the paper we define the class of reversed loadsharing models, which can be seen as natural extensions to the multivariate case of the univariate inverse exponential distributions. We analyze basic properties of such a class of dependence models. In particular we show a result related to the study of the inactivity time of a coherent system when the joint distribution of the components’ lifetimes is a reversed load-sharing model.
La famiglia delle funzioni multivariate conditional hazard rate si rivela spesso uno strumento conveniente per descrivere la distribuzione di probabilità congiunta di un vettore di variabili aleatorie non negative (tempi di vita) nel caso assolutamente continuo. Tale strumento può avere in particolare un ruolo importante nello studio del comportamento dei minimi tra variabili non indipendenti. In questo articolo introduciamo il concetto di Multivariate Reversed Hazard Rates che estende la nozione unidimensionale di tasso di rischio invertito di una singola variabile aleatoria non negativa. Sono state dimostrate diverse proprietà di base di questo concetto. In particolare, si segnala un ruolo correlato nello studio del comportamento del massimo valore tra le vite interdipendenti. In diversi campi applicati, ed in particolare nella letteratura sull'affidabilità, una notevole classe di modelli di dipendenza per vettori di variabili aleatorie è il load-sharing, che può essere definita in termini del m.c.h.r. Nell'articolo definiamo la classe di modelli, che possono essere visti come estensioni naturali del caso multivariato di distribuzioni esponenziali inverse univariate. Analizziamo le proprietà di base di tale classe di modelli di dipendenza. In particolare mostriamo un risultato relativo allo studio del tempo di inattività per i reversed load-sharing models.
Multivariate Reversed Hazard Rates and Inactivity Times of Systems / Buono, Francesco; De Santis, Emilio; Longobardi, Maria; Spizzichino, Fabio. - In: METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY. - ISSN 1387-5841. - (2021), pp. 1-22. [10.1007/s11009-021-09905-2]
Multivariate Reversed Hazard Rates and Inactivity Times of Systems
Emilio De Santis;Fabio Spizzichino
2021
Abstract
The family of the multivariate conditional hazard rate functions often reveals to be a convenient tool to describe the joint probability distribution of a vector of non-negative random variables (lifetimes) in the absolutely continuous case. Such a tool can have in particular an important role in the study of the behavior of the minima among inter-dependent lifetimes. In this paper we introduce the concept of reversed multivariate conditional hazard rate functions, which extends the one-dimensional notion of reversed hazard rate of a single non-negative random variable. Several basic properties of this concept are proven. In particular, we point out a related role in the study of the behavior of the maximum value among inter-dependent lifetimes. In different applied fields, and in particular in the reliability literature, a remarkable class of dependence models for vectors of lifetimes is related with the load-sharing condition, which can be defined in terms of the multivariate conditional hazard rate functions. In the paper we define the class of reversed loadsharing models, which can be seen as natural extensions to the multivariate case of the univariate inverse exponential distributions. We analyze basic properties of such a class of dependence models. In particular we show a result related to the study of the inactivity time of a coherent system when the joint distribution of the components’ lifetimes is a reversed load-sharing model.File | Dimensione | Formato | |
---|---|---|---|
Buono_postprint_Multivariate-reversed_2021.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.76 MB
Formato
Adobe PDF
|
2.76 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.